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ABSTRACT

Ecosystem ecologists are being challenged to ad-

dress the increasingly complex problems that

comprise Big Science. These problems include

multiple levels of biological organization that cross

multiple interacting temporal and spatial scales,

from individual plants, animals, and microbes to

landscapes, continents, and the globe. As technol-

ogy improves, the availability of data, derived data

products, and information to address these complex

problems are increasing at finer and coarser scales

of resolution, and legacy, dark data are brought to

light. Data analytics are improving as big data in-

crease in importance in other fields that are

improving access to these data. New data sources

(crowdsourcing, social media) and ease of com-

munication and collaboration among ecosystem

ecologists and other disciplines are increasingly

possible via the internet. It is increasingly impor-

tant that ecosystem ecologists be able to commu-

nicate their findings, and to translate their concepts

and findings into concrete bits of information that a

general public can understand. Traditional ap-

proaches that portray ecosystem sciences as a di-

chotomy between empirical research and

theoretical research will keep the field from fully

contributing to the complexity of global change

questions, and will keep ecosystem ecologists from

taking full advantage of the data and technology

available. Building on previous research, we de-

scribe a more forward-looking, integrated empiri-

cal–theoretical modeling approach that is iterative

with learning to take advantage of the elements of

Big Science. We suggest that training ecosystem

ecologists in this integrated approach will be critical

to addressing complex Earth system science ques-

tions, now and in the future.
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Ecosystem ecologists are being challenged to ad-

dress increasingly complex problems as knowledge

about the Earth as a coupled system of land–water–

atmosphere interactions and feedbacks increases

(Foley and others 2003; Julian and others 2008;

Peters and others 2008; Treasure and others 2015).

These problems include multiple levels of biological

organization (from individual plants, animals, and

microbes to populations and communities within

ecosystems) that cross multiple interacting tempo-

ral and spatial scales, from individuals to land-

scapes, continents, and the globe (for example,

Carney and Matson 2005; Schmitz and others
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2014; Peters and others 2007, 2014b; Preston and

others 2016). As technology improves and new

technology is developed, the availability of data,

derived data products, and information to address

these complex problems are increasing at finer and

coarser scales of resolution, and legacy dark data

are being brought to light (for example, Collins and

others 2016; Kim et al. 2016;Zinnert and others

2016). Data analytics are improving as big data

increase in importance in other fields that are

improving access to these data, and a machine

learning process is being developed to improve

scientific community efficiency through time (Pe-

ters and others 2014a). New data sources (for

example, citizen science, crowd sourcing, social

media) and ease of communication and collabora-

tion among ecosystems ecologists and other disci-

plines are increasingly possible via the internet

(Aceves-Bueno and others 2015; Silberzahn and

Uhlmann 2015). As the complexity of the ideas and

the amount of data increase, it will become

increasingly challenging, yet even more important,

that ecosystem ecologists be able to communicate

their findings, and to translate their concepts and

findings into concrete bits of information that a

general public can understand (Oreskes and Con-

way 2010).

All of these elements (complex questions that

include multiple levels of organization and inter-

acting spatial and temporal scales, new and im-

proved technology, big data analytics and machine

learning, new data sources, communication and

collaboration opportunities, translation to the

public) constitute issues associated with Big Sci-

ence, and due to the nature of the discipline,

ecosystem ecologists are at the nexus of these is-

sues. Here, we contend that the traditional view of

ecosystem ecology, where an empirical approach is

distinguished from a theoretical approach, will be

insufficient in the time of Big Science. Further-

more, this distinction will keep the field of

ecosystem ecology from fully contributing to the

complexity of global change issues, and will keep

ecosystem ecologists from taking full advantage of

the big data and advances in technology becoming

available.

We start by briefly describing the traditional ap-

proaches to addressing questions in ecosystem

ecology with a focus on their differences, and then

we describe a more forward-looking, integrated,

and iterative approach with learning that takes

advantage of the elements of Big Science. We

provide support for our ideas by citing numerous

papers from the Ecosystems journal to illustrate the

breadth and diversity of topics covered by ecosys-

tem ecologists.

TRADITIONAL APPROACHES TO ECOSYSTEM

SCIENCE

In the traditional approaches to conducting

ecosystem science, there is a dichotomy between

empirical and theoretical approaches. We recognize

that ecosystem ecologists may use a combination of

these approaches, but here we describe the end

members to provide a clear distinction between

them. We differentiate these two approaches based

on the realm of inference and focal ecosystem or

geographic location of the research question (sensu

Peters and others 2012), and recognize there may

be other ways to distinguish between them. In our

dichotomy, process-based numerical models and

analytical methods can be part of the toolkit in both

approaches.

In a Traditional Empirical Approach

scientists are interested in addressing research

questions that explain patterns and dynamics that

are site-specific (that is, for specific geographic

locations, ecosystems, or targeted areas), where

observations and data can be collected and specific

questions have particular relevance. An example of

this work is the study by Chen and others (2016)

who examined effects of changes in climate on

energy and water budgets on a particular savanna-

woodland ecosystem using a combination of

empirical observations and a detailed mechanistic

model. In such an approach, scientists start with

observations and intuition, including past experi-

ence from the site or location, to develop a mental

model of the system and an approach to the prob-

lem to be addressed (Fig. 1A). Building on knowl-

edge from the literature and discussions with

colleagues, a conceptual model for the problem,

that includes the components of the ecosystem and

their relationships to each other and to their

environment, is developed. Hypotheses or ques-

tions are then generated and are tested using field

and laboratory data that are collected by that

individual researcher or their group. These data can

be supplemented with ancillary open-source

information, such as climate and soils data. Often

this information needs to be transformed through

aggregation and standardization procedures before

it can be used. A researcher can use this informa-

tion to either test hypotheses using analytical

methods or to address specific questions by
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parameterizing, testing, and running experimental

simulations with a numerical model. For hypoth-

esis testing, regardless of whether the hypotheses

are rejected or accepted, there is improved under-

standing about the ecosystem for the individual

researcher that leads to an improved or refined

mental model. Publication of the results leads to

improved understanding among the broader eco-

logical community interested in this ecosystem or

in ecosystems with similar processes, organisms, or

dynamics.

For answering specific questions under the tra-

ditional empirical approach, a researcher’s data, in

combination with ancillary information, can be

used to parameterize and test numerical models

that are developed based on relationships in the

conceptual model. Tested models can be used to:

(a) create forecasts of future ecosystem dynamics

under alternative climatic, atmospheric, or man-

agement conditions expected at that research site;

(b) create backcasts of historic ecosystem dynamics

under previous climatic, atmospheric, or manage-

ment conditions at that research site; and (c) im-

prove understanding about ecosystem behavior.

Regardless of the specific goal, improved under-

standing for the ecological community results

through the publication of research findings. This

empirical approach that integrates data and pro-

cess-based modeling in an iterative way through

time to improve understanding about specific re-

search sites with extensions to the ecosystem type

is reflected by research conducted at NSF-sup-

ported Long Term Ecological Research sites (for

example, Groffman and others 2012; Peters and

others 2015). This improved understanding often

leads to new questions.

Figure 1. Traditional approaches to ecosystem science: A. Empirical approach focuses on site- or ecosystem-specific

questions that are spatially resolved; B. Theoretical approach focuses on general ecological principles for ecosystem types

that are not necessarily located in spatially resolved geographic locations. Figure expands upon ideas presented in Peters

and others (2014a) for a hypothesis-driven scientific approach.
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In a Traditional Theoretical Approach

Scientists are interested in research questions that

are generally applicable based on ecological prin-

ciples, and not geographically location-specific

(Figure 1B). In this approach, a scientist starts with

a theory or a set of concepts. These ideas are further

developed with knowledge from the literature or

discussions with colleagues into a conceptual

model showing relationships among the compo-

nents. At this point, a purely theoretical approach

diverges from a numerical modeling approach. A

purely theoretical approach provides a framework

of concepts and propositions that generates

testable hypotheses (for example, Allen and others

2014). These hypotheses may be tested using ana-

lytical models, often as a set of differential equa-

tions, which represent a subset of processes

occurring in ecosystems (Figure 1B, dark-shaded

area). Adding additional concepts can refine the

theory and generate new ideas for testing. Theo-

retical models contain only highly idealized repre-

sentations of a small number of processes and

drivers; thus, they are not intended to represent

real ecosystems, but rather are useful in elucidating
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general principles, or new behaviors of a system.

For example, the models of Rietkerk and others

(2004) are useful for understanding and comparing

patterns among ecosystem types. Concepts derived

through this theoretical approach have been used

to guide land management practices, even without

formal hypothesis testing (for example, Lockwood

and Lockwood 1993; Briske and others 2010).

However, these concepts often have limited appli-

cability to real world problems. Nonetheless, they

are useful in terms of our abstract understanding of

ecological system dynamics.

A numerical modeling approach also starts with

concepts derived from a theory that lead to the

development of a conceptual model and generation

of hypotheses about ecosystem behavior under

alternative drivers or management scenarios. The

next step is to obtain published data and online

information (that may be standardized and/or

transformed) along, perhaps, with the strategic

collection of new data to develop and parameterize

a process-based, numerical model. This model is

typically a system of differential equations that

represents the states, processes, and driving vari-

ables of interest in the ecosystem (Figure 1B, light

shaded area). The degree to which data are used to

parameterize and test a model determines if a

theoretical ecosystem is being simulated (less data)

or if an actual ecosystem or geographic location is

being simulated (more data). Following testing,

these models have traditionally been used to im-

prove understanding about the ecosystem compo-

nents using uncertainty or sensitivity analyses of

effects of changes in model parameters and drivers

on model output. These results provide information

that improves understanding about ecosystem

behavior under alternative environmental condi-

tions in the future and in the past. Model output

can also be used to refine the theory as well as

modify the model and provide feedback to data

collection efforts (Ives and others 1998).

Similarities Between Traditional
Approaches

The two traditional empirical and modeling ap-

proaches intersect in two ways. First, both ap-

proaches access knowledge, data, and methods

(analytical, numerical models) that are readily

available to the ecological community, although

the degree to which data and models are used and

their location-specific importance differ greatly

between approaches. Second, both approaches

contribute to improved understanding and ecolog-

ical knowledge through publication of results, al-

though the advances may be too site-specific in the

empirical approach to be applicable to other loca-

tions, and may be too general in the theoretical

approach to not actually represent any particular

location (Peters and others 2012).

AN ECOSYSTEM ECOLOGIST’S TOOLKIT IN

THE ERA OF BIG SCIENCE

We propose that an integrated, iterative approach is

a critical component of an ecosystem ecologists’

toolkit in the modern era. This approach includes

(Figure 2): (a) empirical observations to parame-

terize and check the reality of models or theory, (b)

theoretical constructs that provide generality and

constrain the parameter space for empirical obser-

vations and experiments, (c) numerical models that

are integrated with analytical methods and big data

analytics to efficiently use the increasing amounts

Figure 2. An integrated empirical–theoretical modeling

approach that is iterative with learning. For any given

question, an individual scientist will enter the process

either with a goal to study a specific ecosystem or loca-

tion(s) to answer questions and test hypotheses about the

dynamics of these ecosystems, or with a goal to under-

stand how ecosystems function using basic principles. In

either case, a mental model based on observations or

mental construct based on theory will be the first step

followed by access to the ecological knowledge base to

assist in building a conceptual model as to how the sys-

tem works (step 2) and generating testable hypotheses or

questions (step 3). The scientist then accesses data and

information from multiple sources that are relevant to

the hypotheses or questions (step 4), and enters the

concepts + data + modeling iterative loop with learning

(step 5). Additional experiments may be conducted, and

online data may be obtained from open sources or pro-

tected data that require special handling. Increasingly

new sources of information are becoming available,

including from crowdsourcing and citizen science net-

works (CSS), traditional ecological knowledge (TEK), and

derived data or modeling products from sensors and

imagery. Data integration and mashups will be required

before statistical analyses can be conducted. The data can

be used to parameterize and test the various analytical,

numerical, and scenario models that are increasingly

becoming available to ecologists. After going around the

loop a sufficient number of times, learning each time

around and refining the conceptual model (similar to

machine learning [Peters and others 2014a]), the re-

searcher will have a refined mental model (step 6), will be

ready to generate publishable products for the scientific

community (step 7), and translate their scientific findings

to a non-scientific audience (step 8).

b
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and types of data and information becoming

available, and (d) increased focus on new data and

information sources (for example, crowdsourcing,

social media, local knowledge) that can be com-

bined or integrated with individually collected data,

federated data, and protected data that may need

special handling prior to use. Many of these com-

ponents already exist in many researchers’ toolkits,

in particular for scientists working at very fine or

very broad spatial extents. But the articulation of

all of the components as an integrated and itera-

tive, actively learning approach is a novel one that

we believe will allow ecosystem ecologists to take

advantage of the new advances in technology

needed to address global change problems.

The advantages of this new approach span and

integrate all of ecosystems ecology. For instance,

the new approach allows improved understanding

of general principles and enables problem-solving

for specific locations. The new approach can pro-

duce forecasts and backcasts for a location with

documented uncertainties based on data combined

with general knowledge about ecological princi-

ples. Under the new approach, conceptual and

mental models can be refined through time based

on an integration of empirical observations and

general principles. Using the new approach, theo-

retical and numerical models can be challenged by

the data for specific locations, and modified based

on those analyses. The approach also enables

empirical questions and experimental designs to be

guided and informed by theoretical principles. The

new approach acknowledges the importance of

emerging techniques, such as those in machine

learning, which can be used to maintain the in-

tegrity of the data, metadata, and findings through

time so the scientific community becomes more

efficient as the amount of data and new technology

increase (Peters and others 2014a).

TRAINING ECOSYSTEM ECOLOGISTS IN AN

ERA OF BIG SCIENCE

Training new ecosystem ecologists in the era of Big

Science presents significant challenges. Adoption of

the new approach means that one may no longer

be a specialist in either theoretical modeling or

empirical science. Rather, it requires a generalist

mindset as well as education. This is not to say that

all ecosystem ecologists must be adept at all com-

ponents of the discipline, but basic knowledge in

how the components work (from field measure-

ments to modeling) is required. Ideally, the

ecosystem ecologists-in-training will get education

and experience in many facets of the field to see

how the various components can be integrated to

pose and answer fundamental as well as novel

ecological questions.

Going forward under the new approach, it will

be necessary for ecosystem ecologists to appreciate

and be familiar with the broad range of techniques

used in the field. This familiarity will be necessary

for one’s own work and to enable effective collab-

oration and communication with other re-

searchers. In addition to the traditional tools that

students typically learn, such as experimental de-

sign, statistical analysis, and writing and publica-

tion of results, there are additional skills and

experiences that will be required for all scientists

entering the field. Some of these skills are relatively

new, such as working with large geographical da-

tasets, and some are skills that have traditionally

belonged to one area (modeling or field science)

that need to be taught to everyone. For instance, all

students should engage in data collection to

understand the complexities of the real world and

the limitations of field measurements. They should

also learn or become familiar with a computer

programming language so that they have the tools,

both practically and cognitively, to develop models

or to conduct advanced big data analysis. Emerging

ecosystem ecologists should also become familiar

with geographical datasets that are increasingly

available online across a range of spatial extents

and scales of resolution. Experience in the practical

tools needed to manipulate, analyze, and interpret

these spatial data layers will provide insight into

the uses, uncertainty, and limitations inherent in

this information that is critical for understanding

spatial variability in the drivers and response vari-

ables of ecosystems.

As increasing amounts of data become openly

available on the internet, it is also increasingly

important that ecosystem ecologists develop a critical

skill in the application of skepticism towards these

open access data. All data come with uncertainties

and too often these limitations and assumptions are

ignored when data are imported from online reposi-

tories. This skepticism is equally important when

using datasets or derived data products generated by

others. These uncertainties cannot be ignored or else

the availability of data will become an additional way

to produce inaccurate results.

Emerging ecosystems ecologists who are trained

in the use of large datasets produced by models

must be taught to be skeptical of these sources of

information. Some of the most intriguing datasets

to become openly available on the internet recently

are raster datasets that offer continuous global or

regional spatial coverage of one or more variables.
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Similarly, there are reanalysis datasets that offer

the promise of temporal records of climatic condi-

tions in areas and eras where they were not mea-

sured. These datasets offer interpolated model-

based estimates, where the errors and uncertainties

may not be well-known or quantifiable. Other

raster datasets provide statistical interpolations be-

tween spatial measurements, which may or may

not be accurate.

Models are surrogates for a conceptual construct;

thus, even apparently simple direct measurements

are a form of models with uncertainties. For in-

stance, in estimating soil moisture with a time-do-

main reflectometry (TDR) probe, the measurement

made by the device is a voltage pulse through time.

This pulse is converted, through a calibrated theo-

retically backed model, into soil moisture content

of the soil. Any measurement which requires cali-

bration uses a model, and failure to calibrate cor-

rectly can lead to inaccurate estimates. An example

of information that is usually treated as direct

measurements, but which actually comprises mul-

tiple model-derived products, are satellite estimates

of surface reflectance. The actual on-board mea-

surement can be generated on a capacitor in a

charge-coupled device (CCD), which is converted

through a modeled calibration to radiance, which is

then converted to surface reflectance using a

radiative transfer model and the model-derived

estimates of atmospheric properties. The derived

reflectance, as delivered, may be useful for some

applications (for example, estimation of Normal-

ized Difference Vegetation Index (NDVI); a mea-

sure of vegetation greenness), but it may be need to

be treated with more caution for others (for

example, derivation of surface fractions of vegeta-

tion and bare soil; Okin and Gu 2015).

A useful maxim in modeling is that ‘‘all models

are wrong, but some are useful’’ (Box and Draper

1987). The first component of this saying reminds

us that all models are simplifications, and cannot

fully represent the world being modeled. The sec-

ond component forces us to ask ‘‘useful for what?’’

A dataset generated for one purpose (for example, a

global temperature reanalysis used to drive a model

of plant growth) may not be compatible with an-

other use because the model assumptions, scale, or

structure differ from those in the alternate appli-

cation (for example, estimating the conditions in a

small experimental plot). It may be instructive to

use a dataset for an incompatible use, but this must

be done transparently and with skepticism.

The skepticism we teach our students is, funda-

mentally, based on knowledge of how the systems

that we study function. However, as databases in-

crease in spatial and temporal extent, it is increas-

ingly difficult, if not impossible, for individuals to

be familiar with the functioning of the diversity of

ecosystems included in the analysis. Thus, collab-

oration and communication with local subject-

matter experts who are familiar with both the data

and their assumptions as well as how the ecosys-

tems function will be critical for interpretation and

understanding of patterns from these model-based,

large, raster datasets (Peters and others 2007). In

order for our quantitative and data-adept students

to be able to effectively communicate with these

local experts, their analyses must remain grounded

in empirical reality and square with knowledge and

intuition derived through deep understanding of

process and pattern in real ecosystems. Thus, we

repeat our call for students doing big data analysis

to also have familiarity with the real world through

making actual measurements.

CONCLUSIONS

As the amount of data, derived data products, and

information increase with advances in technology,

and our world becomes increasingly connected via

communication to both scientific and non-technical

audiences globally, it will be increasingly important

that ecosystem ecologists have a toolkit that can

handle this technology and connectivity. We de-

scribed one approach that takes advantage of the

strengths of empirical, theoretical, and numerical

modeling approaches to understanding and predict-

ing ecosystem dynamics. The integrated, iterative

approach with learning provides advantages over

traditional approaches through improved: (a)

understanding of general principles and problem-

solving for specific locations; (b) forecasts and back-

casts for locationswith documenteduncertainties; (c)

conceptual and mental models; (d) theoretical and

numerical models; (e) empirical questions and

experimental design; and (f) scientific efficiency

through machine learning. This new approach re-

quires additional training for students and an educa-

tion that includes tools from across the discipline.

While new skills will enable effective research with

emerging large datasets, the need for familiarity with

real ecosystems and real measurements combined

with collaboration with local experts are required to

ground the use and treatment of these sources of

information. In addition, a healthy dose of skepticism

is needed to temper and inform the use of online,

open access datasets emerging from a more con-

nected, measured, and modeled world.
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