esa ECOSPHERE
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Abstract. The cover of woody perennial plants (trees and shrubs) in arid ecosystems is at least partially
constrained by water availability. However, the extent to which maximum canopy cover is limited by rain-
fall and the degree to which soil water holding capacity and topography impacts maximum shrub cover
are not well understood. Similar to other deserts in the U.S. southwest, plant communities at the Jornada
Basin Long-Term Ecological Research site in the northern Chihuahuan Desert have experienced a long-term
state change from perennial grassland to shrubland dominated by woody plants. To better understand this
transformation, and the environmental controls and constraints on shrub cover, we created a shrub cover
map using high spatial resolution images and explored how maximum shrub cover varies with landform,
water availability, and soil characteristics. Our results indicate that when clay content is below ~18%, the
upper limit of shrub cover is positively correlated with plant available water as mediated by surface soil
clay influence on water retention. At surface soil clay contents >18%, maximum shrub cover decreases, pre-
sumably because the amount of water percolating to depths preferentially used by deep-rooted shrubs is
diminished. In addition, the relationship between shrub cover and density suggests that self-thinning
occurs in denser stands in most landforms of the Jornada Basin, indicating that shrub—shrub competition
interacts with soil properties to constrain maximum shrub cover in the northern Chihuahuan Desert.
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INTRODUCTION ecosystems, also known as woody plant
encroachment, has been observed worldwide by

The proliferation and range expansion of many researchers (Archer et al. 1988, Van Auken
woody plant species in arid and semi-arid 2000, Asner et al. 2003, Eldridge et al. 2011). The
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cover and dynamics of woody plants are, to a
large extent, controlled by the availability of
water in dryland ecosystems (Noy-Meir 1973).
The upper limit of woody plant cover has been
observed to be strongly related to precipitation
in semi-arid tropical savannas (Sankaran et al.
2005, Good and Caylor 2011, Lehmann et al.
2014, Axelsson and Hanan 2017, 2018) and tem-
perate semi-arid grasslands (Scholtz et al. 2018).

At landscape scales, topo-edaphic heterogene-
ity can have important local influences on woody
plant distribution and density (McAuliffe 1994,
Parker 1995, Monger and Bestelmeyer 2006). Ver-
tical movement of water is largely controlled by
soil texture and depth, with coarse-textured
sandy soils allowing precipitation to penetrate
into the soil, while shallow, crusted, and fine-tex-
tured soils tend to inhibit infiltration and perco-
lation and promote lateral redistribution of water
(runoff) during rainfall events (Buxbaum and
Vanderbilt 2007, Ross et al. 2018). Thus, woody
plants with deeper roots are more productive on
sandy soils than clayey soils in the most arid cli-
mates while in less arid climates woody plant
production may be greater on clayey soils (i.e.,
the inverse texture effect; Noy-Meir 1973).
Topography also regulates the horizontal redis-
tribution of water by creating spatial variability
in runoff and run-on patterns, which sometimes
overrides the effect of soil texture on the abun-
dance of woody and herbaceous plant species
(Wu and Archer 2005). Thus, spatial variations in
soil properties and topography lead to differ-
ences in the transfer and storage of water across
the landscape. As a result, vegetation patterns
supported by such landscapes can be extremely
complex, even with a spatially homogenous pre-
cipitation regime (Archer 1995, Bestelmeyer et al.
2006, Wheeler et al. 2007).

Variation in water availability can also lead to
variations in vegetation structure (i.e., size and
density). Maximum plant size is ultimately gov-
erned by the local availability of resources, such
that shrub size in drylands tends to increase with
water availability (Kempes et al. 2011), until
reaching the point where their ability to maintain
continuity in xylem water transport on a given
soil texture, depth, or topographic location is
jeopardized and leads to branch mortality
(Sperry and Hacke 2002, Hacke et al. 2006). At
stand level, water uptake by a population of
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shrubs can be approximated as proportional to
the product of mean plant size and plant density
(Sea and Hanan 2012). With increasing shrub size
and density, water may become limiting and self-
thinning occurs where shrub size and density are
related to each other via characteristic log-log
relationships that are diagnostic of intra-specific
(in our case shrub—shrub) competition (Weller
1987, Enquist et al. 1998, Sea and Hanan 2012).

The Jornada Basin Long-Term Ecological
Research (LTER) site sits at the northern edge of
the Chihuahuan Desert and, similar to other
deserts in the U.S. southwest, plant communities
have experienced a major shift from perennial
grasslands to woody plant dominated shrub-
lands over the past 150 yr (Buffington and Her-
bel 1965, Gibbens et al. 2005). The spatial pattern
of these state changes is known to be influenced
by variations in historical grazing pressure, con-
tagious shrub spread, and shrub removal (Peters
et al. 2006, Bestelmeyer etal. 2011, 2018).
Although there have been several recent efforts
to understand patterns of shrub encroachment at
relatively fine scales (e.g., Goslee et al. 2003, Lal-
iberte et al. 2004, Browning et al. 2012), it is still
unclear why remnant grass patches have per-
sisted in certain areas while other areas have
become dominated by shrubs.

In an effort to better understand broad-scale
vegetation dynamics in relation to topo-edaphic
heterogeneity, we created a high spatial resolu-
tion (1 m) shrub map of the Jornada Basin LTER
using multi-spectral (4-band) aerial photography.
We then explored some of the possible determi-
nants of shrub cover. Similar to Sankaran et al.
(2005), we hypothesized that the potential upper
limit of shrub cover in the Jornada Basin would
be determined mainly by water availability.
However, since long-term average precipitation
is similar across the Jornada Basin floor, we
hypothesized that water availability controlled
by soil texture and topography would be the
dominant control of spatial variation in woody
plant cover and structure (i.e., size and density).
More specifically, following predictions of the
inverse texture effect in arid climates (Noy-Meir
1973, Ward et al. 2013), we expected that the
upper limit of shrub cover would be higher on
coarse-textured sandy soils relative to fine-tex-
tured clayey soils, and higher in topographic set-
tings receiving run-on from upslope than in
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locations losing incoming precipitation in runoff.
In addition to analyzing patterns in maximum
canopy cover, we also examined patterns in
shrub size and density (self-thinning) as a diag-
nostic of density dependence and shrub-shrub
competition constraints on maximum shrub
cover.

METHODS

Study area

The Jornada Basin LTER site includes both the
US. Department of Agriculture-Agricultural
Research Service (USDA-ARS) Jornada Experi-
mental Range (JER, 78,413 ha) and the New
Mexico State University-owned Chihuahuan
Desert Rangeland Research Center (CDRRC,
24,960 ha; Fig. 1). The elevation range of the

JLET AL.

study area is 1214-1768 m a.s.l. (excluding the
mountain areas).

The climate of the Jornada is characterized by
hot summers with monsoon rainfall, and cool,
dry winters. Mean maximum monthly air tem-
perature ranges from 13.7°C in January to 34.9°C
in July (96-yr average from 1915 to 2010, using
data retrieved on 31 May 2018 from https://jor
nada.nmsu.edu/content/jer-standard-gauge-mon
thly-precipitation-data). Long-term mean annual
precipitation ranges from 203 mm on basin
floors to 250 mm on piedmont slopes, 64% of
which is received in summer (July—October;
long-term precipitation data from 1915 to 2000,
data retrieved on 31 May 2018 from https://jorn
ada.nmsu.edu/content/usda-noaa-nws-daily-clim
atological-data). Summer precipitation originates
in the Gulf of Mexico and California and often
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Fig. 1. The 103,373 ha Jornada Basin Long-Term Ecological Research site in the northern Chihuahuan Desert
(inset) includes both the U.S. Department of Agriculture-Agricultural Research Service Jornada Experimental
Range (JER) and the New Mexico State University Chihuahuan Desert Rangeland Research Center (CDRRC).
Names corresponding the landform codes in legend are given in Table 1. Detailed descriptions of the landforms

can be found in Monger et al. (2006).
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occurs as intense convective storms that are
highly localized, while winter precipitation is of
lower intensity and arises from broad frontal
storms originating over the Pacific Ocean.

Plant communities over the past 150 yr at the
Jornada Basin LTER site have transformed from
grasslands dominated by Bouteloua eriopoda
(black grama) in uplands and Pleuraphis mutica
(tobosa) in playas to shrublands that are spatially
segregated by topographic position and soil tex-
ture: Prosopis glandulosa (honey mesquite) pre-
dominates on sandy plains, Larrea tridentata
(creosote bush) on gravelly upper piedmont
soils, and Flourensia cernua (tarbush) on finely
textured lower piedmont and basin floor soils.
Other common plant species include: Scleropogon
brevifolius (burrograss), Sporobolus spp. (drop-
seeds), Muhlenbergia porteri (bush muhly), Gutier-
rezia sarothrae (snakeweed), Atriplex canescens
(four-wing saltbush), Ephedra spp. (Mormon tea),
and Yucca spp. (soaptree yucca; species list was
obtained from https://jornada.nmsu.edu).

Shrub cover, patch size, and patch density from
aerial photographs

We used National Agriculture Imagery Pro-
gram (NAIP) imagery acquired on 21 May 2011
to generate a shrub cover map of the Jornada
Basin LTER. Given that year-to-year change in
woody cover is generally small (Axelsson and
Hanan 2018), 2011 estimates are considered to
reasonably represent shrub cover across the Jor-
nada during the recent 10-15 yr. National Agri-
culture Imagery Program images have a 1-m
spatial resolution and four spectral bands (red,
green, blue, and near-infrared). The May 2011
image date coincides with peak shrub canopy
greenness which occurs before peak grass green-
ness in summer months (Browning et al. 2018),
maximizing our capacity to identify shrub cover.
An unsupervised approach (Iterative Self-Orga-
nizing Data Analysis Technique) was used for
image classification. To better distinguish woody
plants from herbaceous cover and the soil back-
ground, texture features were used in addition to
the NAIP spectral bands, as recommended by
Basu et al. (2015). Thirty classes were initially
produced by the unsupervised classification;
these were then manually assigned as shrub or
non-shrub. Necessary corrections of the classifi-
cation (through combining and/or splitting of the
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original thirty classes) were done manually while
referencing co-located Google Earth imagery.
Shrub cover was estimated at a 1-ha scale
(100 x 100 m) by dividing the number of pixels
classified as shrub by the total number (10,000)
of 1 m? pixels within each 1-ha area. Shrub clas-
sification was particularly difficult in some parts
of the southern JER (areas characterized by ero-
sional scarplets and arcuate sand ridges; Monger
et al. 2006) due to high local-scale variability of
the patterns of vegetation and soil. These areas
were therefore not included in this study (~11%
of the Jornada Basin).

Accuracy of the shrub map was assessed using
200 random sample points. Ground truth of each
random point (shrub or non-shrub) was deter-
mined using Google Earth imagery and then
compared to the NAIP classification. Data col-
lected on two independent projects were also
used for accuracy assessment. As part of the 2011
Jornada Experiment campaign (JORNEX, Rango
et al. 1998), vegetation measurements were taken
at 10-cm intervals within 0-30 m, 60-90 m, and
120-150 m segments of each of five 150-m tran-
sects. Shrub cover was then summarized for
every 10 m of the sampled segments, resulting in
a total of 45 samples (1 = 9 samples/transect x 5
transects). Shrub cover from image classification
was estimated within a 5-m buffer area along
each of these transect segments and then com-
pared to field-estimated data. Shrub cover was
also obtained from the PHENOMET project
(Browning et al. 2017), which recorded vegeta-
tion cover (line-point intercept method) along
five 50-m transects at three Jornada Basin LTER
sites (GIBPE, SCAN, and TROMBLE; Herrick
et al. 2005). Image-estimated shrub cover was
summarized within a minimum bounding rect-
angle at each of the three sites and compared to
the PHENOMET field data. Out of the 200 ran-
domly sampled points on Google Earth, 184
were correctly classified (92%). Shrub cover esti-
mated from image classification also showed a
satisfactory agreement with ground-measured
shrub cover from the independent field cam-
paigns. The intercept and slope of a Model 1II
regression line between the ground-measured
and image-estimated shrub cover are 0.01 and
0.95, respectively (Fig. 2).

The raster shrub map was converted into poly-
gons using ArcGIS tools (ESRI 2016). Due to the
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Fig. 2. Field-measured shrub cover (%) and aerial photo-estimated shrub cover (%) in the Jornada Basin. Field-
measured shrub cover data are from the Jornada Experiment (JORNEX) and PHENOMET projects. Solid line is
the Model II regression line. Dotted line represents the 1:1 line.

overlapping and clumping of the shrub canopies,
we define each polygon as a shrub patch rather
than an individual plant. Patch density (ha™")
and mean patch size (m?) were also estimated at
hectare spatial resolution.

Landform, soil texture, and topography

We used a landform map developed from
existing soil survey maps, stereo aerial pho-
tographs, Landsat satellite images, and digital
elevation models (DEMs; Monger et al. 2006).
The landform map depicts the Jornada Basin as
having four major geomorphic components:
mountains and hills, piedmont slopes (bajadas),
basin floors, and Rio Grande Valley (Fig. 1).
These components were further subdivided into
26 landform units. Detailed descriptions of the
landform units are given in Monger et al. (2006).
For this study, we ranked the landforms accord-
ing to plant available water (PAW) based on our
expert knowledge of soil texture, geomorphol-
ogy, and topography (e.g., Monger et al. 2006,
2015; Table 1).

Soil texture data (percent clay, silt, and sand)
were obtained from the global SoilGrids map

ECOSPHERE *%* www.esajournals.org

Table 1. Landforms ranked by plant available water
(from low [rank 1] to high [rank 14]).

Rank Landform name Map code

1 Ballena ba
2 Ridges and interridge valleys r
3 Alluvial fan remnants af
4 Gypsiferous terraces/sand sheets gyp_ter & ss
5 Reddish brown sand sheets/dunes fp_r
6 Longitudinal dunes fp_longd
7 Alluvial plaint ap
8 Sand sheets over gypsum ss/lac
9 Sand sheets/coppice dunes fp_ss

10 Arcuate sand ridges/sand sheets asr_ss

11 Fan piedmont fp

12 Alluvial flat afl

13 Depressions dep

14 Playas y

Note: Detailed descriptions of the landforms can be found
in Monger et al. (2006).

t Includes alluvial plain eroded (ap_e), alluvial plain sand
sheets (ap_r), alluvial plain wind worked (ap_w), and alluvial
plain uplifted (ap_up) in Monger et al. (2006).

(Hengl et al. 2017, data retrieved on 31 January
2018 from www.SoilGrids.org) at seven depths
(0, 5, 15, 30, 60, 100, and 200 cm). To characterize
infiltration, we calculated surface soil clay
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content by averaging percentage clay of the first
two depths (0 and 5 cm) using trapezoidal inte-
gration. The SoilGrids map has a spatial resolu-
tion of 250 m and was resampled (using nearest
neighbor) to the same resolution as the shrub
cover map (100 m). Saturated hydraulic conduc-
tivity (Ksa) was also estimated based on the
lookup table provided by Clapp and Hornberger
(1978).

We used the topographic wetness index (TWI,
also known as the compound topographic index)
as an indicator of the effect of topography on soil
moisture. Topographic wetness index is calcu-
lated using the equation: TWI =In (a/tan b),
where a is the upstream contributing area (m?)
and b is the slope in radians (Beven and Kirkby
1979). Both the contributing area and slope were
calculated from a DEM using ESRI ArcGIS tools
(Flow Accumulation for contributing area and
Slope for slope). Digital elevation model data
were obtained from the U.S. Geological Survey
(USGS) National Elevation Dataset (https://na
tionalmap.gov/elevation.html) with a spatial res-
olution of 1/3 arc-seconds (~10 m). High TWI
values indicate topographic low points and drai-
nage depressions (more run-on), whereas low
TWI values are associated with crests and ridges
(more runoff). A limitation in the calculation of
TWI is that the Flow Direction tool in ArcGIS
allows flow to pass to only one neighboring cell,
which has been shown to be less accurate than
considering multiple neighboring cells down-
slope (Rampi et al. 2014). For this application,
however, we anticipated that TWI would pro-
vide a useful index of topographic controls on
precipitation redistribution in the Jornada Basin
landscape.

Statistical analysis

Since the maximum potential cover supported
by a system should be reached only rarely, we
consider the 99th percentile of shrub cover (either
across the entire basin or on a given landform) as
the upper limit in our analysis at the Jornada
Basin.

We used Kendall’s tau (t; Helsel and Hirsch
2002) to test our hypothesis of the control of
water availability on potential shrub cover.
Correlation was calculated between the 99th
percentile shrub cover and PAW ranks of each
landform. A rejection of the null hypothesis (H;)
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would indicate a monotonic positive (t > 0) or
negative (1 <0) relationship between water
availability and potential shrub cover.

To explore the relationship between the poten-
tial upper limit of shrub cover (the 99th per-
centile) and soil texture (surface clay content)
and topography (TWI), we used an additive non-
parametric quantile regression analysis (Koenker
et al. 1994) as implemented in the quantreg
library (function rqss) of the statistical software
package R (http://www.r-project.org/).

Linear quantile regression (function rq of the
quantreg library in R) was used to explore the
relationship between shrub patch size and patch
density. We chose quantile regression instead of
ordinary linear regression to reduce the impacts
of disturbances (such as drought and herbivory)
on shrub structure. We used the 95th percentile
in our regression analysis so that a sufficient
sample size (above the regression line) would be
retained to draw statistical conclusions. Both size
and density were In-transformed prior to regres-
sion analysis.

REsuLTs

Spatial variation of shrub cover at the Jornada
Basin LTER

Shrub cover at 1 ha scale varied considerably
across the basin (Fig. 3). Mean shrub cover ran-
ged from 3% to 27% across the landforms
defined in Table 1, with 99th percentile shrub
cover varying 28-69% (Fig. 4). The mean and
99th percentile shrub cover across the entire
basin (i.e., all landforms combined) were 17%
and 40%, respectively. Mean shrub cover in JER
(Fig. 1) was highest on sand sheets to the north-
east of the basin (reddish brown sand sheets and
dunes, sand sheets and coppice dunes) and in
depressions and depression margins not subject
to regular or long-duration inundation. The high-
est mean shrub cover in CDRRC was observed
on uplifted (20%) and wind worked (18%) allu-
vial plains. Kendall’s t test showed significant
increases in the upper limits of shrub cover (99th
percentile) with increasing PAW, as indexed by
our expert ranking of the different landforms
(P = 0.02, excluding playas that are ephemerally
flooded, with little or no shrub cover). The rela-
tionship between potential shrub cover and
water availability was further strengthened when
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Fig. 3. Shrub cover (%) in the 103,373 ha Jornada Basin Long-Term Ecological Research site in 2011 derived
from airborne 1 m resolution imagery and aggregated at 1 ha scale. Solid gray shading indicates missing data in
a part of the basin with particularly high local-scale variability where shrub cover has not yet been estimated,
while un-shaded areas on the E, W, and SW margins of the Jornada Experimental Range and Chihuahuan Desert
Rangeland Research Center are mountainous and/or rocky regions not included in this study. Note vertical and
horizontal linear features in the central region of this map correspond to fence-lines with differing management

history.

gypsiferous sand sheets (where vegetation is lim-
ited by high gypsum content), alluvial flats
(which have high herbaceous cover due to run
off from the piedmont slope), and playa (which
is ephemerally flooded and has little or no shrub
cover) were excluded from the analyses
(P <0.01).

Shrub cover variations relative to soil clay content
and TWI

Surface clay content ranged from 11% to 42%
across the Jornada Basin. Soils on sand sheets
and sand dunes are generally coarser, while
higher clay content increases in landforms that
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receive more run-on water (e.g., depressions and
playas). Results of the quantile regression analy-
sis showed that maximum potential shrub cover
initially increased with surface clay content, then
decreased as clay content surpassed 18% (Fig. 5).
Ksar estimates suggest that water infiltration
declines rapidly as clay content increases above
19%, close to the inflection point observed in
maximum shrub canopy cover (18%). We
acknowledge that K, estimates using a model
based on texture (in this case Clapp and Horn-
berger 1978) are highly uncertain and impacted
by local differences in soil characteristics, vegeta-
tion, and biota (Whitford 1996, Rango et al.
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Fig. 4. Shrub cover (%) by landform types. The center, bottom, and top of boxes indicate the median, the 25th
percentile, and the 75th percentile, respectively. Red diamonds are the 99th percentiles of shrub cover.

2003). However, this close correspondence
strongly suggests that reduced infiltration may
drive the change in observed maximum cover at
increasing clay content.

The TWI provides an alternative perspective
on water availability based primarily on land-
scape position and potential for redistribution of
water. However, while TWI values varied mark-
edly across the Basin, reflecting the topographic
heterogeneity and complexity of the Jornada
Basin, no consistent or significant relationships
were detected between the upper limit of shrub
cover and TWI, either within landforms or across
the entire basin (Fig. 6; quantile regression analy-
sis, P > 0.1).

Shrub patch size and density

With the exception of gypsiferous terraces and
sand sheets, alluvial flats, and playas, 95th quan-
tile shrub patch size decreased with patch den-
sity (Fig. 7), as predicted for plant populations
that are competing for resources and undergoing
self-thinning. The slopes of the 95th percentile
patch size-density regression lines on these sites
ranged from —1.05 on ballenas to —1.45 on
depressions (Appendix S1: Fig. S1, Table S1). In
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locations above the 95th percentile regression
line (i.e., the self-thinning lines), ballena land-
scapes had the smallest mean patch size (8.8 m?)
and highest mean patch density (335 ha™'),
while reddish brown sand sheets and dunes had
the largest patch size (36.1 m?) and lowest den-
sity (106 ha ') (Fig. 8).

DiscussioN

The 99th percentile shrub cover for the entire
Jornada Basin is 40%, but the inferred maximum
varies considerably from 28% to 69% among
landforms within the basin (Fig. 4). In arid and
semi-arid ecosystems, this upper limit in shrub
cover is, at least in part, controlled by the amount
of precipitation a region receives (Noy-Meir
1973, Fig. 9). However, the average value of 40%
for the temperate Jornada Basin (MAP = 248
mm/yr) is nearly twice that predicted for tropical
savannas at similar MAP (21% according to the
relationship reported by Sankaran et al. 2005).
This may reflect that, in temperate systems
with lower annual potential evapotranspiration,
a specified annual rainfall may support higher
maximum cover of woody plants than similar
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Fig. 5. Shrub cover (%) and surface (0-5 cm) clay content (%). Data points are color-coded by landform types. Solid
line is the 99% quantile regression line. Open squares and filled diamonds are mean shrub cover and estimated satu-
rated hydraulic conductivity (K., cm/h), respectively. Note that not all data points are visible due to overlaps.

rainfall in a tropical system. The 40% maximum
cover was also slightly higher when compared to
the Santa Rita Experimental Range (SRER) in the
Sonoran Desert (MAP =370 mm/yr), where
Browning et al. (2008) observed a maximum
potential cover of ~30-35% using classified aerial
photography. The lower maximum cover found
at SRER may be related to a narrower focus on a
single soil/landform type with a single woody
species (Prosopis velutina) since a more synoptic
assessment of shrub cover at the SRER using
satellite remote sensing (Huang et al. 2007, 2018)
suggests the Browning et al. (2008) estimate may
be conservative at broader spatial scales.

Within the Jornada Basin, PAW at a given loca-
tion reflects water redistribution, soil properties,
and geomorphic characteristics (Duniway et al.
2018). Spatial variation in soil texture will dictate,
to some extent, the spatial variation in potential
shrub cover, as soil texture variations impose
trade-offs in precipitation infiltration/percolation
(hence the amount of water that might be prefer-
entially available to deep-rooted shrubs) and soil
fertility. Relative to clayey soils, sandy soils have
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higher infiltration/percolation capacities but are
more nutrient poor (Chapin et al. 2011). These
trade-offs were evident in the patterns of maxi-
mum shrub cover potential we observed on
Jornada Basin landforms (Fig 5). As the surface
(0-5 cm) clay content increased from 11% to
18%, potential shrub cover increased from 20%
to 40%, but as clay content rose above 18%,
potential shrub cover steadily declined. The for-
mer represents the benefits of increasing fertility
with increasing clay content with little downside
for rainfall infiltration/percolation (water infiltra-
tion rate, as indicated by Ks,, was ~80 cm/h for
soils with 11-19% clay). The latter, however, sug-
gests that the benefits of increased fertility for
shrubs are offset and constrained by reductions
in rainfall infiltration/percolation (Kg, < 15 cm/h;
at >20% clay). This is consistent with previous
studies documenting that soils with high clay
content were less prone to shrub encroachment
in the U.S. southwest region (Browning et al.
2008, Rachal et al. 2012).

The TWI failed to show any correlation with
potential shrub cover (Fig. 6). One limitation of
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the TWI algorithm (see Methods) is that it consid-
ers only topography in directing water redistri-
bution, with no specific consideration of
infiltration/percolation rates or upslope soil prop-
erties and vegetation cover. Regarding the latter,
TWI therefore ignores the feedback relationships
between a given landscape setting and surround-
ing soils and vegetation, particularly the interac-
tions between soils and vegetation patch spatial
distributions on water redistribution (Ludwig
et al. 2005). Thus, landscape connectivity indices
that explicitly consider vegetation in their formu-
lation (Ludwig et al. 2002, McGlynn and Okin
2006) may better characterize the complex pat-
terns of redistribution of water (and other
resources such as nutrients) between and within
landscapes. Difficulties in separating bare ground
from herbaceous cover limited our ability to cal-
culate these more advanced metrics of connectiv-
ity and water redistribution.

Distinct self-thinning of the shrub patches was
apparent in 11 of the 14 landforms in our basin-
scale assessment (Fig. 7, Appendix S1: Fig. S1),
which strongly indicates the presence of
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competition among shrubs. However, this
shrub—shrub competition is probably only active
in locations where shrub cover is close to the
maximum potential supported by a given land-
form. At early stages of shrub growth, or in set-
tings where shrub cover is kept below the
climatic/landform maxima by disturbance events
(e.g., herbivory), shrub—shrub competition
would presumably be muted. In locations where
the history of climatic, biotic, and anthropogenic
conditions has favored shrub establishment and
survival, shrub cover may approach the maxi-
mum, either through growth in patch size or
density. In these cases, further recruitment and
growth may be increasingly inhibited due to
stand-scale competition. This is consistent with
observations that rates of shrub proliferation
decrease with increases in shrub cover (e.g.,
Roques et al. 2001, Fensham et al. 2005, Axelsson
and Hanan 2018) and reinforces that shrub—
shrub competition, although not always active
for shrubs at low density, is an important factor
structuring shrub communities at the Jornada, in
addition to the woody-herbaceous interactions
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Fig 7. The 95th percentile regression lines between shrub patch size (In-m?) and patch density (In-ha™ 1) for 11
landforms (out of 14 total) across the Jornada Basin where distinct thinning lines were present (see Appendix S1:
Fig. S1). Both size and density are In-transformed. Solid line is all landforms combined and the dotted lines are

individual landforms.

that are more typically invoked in arid ecosys-
tems (Scholes and Archer 1997, Sankaran et al.
2004).

Resource availability limits maximum plant
size (Ryan and Yoder 1997, Choi et al. 2016). Our
results suggest that, in locations above the self-
thinning lines on different landforms (Appendix
S1: Fig. S1), mean shrub patch size was smaller
on drier landforms and increased with PAW
(Fig. 8; marginally significant according to Ken-
dall’s t test, P = 0.11). When the trend for inc-
reasing patch size with PAW is combined with
the observation that stand-level canopy cover is
not generally correlated with patch density
(Appendix S1: Fig. S2), but is highly correlated
with mean patch size (Appendix S1: Fig. S3), we
infer that the general trend to increasing shrub
cover with PAW (Fig. 4) is driven primarily by
increases in mean patch size, rather than
increases in patch density. This is consistent with
a recent study (Axelsson and Hanan 2017) that
found increases in woody cover across an Afri-
can savanna rainfall gradient were more closely
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related to crown size than density of shrubs and
trees.

Shrubs have been proliferating in grasslands of
the Jornada Basin over the past 150 yr, so shrub
communities in most invaded grassland sites
have had ample time to develop and mature.
Although shrub cover maxima at the Jornada
Basin appears to be constrained by water avail-
ability (as governed by landform and soil type),
actual cover in many locations is considerably
below the inferred upper limit (Fig. 9). In contrast
to patterns observed in tropical savannas, where
fire and herbivory are the main drivers of tree
cover variability below the maximum (Sankaran
et al. 2005, Archibald and Hempson 2016), it is
less well known which factors maintain shrub
cover at most locations in Jornada landscapes
below their inferred potential. Data on local
heterogeneity in historical establishment and mor-
tality events related to clay mineralogy (e.g., soil
shrink—swell capacity), drought (Reynolds et al.
1999, Peters et al. 2010), cattle grazing (Herbel
et al. 1972, Gibbens et al. 2005), soil erosion
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(Ludwig et al. 2005), and small mammal and
insect herbivory and granivory (Whitford and
Bestelmeyer 2006, Schooley et al. 2018) may be
needed to explain what is preventing potential
shrub cover from being realized at the Jornada
Basin.

CONCLUSIONS

Water is a primary factor limiting vegetation
composition and abundance in arid ecosystems.
Our results suggest that, at the scale of the
103,373 ha Jornada Basin LTER site in the north-
ern Chihuahuan Desert, the upper limit on shrub
cover is controlled by mean annual rainfall and
shrub—shrub competition, as mediated by PAW
variations among landforms and soil texture.
Potential shrub cover generally increases as sur-
face soil clay content increases up to 18%, possi-
bly reflecting increases in soil fertility, then
declines with further increases in clay content,
perhaps related to reduced infiltration of rainfall.
The simple TWI (intended as an index of rainfall
redistribution) failed to explain the spatial varia-
tion in shrub cover, suggesting that more refined
indices of connectivity that account for topogra-
phy, soil texture, and vegetation are needed to
represent the horizontal movement of water
within the landscape. Inverse relationships
between shrub size and density in locations with
high shrub cover suggest that self-thinning
occurs in most landforms, indicating the role of
shrub—shrub competition in limiting maximum
shrub cover in the northern Chihuahuan Desert.

A large portion of the spatial variation in
shrub cover in the Jornada Basin could not, how-
ever, be explained by patterns of soil texture and
associated PAW. This suggests other processes
are also influencing long-term shrub establish-
ment and mortality events. In highly variable
arid and semi-arid ecosystems, underlying den-
sity dependence (i.e, competitive interactions)
may impose constraints on population growth
only rarely, while density-independent controls
on populations (e.g., climatic events and grazing
effects on shrub establishment with time lags)
explain the larger fraction of landscape-scale
variability in vegetation structure. In these situa-
tions, high-density landscape-scale observations,
such as produced in this research, allow infer-
ence of the underlying ecological processes that
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contribute to observed spatial patterns (Cale
et al. 1989).
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