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Abstract

Well-defined productivity–precipitation relationships of ecosystems are needed as benchmarks for the validation of

land models used for future projections. The productivity–precipitation relationship may be studied in two ways: the

spatial approach relates differences in productivity to those in precipitation among sites along a precipitation gradi-

ent (the spatial fit, with a steeper slope); the temporal approach relates interannual productivity changes to variation

in precipitation within sites (the temporal fits, with flatter slopes). Precipitation–reduction experiments in natural

ecosystems represent a complement to the fits, because they can reduce precipitation below the natural range and are

thus well suited to study potential effects of climate drying. Here, we analyse the effects of dry treatments in eleven

multiyear precipitation–manipulation experiments, focusing on changes in the temporal fit. We expected that struc-

tural changes in the dry treatments would occur in some experiments, thereby reducing the intercept of the temporal

fit and displacing the productivity–precipitation relationship downward the spatial fit. The majority of experiments

(72%) showed that dry treatments did not alter the temporal fit. This implies that current temporal fits are to be pre-

ferred over the spatial fit to benchmark land-model projections of productivity under future climate within the pre-

cipitation ranges covered by the experiments. Moreover, in two experiments, the intercept of the temporal fit

unexpectedly increased due to mechanisms that reduced either water loss or nutrient loss. The expected decrease of

the intercept was observed in only one experiment, and only when distinguishing between the late and the early

phases of the experiment. This implies that we currently do not know at which precipitation–reduction level or at

which experimental duration structural changes will start to alter ecosystem productivity. Our study highlights the

need for experiments with multiple, including more extreme, dry treatments, to identify the precipitation boundaries

within which the current temporal fits remain valid.
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Introduction

Altered precipitation patterns are projected for many

regions of the world (Solomon et al., 2009; IPCC, 2013).

This includes more frequent droughts, even in regions

where average annual rainfall is projected to increase

(IPCC 2012, 2013). The shortage of water often reduces

plant growth which, on a broader scale, translates into

decreased productivity of terrestrial ecosystems. There-

fore, in large parts of the world, the future changes in

precipitation are likely to reduce the net primary pro-

ductivity (NPP).

The projection of the future status of the physical,

biogeochemical and biological components of the Earth

system is achieved by means of global models. Global

models include land models with modules that project

the future state of ecosystems and that include the

mechanistic knowledge of the response of ecosystem

productivity to changing precipitation. For this reason,

ecosystem productivity, and specifically the NPP–pre-
cipitation relationship, is one of the targeted bench-

marks for the evaluation of the performance of these

land models (Randerson et al., 2009; Luo et al., 2012).

However, using NPP–precipitation relationships as

benchmarks confronts the dilemma of obtaining the

relationship either in a spatial framework, under a

broadscale including sites with different precipitation

regimes, or in a temporal framework, focusing on indi-

vidual sites and interannual variability in precipitation

over several years.

The global or across-sites ANPP–MAP relationship

(ANPP, aboveground NPP; MAP, mean annual precipi-

tation) is referred to as the spatial fit (Lauenroth & Sala,

1992) and reflects the variation in the ANPP of ecosys-

tems as a result of long-term influence of climatic con-

ditions (black line in Fig. 1). Globally, ANPP increases

with increasing MAP, but this effect saturates at higher

MAP, around 2500 mm yr�1 (Huxman et al., 2004; Del

Grosso et al., 2008). The spatial fit partly reflects the

controls that water availability exerts on carbon

exchange by vegetation, but it also reflects the influence

of structural and functional traits of ecosystems (such

as soil properties, nutrient pools, compositions of plant

and microbial communities, and traits of plants and

vegetation) that constrain ANPP and are shaped by

long-term exposure to climatic conditions. Because the

ongoing climate change will likely manifest itself on a

relatively short timescale, the spatial fit may not be the

ideal predictor of how ecosystems will respond to the

expected changes in precipitation in the coming dec-

ades (Knapp & Smith, 2001).

The within-site variation in ANPP in response to

variation in annual precipitation (AP) is typically

referred as the temporal fit (Lauenroth & Sala, 1992).

The temporal fit reflects the sensitivity of ecosystems to

short-term variations in weather-dependent water

availability (green line in Fig. 1). It also reflects the

ecosystem resilience determined by reversible adjust-

ments in plant physiology and morphology (e.g. stom-

atal conductance or leaf area) and by transient changes

in ecosystem structure and functioning. Such reversible

adjustments may recover within 1 or 2 years (Sala et al.,

2012) and therefore do not imply permanent ecosystem

changes. Transient changes in the structure of the vege-

tation (e.g. leaf area index, canopy cover, root density)

are responsible for the control of productivity as lega-

cies from precipitation in the previous year that com-

bine with the effects of precipitation in the current year

(Yahdjian & Sala, 2006; Sala et al., 2012; Anderegg et al.,

2015). For many sites, the projected decreases in precip-

itation will likely exceed the current ranges in AP

(IPCC 2013). As the effects of as yet unobserved

extreme drought and precipitation events may not be

predictable from current observations, the current tem-

poral fit may not be an ideal predictor of ANPP

responses to more intense and frequent droughts

either.

Temporal and spatial ANPP–precipitation relation-

ships usually differ (e.g. Paruelo et al., 1999) because

the slope of the temporal fit depends on reversible

Fig. 1 Schematic overview of the spatial and temporal relation-

ships between ANPP and precipitation. The black line repre-

sents the spatial fit, or across-sites relationship between ANPP

and MAP. The green line represents the temporal fit of a single

ecosystem, that is the within-site relationship between ANPP

and AP. The red lines represent the ANPP-AP relationship

under drier climatic conditions (i.e. with reduced AP). The dot-

ted red line represents the situation of the current temporal fit,

that is the ANPP-AP relationship obtained for the control treat-

ment, being valid under the new drier AP range. The continu-

ous red line represents the new ANPP-AP relationship under a

new ecosystem state when fundamental changes in the ecosys-

tem reduced the intercept as compared to the current temporal

fit.
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mechanisms acting in the short term, whereas the slope

of the spatial fit results from long-term changes in traits

and structure that characterize the ecosystem. Globally,

the spatial slope is generally steeper than the temporal

slope, suggesting that ANPP is more sensitive to long-

term differences in climate than to interannual varia-

tion in weather. This discrepancy in sensitivity to

weather vs. climate is a major source of uncertainty in

the projection of ANPP under climate change because

the projection depends on the framework of the rela-

tionship used, either spatial or temporal. To date, it

remains unresolved whether the temporal fits are best

for such model benchmarking, or if fits describing

higher effects of precipitation, as suggested by the spa-

tial fit, would be more appropriate.

To project the fate of natural ecosystems under

future decreased rainfall scenarios, precipitation–re-
duction experiments are a highly valuable tool. A

number of such experiments were conducted over sev-

eral years in natural grassland, shrubland and forest

ecosystems covering a wide range of annual precipita-

tion levels, but they have not yet been analysed to ver-

ify whether responses to altered precipitation resemble

the spatial or the temporal fit, or neither of these two.

In this study, we explored the results from eleven

multiyear precipitation–reduction experiments to anal-

yse the response of ANPP to the reduction of AP in

the dry treatment. We aim to disentangle the validity

of current ANPP–AP relationships, that is the tempo-

ral fit, under a drier climate using the data obtained

from experiments that have been running for several

years.

We hypothesized that due to the short-term duration

of experiments, ANPP in dry treatments would be as

expected from the ANPP–AP relationship in the con-

trol (dotted red line in Fig. 1); that is, they would fol-

low the current site-specific temporal fit. However, if

the treatment was severe enough to cause fundamental

changes in the structure and functioning of the ecosys-

tem, the ANPP would be altered. The site temporal fit

accounts for the current effects of natural AP variabil-

ity on ANPP; therefore, if the dry treatment alters

ANPP in a way that is different from the site temporal

fit, it would manifest itself as a decrease in the inter-

cept of the ANPP–AP relationship in the dry treatment

compared to that in the control. We hypothesize a

decrease in the intercept (continuous red line in Fig. 1)

because that would imply that part of the additional

effects of the dry treatment in ANPP would resemble

long-lasting adjustments in vegetation and soils like

the ones responsible for the spatial fit. Similarly, treat-

ment effects appearing after several years of manipula-

tion of the precipitation would manifest as step

changes in the intercept. Our focus on the intercept

builds on the study by Bestelmeyer et al. (2011), who

noted the value of the relationship between environ-

mental drivers and biological responses as descriptors

of ecosystem states and used the changes in the inter-

cepts of the relationships as one indicator of changes in

ecosystem state.

Materials and methods

Data for the analysis

We collected data from experiments conducted in natural or

semi-natural ecosystems, where the amount of precipitation

was experimentally decreased by means of rainout shelters,

sliding curtains or throughfall exclusion under either continu-

ous or episodic treatments (see Vicca et al., 2012, 2014). To

reduce the uncertainties, we selected experiments with a mini-

mum duration of 4 years, yielding altogether eleven experi-

ments conducted at different sites (Table 1, Figs S1 and 2a).

The selected minimum duration provides at least four data

points for fitting separate control and treatment temporal fits

(Fig. 2a, Table 1). MAP across these sites ranged from 235 to

1344 mm yr�1, with a median of 703 mm yr�1. Mean annual

temperature ranged from 3.0 to 18.4 °C, with a median of

12.3 °C (Table 1). Most of the ecosystems had woody vegeta-

tion: three shrublands, BRA, GAR and OLD, and three forests,

PRA, PUE and WAL; three were a mixture of herbaceous

plants and shrubs (KIS, LAH and MAT); and two were com-

pletely herbaceous (RAM and STU). The intensity of the dry

treatments ranged between 7% and 58% decrease in annual

precipitation, with a median of 27% (Table 1). Details for indi-

vidual sites and experiments are found in the references listed

in Table 1 and Fig. S1.

For each experiment, the data used were MAP, annual

ANPP and AP, the accumulated amount of precipitation

annually reaching the ecosystem. An annual cycle was consid-

ered between two standing biomass measurements and can be

based on a calendar year from January to December or from

summer to summer, depending on the season when the mea-

surements were taken. Data were recorded for 4–12 years of

manipulation (Table 1). AP for the controls was the natural

local precipitation, whereas AP for the treatments was the

amount of water entering the plots after manipulation of the

natural rain. Manipulation consisted of blocking a fraction of

the natural rain to simulate drought, with varying intensities,

timings and durations depending on the experiment (Table 1).

In herbaceous or mixed ecosystems, ANPP was estimated

from destructive measurements at peak standing biomass

(LAH, MAT and STU) or at the end of growing season (RAM).

At the woody sites, ANPP was estimated by summing the

increase in standing biomass during a 12-month period and

the litter produced during the same period.

ANPP modelling

The spatial fit was obtained as a linear model of the average

ANPP of the control data from the years when the

© 2016 John Wiley & Sons Ltd, Global Change Biology, 22, 2570–2581
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experiments were running vs. the MAP at each site. Linear

models for the temporal fit between ANPP and AP and

treatment were fitted independently for each site. The proce-

dure started with modelling the interaction between AP and

treatment (i.e. control or drought). Next, the interaction was

removed from the model because it was not significant for

any of the experiments (Table 2.1). For the sites where treat-

ments had no effect, the treatment was then removed and

ANPP was modelled with AP only to obtain the temporal

slope. In a further step, we bootstrapped the slopes to obtain

percentile estimates of their confidence intervals. Analyses

were performed with base R and the package:boot for R

(Canty & Ripley, 2010). Additionally, a multilevel approach

by linear mixed modelling is included in the supplementary

material.

However, changes may have occurred in the middle of the

experimental period, and these would not be detected when

combining data from before and after such changes. We there-

fore developed a procedure for the detection of such changes

using three different response variables of the effects of the

treatment on ANPP: difANPP, ratioANPP and ratioANPPfix.

The variable difANPP was obtained, for each year, as the dif-

ference in mean ANPP in the control and mean ANPP in the

treatment. The variable ratioANPP was obtained similarly,

but as the ratio of the two means. The variable ratioANPPfix is

the ratio of the ANPP standardized to the meanANPP of the

site. This standardization removes the variation in ANPP that

can be explained by the ANPP–AP relationship in the control

treatment.

The standardization follows from the reasoning that the

temporal relationship

ANPP ¼ aþ b �AP ð1Þ

can be split into a constant value and a variable value by split-

ting AP as follows:

AP ¼ MAPþ dAP; ð2Þ

where dAP is the deviation of AP from MAP. Substituting in

the equation for the temporal relationship, we obtain the

expression

ANPP ¼ aþ b � ðMAPþ dAPÞ ¼ aþ b �MAPþ b � dAP ð3Þ

where a + b * MAP is a constant value equivalent to the mean

ANPP for the site under control conditions, that is the fixed or

structural component of ANPP which we coin ANPPfix. The

remainder of Eq 3, b * dAP, is the nonfixed or variable com-

ponent representing the plasticity of ANPP in response to

weather variability. From Eq. 3, the fixed component of ANPP

can then be derived as follows:

ANPPfix ¼ ANPP� b � dAP

We subsequently estimated ANPPfix for both the control

and the dry treatment using the slope, b, of the ANPP–AP

relationship of the control. We estimated the response variable

ratioANPPfix as the ratio among the ANPPfix value for the

treatment and ANPPfix for the control. We have used the stan-

dardization of the ratio of ANPP whenever there is an effect of

AP on ANPP because it removes the possible differences in

the intensity of the treatment derived from natural variation

of precipitation, i.e. in a year with low precipitation during

the period of treatment the intensity of the treatment will be

low irrespective of the precipitation outside this period.

To test whether difANPP, ratioANPP and ratioANPPfix

decreased or increased (monotonically) over time, we

(a) (b)

Fig. 2 (a) ANPP vs. AP data including dry and control treatments from the eleven experiments. Experiments are identified by colors in

the figure legend: BRA, Brandbjerg; GAR, Garraf; KIS, Kiskunsag; LAH, Lahav; MAT, Matta; OLD, Oldebroek; PRA, Prades; PUE,

Puechabon; RAM, RaMPs; STU, Stubai; WAL, Walker Branch. (b) Points indicate the mean ANPP in the control plots vs. the MAP for

each experiment. The thick black line is the spatial fit across the MAP range. The colored lines denote temporal fits with the lines

extending across the AP range and each color corresponding to one experiment. Note that LAH and WAL are represented by two lines

according to the differences in intercept between dry and control treatments as described in Table 2.2, although the differences are too

slight for easy appreciation. The significances of the slopes are presented in Table 2 and Fig. 3.
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conducted the Mann–Kendall nonparametric test for trend

detection after ensuring that there was not autocorrelation.

We then identified potential step changes, first searching for

the best dummy variable to split the data into an ‘early’ group

and a ‘late’ group. We built all the possible dummies starting

with the dummy having the two earliest years in the ‘early’

group and the remaining in the ‘late’ group and successively

moving the earliest year in the ‘late’ group to the ‘early’ group

until only the latest 2 years remained in the ‘late’ group. The

best dummy variable was identified as the one yielding the

lowest AIC when modelling the response variable. Finally, we

modelled each response variable with time (in years) as the

explanatory variable and compared the AIC of this model

with the AIC of the model having the best dummy as the

explanatory variable. When the latter AIC was lower, we con-

cluded that a step change had occurred. Trend analyses were

performed with the package:Kendall for R (McLeod, 2011).

Results

MAP significantly predicted the mean ANPP across

sites (Fig. 2b) with a value of 0.52 g biomass m�2

yr�1 mm�1 for the coefficient of the spatial slope

(Table 2.3). The within-site models including the inter-

action between AP and the dry treatment were signifi-

cant in two sites, KIS and LAH, although significance

was restricted only to the AP coefficient (Table 2.1).

The models without interaction term were significant

for three sites, LAH, KIS and WAL (Table 2.2). LAH

showed a significant effect of both AP and treatment,

whereas treatment, but not AP, was significant for

WAL (Table 2.2, Fig. 3). At two additional sites, GAR

and RAM, the coefficients of the slopes were margin-

ally significant (Table 2.2, Fig. 3). Finally, simple mod-

els including only AP yielded lower AIC and were

significant in KIS and RAM (KIS, R2 = 0.46, F(1,

20) = 16.75, P < 0.001; RAM, R2 = 0.28, F(1, 13) = 5.08,

P = 0.042), as well as marginally in GAR (R2 = 0.35, F

(1, 8) = 4.26, P = 0.073), whereas the model including

only the dry treatment was better in WAL (R2 = 0.26, F

(1, 22) = 7.71, P = 0.011). The mixed modelling did not

clearly unravel any additional control by temperature,

vegetation type or intensity of the treatment, most

likely because of the limited number of sites (see

supplementary material).

Table 2 Summary of the linear models of ANPP vs. AP and treatment, with (1) and without (2) interaction, within each site, as

well as summary of the spatial fit obtained modelling the mean ANPP from control data for each site vs. the MAP

ANPP vs. AP and treatment

(1) Including interaction (2) Only main effects

ANPP = AP + treatment + AP:treatment ANPP = AP + treatment

Site r squ F P val t/coef, AP

t,

treatment

t,

AP:treatment r squ F P val t/coef, AP

t/coef,

treatment

BRA ns ns ns ns ns

GAR ns ns ns 0.48 (2,7) 3.21 0.102 2.34/0.16 (*) ns

KIS 0.51 (3,18) 6.17 0.005 2.47/0.04* ns ns 0.50 (2,19) 9.64 0.001 3.13/0.05** ns

LAH 0.50 (3,14) 4.69 0.019 2.72/0.35* ns ns 0.49 (2,15) 7.24 0.006 3.78/0.39** 2.29/30.9*
MAT ns ns ns ns ns

OLD ns ns ns ns ns

PRA ns ns ns ns ns

PUE ns ns ns ns ns

RAM ns ns ns 0.29 (2,12) 2.39 0.133 1.97/0.45 (*) ns

STU ns ns ns ns ns

WAL ns ns ns 0.28 (2,21) 4.01 0.033 ns 2.38/64.8*

(3) meanANPPcontrol vs. MAP

r squ F P val t/coef, MAP

Spatial 0.51 (1,9) 9.46 0.013 3.08/0.52*

r squ, R squared values of the model; F, F values of the model preceded by the degrees of freedom in brackets; P val, P values of the

whole model; t/coef includes two values, t stands for t values of the coefficients for the main effects (AP and treatment) and their

interaction, and coef stands for the estimates of these coefficients. The whole summaries are only included for the sites where at

least one coefficient of the model differed from zero, as indicated by the asterisks after the t values. (*), P < 0.1; *, P < 0.05, **,
P < 0.01. Sites: BRA – Brandbjerg, GAR – Garraf, KIS – Kiskunsag, LAH – Lahav, MAT – Matta, OLD – Oldebroek, PRA – Prades,

PUE – Puechabon, RAM – RaMPs, STU – Stubai, WAL – Walker Branch.
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Irrespective of the response variable tested (difANPP,

ratioANPP or ratioANPPfix), KIS and WAL were the

only sites where the Mann–Kendall test revealed a sig-

nificant temporal trend in response to the dry treat-

ment. The response decreased in KIS (Fig. 4a, b) and

increased in WAL (Fig. 4g, h), as indicated by the tau

values of the Mann–Kendall test (Table 3).

The ANPP–AP relationship does not include time as

explanatory variable, and although the effect of the step

change is contributing to the significant higher inter-

cept under dry treatment in WAL, the ANPP–AP rela-

tionships may hide temporal trends in the effect of the

treatment. In KIS, the negative trend of the treatment

was not strong enough to elicit a significantly lower

intercept in the ANPP–AP relationship and was

masked by the combination of data from before and

after the step change. However, adding time (in years)

as explanatory parameter in the modelling of ANPP in

KIS (F(4,17) = 6.74, pval = 0.002) yielded, besides a

clear AP effect, a marginally significant interaction

between treatment and year (t = �1.80, P = 0.089).

The best dummy variable significantly split response

variables into two groups at four sites (Table 3). In KIS,

STU and WAL, the dummy variable was significant for

the response variable ratioANPPfix, but standardiza-

tion is meaningless for STU and WAL where AP

showed no effects on ANPP, that is presented no signif-

icant slope (Table 2.2, Fig. 3). In LAH, on the other

hand, AP did significantly influence ANPP (Table 2.2)

and the dummies for the variable responses difANPP

and ratioANPP were significant. Nonetheless, in LAH,

a step change lacked the support of the nonsignificant

dummy for the more meaningful variable ratioANPPfix

(Table 3), and it also lacked the support of the Mann–
Kendall test. In KIS, the step change suggested by the

dummy for the response variable ratioANPPfix

(Table 3, Fig. 4a, b) was supported by the decreasing

trend revealed by the Mann–Kendall test. In WAL, the

dummies for the response variables difANPP and the

simple ratioANPP (Fig. 4g) supported the step change

that agrees with the Mann–Kendall test (Table 3). At

both KIS and WAL, the AIC values of the models

including the dummy variables were lower compared

to the model with time (in years) as explanatory vari-

able (Table 4) supporting the occurrence of a step

change in both experiments.

Discussion

The data from the experiments presented the expected

spatial and temporal patterns. The spatial model had a

slope steeper than the slopes of the temporal fits for

several experiments (Figs 2b and 3). The value of

0.52 g biomass m�2 y�1 mm�1 for the slope of the spa-

tial fit was lower than estimates in the range 0.60–0.69
obtained with only herbaceous ecosystems (Sala et al.,

2012). The slope of the temporal fit was significantly

different from zero only in four of the eleven sites, a sit-

uation similar to that reported by Sala et al. (2012) who

found nonsignificant temporal models in more than

half of the sixteen sites studied.

LAH and WAL were the only two experiments

where the intercept of the ANPP–AP relationship dif-

fered between dry and control treatments (Table 2.2),

but with the intercept of the dry treatment higher than

the control intercept, instead of lower as we hypothe-

sized. In these two experiments, permanent rainout

shelters removed a fixed fraction of every precipitation

event. This sort of manipulation reduces AP but may

have little or no effect on the frequency or the length of

the dry periods. This presumably contrasts with inter-

annual variability in natural AP in the control, where a

lower AP is more likely associated with fewer rain

events and longer and more intense drought periods.

This difference is likely underlying the higher efficiency

in water use at the driest LAH site.

In LAH, the abundance of biological soil crusts leads

to a high spatial heterogeneity and a horizontal redistri-

bution of fallen water (Eldridge et al., 2000) that accu-

mulates in small soil pockets within the soil crust.

These small soil pockets where annual vegetation

develops generally receive sufficient water to complete

the vegetation cycle and replenish the soil seed bank

that serves as buffer against temporal rainfall variabil-

Fig. 3 Bootstrapped percentile slope estimates of confidence

intervals for the temporal fits of the eleven sites and for the spa-

tial fit. Vertical dashed black line indicates the lower limit for

the confidence interval of the spatial fit. Confidence intervals of

the spatial fit do not overlap with most of the confidence inter-

vals of the temporal fits. Colours as in Fig. 2.
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ity (Harel et al., 2011), resulting in productivity more

dependent on the distribution of precipitation events

than on their intensity above a minimum threshold. In

wetter sites, such as WAL, it is more likely that inter-

cepting a fixed fraction of precipitation all year around

is removing water during periods when the soil storage

is full. In such periods, the treatment is not reducing

plant available soil water but reduces the water lost by

percolation beyond the reach of roots or as runoff. In

that case, the dry treatment has no or a weak impact on

ANPP, and this is then translated into higher intercepts.

However, this does not explain the 8.4% higher ANPP

in the dry treatment in WAL, which was instead

hypothesized as a consequence of lower nutrient leach-

ing under the dry treatment leading to the cumulative

conservation of base cations for which the control treat-

ment soil became limited with time (Hanson et al.,

2001; Johnson et al., 2008).

A temporal trend in the treatment effect appeared

only at two sites, KIS and WAL, where the changes of

the effects over time were better defined by a step

change than by a continuous trend (Table 4,

Fig. 4b, c, g, i). The step change at WAL occurred only

3 years before the end of the experiment, and it is there-

fore unknown whether the observed effect would be

maintained in time or was the result of a transient

effect. Still a clear upward trend was present, suggest-

ing a cumulative effect of a lower loss of some mineral

elements in the dry treatment (Johnson et al., 2008). The

importance of the result in WAL needs to be contextu-

alized within the climate change predictions taking into

account the importance of the type of manipulation,

that is a permanent reduction in the precipitation

within each rain event. The virtue of the result in WAL

is that it brings to the discussion that an enhancement

in productivity may be the consequence of a reduction
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Fig. 4 Effects of the dry treatment on the response variables ratioANPP and ratioANPPfix at three selected sites. The response variable

difANPP is not included because it was redundant with ratioANPP. The response variables at the three sites KIS (a, b, c), LAH (d, e, f)

and WAL (g, h, i) are plotted against the year (a, b, d, e, g, h) or the untreated natural AP, that is the AP in the control, along the experi-

mental period (c, f, i). The response variables are ratioANPP (a, d, g, i) and ratioANPPfix (b, c, d, e, f). For completeness, the two

response variables are included, but only one variable per site (ratioANPPfix in KIS and LAH, and ratioANPP in WAL), was chosen as

indicative of the convenience of testing for step-changes (depending on the occurrence of AP effects). Arrows in (a, b, d, g) indicate the

last year before the best dummy variables indicate a change between an early and a late group (Table 3). Arrows in (c, f, i) indicate for

every corresponding site the precipitation during the year when the step change occurred. Arrows are in black when drawn in the pan-

els of these indicative variables and in grey otherwise. In (c, f, i), the filled circles indicate the first measurement year and the lines indi-

cate the sequence of the different experimental years.
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in the nutrient leaching, an effect of precipitation reduc-

tion that may not be discarded in other experiments as

well, but that may be easily masked by stronger nega-

tive effects of water stress on plant growth.

The step change at KIS is most likely related to a nat-

urally dry early spring in 2007 preceding the dry treat-

ment during May-June: whereas the average April

precipitation in the region is 40 mm (Kov�acs-L�ang

et al., 2000), in 2007 it reached only 1.4 mm. The

response to the treatment since 2007 was larger than

expected from the temporal fit in the control and indi-

cates a substantial change from which the ecosystem

did not recover at least until 2012. The change was most

likely caused by increased mortality among dominant

plant species, as earlier reported for natural strong

drought events in the region (Kov�acs-L�ang et al., 2005).

The nonreversal of the change might have been rein-

forced by the repetitive occurrence of naturally dry

springs; that is, monthly precipitation during April was

5.9 and 4.9 mm in 2009 and 2011, respectively. The

characteristics of the soil in KIS, a sandy soil with very

low water retention, and the manipulation of precipita-

tion consisting of the complete removal of all rain

events during the period of treatment, are factors that

most likely facilitated the development of conditions of

extreme drought that lead to the observed step change.

The three sites where changes in the intercept were

found, either during the whole experimental period as

in LAH and WAL or only after a few years of treat-

ment, as in KIS, highlight three different aspects of the

precipitation–reduction experiments. LAH demon-

strates how soil properties interact with the treatment,

and how an apparently absent treatment effect was

revealed by comparing not the realized ANPP but the

ANPP–AP relationship (see also Fig. 4f). The unex-

pected increase in the intercept in WAL reveals an

effect of the dry treatment that cannot be deduced from

a spatiotemporal framework, which does not provide

evidence for the productivity-enhancing effects of

decreasing nutrient leaching. Presumably, such positive

effects are typically overshadowed by the negative

effects of drought events on ANPP. On the other side,

the result observed in KIS fits perfectly with fundamen-

tals of the spatiotemporal framework. Indeed, droughts

elicit multiple short-term direct and indirect effects on

ANPP, most of which only last from one to a few years

Table 3 For each individual site and for each explanatory variable (difANPP, ratioANPP and ratioANPPfix), results of 1) Mann–

Kendall test for monotonic trends and of 2) linear models of the explanatory variables vs. the best dummy variable for each site.

Only significant results are shown. In 1), the columns headed tau_pval indicate the tau value of the Mann–Kendall test and the asso-

ciated pval (positive tau values indicate an increasing trend and negative tau values indicate a decreasing trend). In 2), the columns

headed %effect_pval under the response variables ratioANPP and ratioANPPfix indicate the per cent increase in the effect of the

treatment in the late dummy group as compared to the early dummy group, and columns headed year show the last year in the first

dummy group, that is the last year before the hypothetical occurrence of a step change

1) Mann–Kendall 2) Dummy

difANPP ratioANPP ratioANPPfix difANPP ratioANPP ratioANPPfix

Site tau_pval tau_pval tau_pval pval Year % effect_pval Year % effect_pval Year

BRA – – – – – – – – –

GAR – – – – – – – – –
KIS �0.67** �0.64** �0.60* *** 2006 �25.6** 2006 �23.0** 2006

LAH – – – (*) 2004 20.3(*) 2004 – –

MAT – – – – – – – – –
OLD – – – – – – – – –
PRA – – – – – – – – –

PUE – – – – – – – – –
RAM – – – – – – – – –
STU – – – – – – – �88.6** 2010

WAL 0.51* 0.51* 0.54* ** 2002 12.6** 2002 12.6** 2002

(*), P < 0.1; *, P < 0.05; **, P < 0.01; ***, P < 0.001.

Table 4 AIC values of the models of each of the three

response variables, difANPP, ratioANPP and ratioANPPfix,

vs. either the best dummy variable or the time (in years)

Site

difANPP ratioANPP ratioANPPfix

AIC

dummy

AIC

time

AIC

dummy

AIC

time

AIC

dummy

AIC

time

KIS 71.4 74 �21.5 �17.2 �22.9 �17.2

WAL 116.6 121.1 �36.6 �32.5 �35.5 �31.0
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(Reichmann et al., 2013). However, droughts that are

longer or more intense than ecosystems are adjusted to

generate long-lasting structural and functional impacts,

such as higher plant mortality or nutrient leaching, that

reduce ANPP more than expected from the temporal fit

(see e.g. van der Molen et al., 2011). When such drought

episodes become more frequent than the time needed

for ecosystem recovery, the ecosystem structure and

functioning can change permanently (Briske et al., 2006;

Fagre et al., 2009) and the decreased ANPP may

become characteristic of the new ecosystem state.

Besides KIS, none of the remaining experiments pro-

vided evidence of rainfall manipulation driving the

ANPP–AP relationship towards the lower intercepts

that could arise via mechanisms governing the spatial

fit. We were anticipating decreases in the intercepts that

could also be detected by decreasing step changes, if

these drought experiments were pushing AP beyond

the current range or beyond a certain threshold. This

would indicate altered ecosystem function due to the

shift of ecosystems towards structures more resistant to

drought at the expense of stronger reductions in ANPP.

The absence of these shifts at most sites may imply (i)

that the experiments did not exceed critical drought

thresholds beyond which permanent changes in the

ANPP–AP relationship occur or, (ii) that the experi-

ments were of insufficient duration, and changes had

not yet occurred (see for instance Anderegg et al., 2013)

either because the mechanisms responsible for struc-

tural changes have a lag time or because they manifest

themselves only after cumulative effects of chronic

drought which is in agreement with the step changes

being found in two of the longest experiments (11 and

12 years for KIS and WAL, respectively, Table 1). In

most experiments, the lowest AP under the dry treat-

ment was lower than the minimum AP in the site pre-

cipitation range (see % minAP in Table 1). We,

therefore, expected that the ecosystems would be

pushed close to their limits. However, at sites with

short precipitation records (see the number in brackets

in the MAP column in Table 1), we must consider the

possibility that the actual minimum AP in the dry treat-

ment may be higher than the minimum AP in a longer

record, especially in the drier sites with a wide range of

naturally occurring AP variation (Tielb€orger et al.,

2014). In such cases, treatments would not be expected

to cause changes in ecosystem properties. Data from

long-term monitoring suggest that the ANPP–AP rela-

tionship may change after an extraordinary sequence of

wet years (Peters et al., 2012), which reinforces the

hypothesis that a certain duration of the experiments is

required for the detection of changes in ecosystems.

Most current experiments do not yet allow for deter-

mining which of the above possibilities is most likely.

To do so, and in the light of results in KIS, these experi-

ments should be continued to determine the effects of

prolonged droughts. At the same time, future experi-

ments should simulate more severe droughts to be able

to identify thresholds for ecosystem changes (Beier

et al., 2012; Bahn et al., 2014). While the spatial model

may be useful to validate the average ANPP of a given

site, it does not reflect short-term within-site variability.

The results for most of the experiments included in the

present study do not provide evidence that temporal

fits estimated within the ecosystem’s current AP range

are not appropriate for validation of within-site ANPP

variability under a mild-to-moderately drier climate.

Nonetheless, the step change identified in KIS reveals

that downshifts from current relationships may occur

beyond certain precipitation thresholds or after key

events.

Well-defined and standardized benchmarks such as

the ANPP–precipitation relationship are required to

evaluate the performance of the biogeochemical and

vegetation components of global models (Luo et al.,

2012). Accurate current temporal fits are a prerequisite

to understand the context of variability in which

drought-induced changes can unfold, but the demands

for a good ANPP–precipitation benchmark also include

the identification of AP boundaries within which current

temporal fits remain valid, as well as the identification

of the key events that can induce step changes. Efforts in

these directions are needed for reliably projecting ANPP,

given that current state-of-the-art global carbon cycle

models are likely to be too sensitive to precipitation vari-

ability (Piao et al., 2013). Thresholds for changes in

ecosystem structure and function, that is boundaries of

the AP range for current temporal fits, may or may not

exist and will only be revealed by precipitation change

studies that are severe enough (Smith, 2011; Beier et al.,

2012; Reichstein et al., 2013). With this purpose, an ideal

experimental design would include the simultaneous

application of multiple levels of reduction in AP (e.g.

one, one and a half, two times the AP decrease projected

by climate models) (Smith et al., 2014). Such efforts

aimed at providing the information necessary to prop-

erly validate the performance of land-surface models are

essential for model improvement and, particularly, for

the reliability of ANPP estimation under future climate

when droughts are expected to be more intense.

Our results suggest that it is not necessary to take

into account the higher sensitivity of ANPP to lower

precipitation predicted by the spatial fit when precipi-

tation removal treatments are mild to moderate (see

Table 1), although we acknowledge that lagged or

cumulative effects may not have appeared within the

current duration of the eleven experiments included in

our analysis. Despite potentially being unrealistic in
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terms of anticipated climate change, we recommend

pushing the ecosystems far beyond the current AP

range of the control temporal fit to reveal the critical

thresholds for long-term higher-than-expected declines

in ANPP, but also to disentangle the mechanisms that

contribute to fundamental changes in ecosystems. The

boundaries of the resistance and/or resilience of

ecosystems to dry spells are, after all, the basis for the

split between the spatial and the temporal fits.
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