Climate-soil interactions: global change, local properties, and ecological sites

TitleClimate-soil interactions: global change, local properties, and ecological sites
Publication TypeConference Paper
Year of Publication2010
AuthorsDuni D, Bestelmeyer BT
Conference Name63rd Society for Range Management Annual Meetings
Date Published02/07/2010
PublisherSociiety for Range Management
Conference LocationDenver, CO
ARIS Log Number259065
Abstract

Global climate change is predicted to alter historic patterns of precipitation and temperature in rangelands globally. Vegetation community response to altered weather patterns will be mediated at the site level by local-scale properties that govern ecological potential, including geology, topography and soils. Broad patterns in these local-scale properties are currently used in the ecological site concept as a method for classifying the landscape into relatively homogeneous units within current climatic zones. Although present vegetation distributions are often used when developing concepts for new ecological sites, the range of variation in soils, topography and geology that ultimately differentiate ecological sites often accounts for many of the local-scale properties likely important for mediating plant community responses to climate change. Barring dramatic rearrangement of landscapes, many of the combined soil-topographic-geologic properties used in ecological site delineation are not likely to change in time scales relative to management. Knowledge of processes governed by these site properties can be used to improve our understanding of climate-vegetation relationships in state-and-transition models. We review dynamic and static site properties important for mediating impacts of climate change and provide examples illustrating how understanding of site dynamics associated with these properties can add to the knowledge necessary for developing ecological site descriptions that can accommodate climate change effects. Finally, we present challenges and opportunities of using an ecological site based approach for making results of climate change studies relevant to managers concerned about climate change. Abstract # SYM-108.