A transport-distance approach to scaling erosion rates: 3. Evaluating scaling characteristics of MAHLERAN

TitleA transport-distance approach to scaling erosion rates: 3. Evaluating scaling characteristics of MAHLERAN
Publication TypeJournal Article
Year of Publication2008
AuthorsWainwright J, Parsons A.J., Müller EN, Brazier RE, Powell MD, Fenti B
JournalEarth Surface Processes and Landforms
Volume33
Pagination1113-1128
Date Published2008
Accession NumberJRN00491
Call Number00938
Keywordsarticle, erosion, hydrology, hydrology, erosion, hydrology, scaling, hydrology, sediment transport, hydrology, soil-erosion model, hydrology, validation model, journal, model, MAHLERAN, model, scaling, model, soil-erosion, model, validation
Abstract

In the two previous papers of this series, we demonstrated how a novel approach to erosion modelling (MAHLERAN – Model for Assessing Hillslope-Landscape Erosion, Runoff And Nutrients) provided distinct advantages in terms of process representation and explicit scaling characteristics when compared with existing models. A first evaluation furthermore demonstrated the ability of the model to reproduce spatial and temporal patterns of erosion and their particle-size characteristics on a large rainfall-simulation plot. In this paper, we carry out a more detailed evaluation of the model using monitored erosion events on plots of different size. The evaluation uses four plots of 21·01, 115·94, 56·84 and 302·19 m2, with lengths of 4·12, 14·48, 18·95 and 27·78 m, respectively, on similar soils to the rainfall-simulation plot, for which runoff and erosion were monitored under natural rainfall. Although the model produces the correct ranking of the magnitude of erosion events, it performs less well in reproducing the absolute values and particle-size distributions of the eroded sediment. The implications of these results are evaluated in terms of requirements for process understanding and data for parameterization of improved soil-erosion models. We suggest that there are major weaknesses in the current understanding and data underpinning existing models. Consequently, a more holistic re-evaluation is required that produces functional relationships for different processes that are mutually consistent, and that have appropriate parameterization data to support their use in a wide range of environmental conditions. Copyright © 2008 John Wiley & Sons, Ltd.

URLfiles/bibliography/JRN00491.pdf
DOI10.1002/esp.1622
Reprint EditionIn File (06/12/2008)