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Abstract: The goal of this study is to improve our understanding of the interac-
tive function of impervious and vegetation covers at different levels of the local and 
intra-urban spatial scales in relation to air temperatures in an urban environment. 
A multiple regression model was developed using impervious and vegetation frac-
tions at different scales to predict maximum air temperature for the entire Phoenix 
metropolitan area in Arizona, USA. This study demonstrates that a small amount of 
impervious cover in a desert city can still increase maximum air temperature despite 
abundant vegetation cover.

INTRODUCTION

Vegetation influences urban environmental conditions and energy fluxes by selec-
tive reflection and absorption of solar radiation (Gallo et al., 1993) and by the process 
of evapotranspiration (Owen et al., 1998; Jonsson, 2004). The presence and abundance 
of vegetation in urban areas has long been recognized as having a strong influence on 
energy demand and development of the urban heat island (Oke, 1982; Huang et al., 
1987; Sailor, 1995; Spronken-Smith and Oke, 1998; Carlson and Arthur, 2000; Bonan, 
2002; Weng et al., 2004; Grossman-Clarke et al., 2005; Jenerette et al., 2007). Urban 
vegetation abundance may also improve air quality and human health (Wagrowski and 
Hites, 1997) because photosynthesizing plants absorb atmospheric carbon dioxide, 
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sunlight, water, and soil nutrients to release oxygen in the process. Urban trees also 
trap particulate matter and ozone. The loss of trees in our cities not only intensifies 
the urban heat island effect due to the loss of shade and evaporation, but also reduces 
the role of the urban forest as principal absorber of carbon dioxide and trapper of 
other pollutants. Studies in urban climatology have found that urbanization is often 
associated with warmer climate and more polluted air than their rural environments 
(Taha, 1996; Streutker, 2002; Arnfield, 2003; Zhou et al., 2004; Brazel et al., 2007). 
The modification of an urban landscape influences local (micro-), meso-, and even 
the macro-climate (Lo et al., 1997; Brazel et al., 2000; Quattrochi et al., 2000; Weng, 
2001; Lo and Quattrochi, 2003; Voogt and Oke, 2003).

It is well documented that escalating urbanization results in an increased amount 
of impervious surfaces (Brabec et al., 2002), and it consequently augments the inten-
sity, volume, temperature, and duration of storm water runoff (Booth and Reinelt, 
1993; Schueler, 1994; U.S. EPA, 1997). Urban storm water runoff may cause or con-
tribute to water quality degradation by changing natural hydrologic patterns (Hall, 
1984; Driver and Troutman, 1989), accelerating natural stream flows (Booth and 
Jackson, 1997), increasing stream bank erosion (May et al., 1997), destroying aquatic 
habitat (Booth and Reinelt, 1993; Horner et al., 1997), degrading stream water quality 
(Schueler, 1994; Booth and Jackson, 1997; May et al., 1997), increasing temperature 
(Galli, 1990), and elevating pollutant concentrations and loadings (Brabec et al., 2002; 
Boyer et al., 2002; Roy et al., 2003).

Impervious surfaces, particularly tar roads and parking lots, are generally dark, 
and hence they can easily warm up the runoff water (Frazer, 2005). On the other 
hand, impervious areas have higher thermal conductivity than vegetated covers. 
Urbanization alters the natural ways energy flows through the atmosphere, land, and 
water systems (Oke, 1982; Lo and Quattrochi, 2003). For example, the temperature 
trend in Phoenix demonstrated a 5.5°C increase in the minimum temperatures from the 
late 1940s to present due to rapid expansion of urbanized areas (Brazel et al., 2000). 
Impervious surfaces are one of the key indicators of urban growth that can be directly 
quantified (Arnold and Gibbons, 1996; Brabec et al., 2002). With the advent of urban 
sprawl, impervious surfaces have become a key parameter to be considered in urban 
growth and sprawl management because of their impacts on habitat health (Arnold 
and Gibbons, 1996). Therefore, identification of spatial patterns, percent distribution, 
and growth of impervious surfaces in an urban-suburban environment is an impor-
tant step toward effective decision making for urban planning and overall watershed 
management. 

The goal of this study is to improve our understanding of the role of percent 
distribution of impervious and vegetation covers at different spatial scales in control-
ling patterns of air temperature at different spatial scales in an urban environment. 
The study area selected is the Phoenix metropolitan area in Arizona, located in the 
Sonoran Desert. We develop a multiple regression model using impervious and veg-
etation fractions at different spatial scales to predict maximum air temperature for the 
entire Phoenix metropolitan area. We combine remote sensing techniques with climate 
data to address the role of interactive effects of impervious and vegetation covers on 
air temperatures in this rapidly urbanizing landscape.
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DATA AND STUDY AREA

A Landsat ETM+ image (L1G product of path 37 and row 37) at 30 m spatial 
resolution with six channels ranging from blue to the shortwave infrared portion of 
the spectrum was used to quantify varying amounts and distribution of impervious 
(surface), vegetation, soil, and shade in urban and suburban areas. The image data was 
acquired over the Phoenix metropolitan area under cloud-free conditions on April 19, 
2000. The original image was subset to extract the Phoenix metropolitan area (upper 
left longitude W 112°47´10.96´´ and latitude N 33°49´59.62´´, lower right longitude 
W 111°34´18.56´´ and latitude N 33°12´09.81´´).

The Phoenix metropolitan area selected for the study is shown in Figure 1 by 
displaying Landsat ETM+ channel 4 (0.750–0.900 μm), channel 3 (0.630–0.690 μm), 
and channel 2 (0.525–0.605 μm) in red, green, and blue, respectively. The study area 
covers major urban/suburban land use and land cover classes: high-density residential, 
low-density residential, commercial, wild grass, woodlands, manmade grass, ripar-
ian vegetation, agriculture, cement roads, tar roads, cement/tar parking, river, lakes, 
sandbars, and exposed soil. We used a Quickbird 2.4-meter spatial resolution multi-
spectral image with four channels—blue (0.45–0.52 μm), green (0.52–0.60 μm), red 
(0.63–0.69 μm), and near infrared (0.76–0.90 μm)—and the accompanying 60 cm 
panchromatic image (0.45–0.90 μm) acquired over downtown Phoenix on July 11, 
2005, to assess the accuracy of percentages of impervious surface, soil, vegetation, 
and shaded areas at sub-pixel resolution.  The selected multispectral Quickbird image 

Fig. 1. A false-color composite of Landsat ETM+ 30-meter resolution data over the Phoenix 
metropolitan area by displaying channel 4 (0.750–0.900 μm), channel 3 (0.630–0.690 μm), and 
channel 2 (0.525–0.605 μm) in red, green, and blue, respectively.
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was pan-sharpened to convert from 2.4 meters to 1 meter resolution image data. Both 
Quickbird and Landsat ETM+ data were orthorectified.

We obtained climate data (daily maximum, minimum, and mean temperature) 
that were compiled by the Central Arizona–Phoenix Long-Term Ecological Research 
(CAP-LTER) project from major national, state, and local meteorological networks 
with weather stations distributed evenly over the Phoenix metropolitan area. Only 
air temperature data were used for the study. In particular, we used daily air tempera-
ture measured within the urban canopy layer (ca. 2 m height) by four networks: (1) 
Phoenix Realtime Instrumentation for Surface Meteorological Studies (PRISMS; Pon 
et al., 1998); (2) Arizona Meteorological Network (AZMET; see http://ag.arizona.edu/
azmet); (3) Maricopa County Flood Control District (MCFCD; see http://fcd.mari-
copa.gov); and (4) co-op stations obtained from the National Climatic Data Center of 
the National Oceanic and Atmospheric Administration (NCDC, NOAA; data available 
from www.ncdc.noaa.gov and summarized monthly at www.wrcc.dri.edu). Locations 
of weather stations used in our study are presented in Figure 2. We extracted air tem-
peratures recorded at the above stations on April 19, 2000.

METHODOLOGY

Spatial Distribution of Impervious, Soil, and Vegetation

Linear spectral mixture analysis (SMA), which is capable of quantifying subpixel 
endmember fractions, is probably the most commonly used technique of all   subpixel 
analysis techniques. An endmember is the spectrum of a pure land cover (e.g., vegeta-
tion, soil, water) and hence SMA endmember fractions are typically interpreted as 
ground component fractions. 

Fig. 2. Selected weather stations located in the Phoenix metropolitan area.
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SMA is defined as:
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where Xi is the spectral reflectance of band i of a pixel, n is the number of endmembers, 
fk is the fraction of an endmember k within a pixel, Xik is the known spectral reflectance 
of endmember k within the pixel in band i, and ei is the error term for band i. The root 
mean square (RMS) error is given by:
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where ei are the error terms for each of the m spectral bands considered. The applica-
tion of SMA to remote sensing imagery typically also adds the additional constraints 
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1 (when the sum of fractions is forced to be 1), the number of endmembers cannot 
exceed the number of bands, m. This is a major limitation in modeling urban land 
covers with the SMA technique when dealing with commonly used remotely sensed 
data such as IKONOS, SPOT, IRS, ASTER, and Landsat TM, because they normally 
contain fewer than or equal to seven bands. On the other hand, urban land covers are 
composed of many spectrally different materials in a small area (e.g., plastic, metal, 
rubber, glass, tar, cement, wood, shingle, sand, gravel, brick, stone, soil, grass, trees, 
shrubs, water) (Myint and Lam, 2005). Another limitation is that a standard SMA 
approach employs an invariable set of endmembers to quantify fractions in all pixels. 
It should be noted that the number and type of land cover components are highly 
variable. The endmembers used in SMA are the same for each pixel, regardless of 
whether the ground components represented by the endmembers are present in the 
pixel. Hence, we employed multiple endmember spectral mixture analysis (MESMA), 
an extension of the SMA approach that allows the number and type of endmembers to 
vary for each pixel within an image.  

The subpixel approach that we employed in this study is based on a model pro-
posed by Ridd (1995) that land cover in an urban environment is a linear combination 
of three land cover types (i.e., impervious, soil, vegetation). Our MESMA approach 
starts with the selection of a set of endmembers that represent pure spectra of the land 
covers in the scene. The algorithm selects the model with the lowest RMS error for 
each pixel, with the condition that the RMS error of the best-fit model may not exceed 
some user-defined threshold. For the best-fit model for each pixel, the fraction values 
for each endmember and the identity of those endmembers are recorded.

We selected endmembers manually by visualizing the pixel purity index (PPI) 
results of spectrally pure pixels identified using the PPI in an N-dimensional visualizer 
with ENVI software package. We geographically linked the PPI image to the origi-
nal image and high-resolution Quickbird image to identify the image endmembers. 
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Selected endmembers were grouped into three classes: impervious surfaces (e.g., 
tar roads, cement roads, different types of rooftops, swimming pools, parking lots); 
vegetation (e.g., grass, shrubs, desert scrub, trees); and soil (e.g., exposed soil, sand 
bars, inactive agriculture, recently plowed fields, cleared ground for construction). We 
employed 28 endmembers and 544 endmember models to identify fractions of soil, 
impervious surface, vegetation, and shade in the Phoenix metropolitan area.

The detailed methodology employed in the study and validation of output fraction 
images were presented in Myint and Okin (2008). The mean RMS error for the selected 
land use and land cover classes range from 0.003 to 0.018. The Pearson correlation 
between fraction outputs from MESMA and reference data from Quickbird 60 cm reso-
lution data were 0.8041 for soil, 0.8166 for impervious, and 0.8032 for vegetation. We 
acknowledge that the differences in the dates of the acquisition of Landsat ETM+ and 
Quickbird could also be considered a possible limitation in effectively assessing the 
accuracy. Our accuracy analysis minimized these problems by reselecting only those 
reference points that did not change between 2000 and 2005. We first looked at apparent 
changes in land use, then land cover, based on the two images and a later 2005 Landsat 
image. This analysis was further reinforced by ground-based verification. 

Results from the study demonstrated that the selected models were reliable, and 
the MESMA algorithm quantified the selected endmembers (i.e., impervious, vegeta-
tion, soil) accurately (Myint and Okin, 2008). Figures 3 and 4 show percentages of 
impervious and vegetation distribution of the Phoenix metropolitan area, respectively. 
We generated mean percentage distribution of impervious and vegetation using differ-
ent window sizes ranging from 3 × 3 to 33 × 33 pixels. This was done to obtain per-
centage distribution of impervious surface and vegetation for varying areal extents.

Regression Analysis

We extracted percent distribution of impervious and vegetation from the original 
image (30 m × 30 m) and the above output images with mean fraction values gener-
ated with the use of different window sizes. Extracted fraction values of impervious 
and vegetation were integrated with weather data. A linear regression analysis was 
performed to determine the correlation between air temperature (maximum and mini-
mum) and percent distribution of impervious and vegetation at different spatial scales 
(i.e., 30 m to 990 m). Parameters from models with the highest correlations (e.g., 
impervious percent distribution in 30 m × 30 m neighborhood, vegetation percent dis-
tribution in 270 m × 270 m neighborhood) were used to develop a multiple regression 
model to predict air temperature for the entire Phoenix metropolitan area. This was 
done to evaluate interaction effects of impervious and vegetation covers that influence 
the urban heat island in this rapidly growing city. In addition to standard statistical 
parameters (e.g., correlation, coefficient of determination, standard error, t statistics, 
etc.), we computed root mean square error (RMS) and bias to demonstrate the strength 
of the model. This was also supported by a residual plot of the model.

RESULTS AND DISCUSSION

Maximum Air Temperature vs. Impervious

As mentioned earlier, we performed a regression analysis to compute the correla-
tion between fractions of impervious surface and maximum air temperature recorded 
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on April 19, 2000. The wind during the entire day was less than 5 mph and thus strong 
advective effects long distances from weather sites are likely minimized. It was found 
that percent impervious surface covers within different areal extents were positively 

Fig. 3. Impervious fraction layer of the Phoenix metropolitan area. White = 100%; black = 
0%.

Fig. 4. Vegetation fraction layer of the Phoenix metropolitan area. White = 100%; black = 0%.



308 MYINT ET AL.

correlated with maximum air temperature. The computed correlations between maxi-
mum air temperature and percent impervious per unit area ranging from 30 m × 30 m 
to 990 m × 990 m were 0.430, 0.371, 0.387, 0.386, 0.298, 0.263, 0.225, 0.237, 0.191, 
0.204, 0.202, 0.208, 0.177, 0.186, 0.187, 0.185, and 0.197 (Table 1). The correlation 
coefficient drops after about 210 m × 210 m and the curve flattened after about 390 m 
× 390 m (Fig. 5). This implies that impervious percent distribution within a neighbor-
hood ranging from 30 m × 30 m (original pixel resolution) to 210 m × 210 m affected 
maximum air temperature most significantly. In other words, high percent distribution 
of impervious surface within 210 m × 210 m substantially increases maximum air tem-
perature and vice versa. The result also indicates that high or low percent impervious 
covers in a window size larger than 270 m do not have a strong impact on maximum 
air temperature. This suggests that under the very calm conditions experienced, the 
source area impacting temperature was quite local. Correlation was the highest at the 
original pixel size (30 m), implying that the impervious surface fraction in the smallest 
area (30 m × 30 m) has the strongest impact on maximum air temperature.

Maximum Air Temperature vs. Vegetation

Percent distribution of vegetation cover computed within areas of different sizes 
was negatively correlated with maximum air temperature. Correlations computed for 

Table 1. Correlation Coefficients between Air Temperature and Percent Distribution 
of Impervious and Vegetation with the Use of Different Window Sizes

Windows

Correlation coefficients

Max. Temp.  
vs. Imp.

Max. Temp. 
 vs. Veg.

Min. Temp.  
vs. Imp.

Min. Temp.  
vs. Veg.

30 m × 30 m 0.430 0.016 0.684 0.184
90 m × 90 m 0.371 0.211 0.533 0.271
150 m × 150 m 0.387 0.276 0.586 0.185
210 m × 210 m 0.386 0.328 0.593 0.149
270 m × 270 m 0.298 0.324 0.524 0.147
330 m × 330 m 0.263 0.294 0.517 0.174
390 m × 390 m 0.225 0.294 0.543 0.167
450 m × 450 m 0.237 0.252 0.552 0.171
510 m × 510 m 0.191 0.219 0.533 0.187
570 m × 570 m 0.204 0.196 0.535 0.210
630 m × 630 m 0.202 0.176 0.546 0.222
690 m × 690 m 0.208 0.177 0.550 0.219
750 m × 750 m 0.177 0.165 0.552 0.206
810 m × 810 m 0.186 0.167 0.547 0.211
870 m × 870 m 0.187 0.151 0.551 0.214
930 m × 930 m 0.185 0.126 0.558 0.215
950 m × 950 m 0.197 0.115 0.534 0.212
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maximum air temperature and vegetation cover percent per unit area ranging from 
30 m × 30 m to 990 m × 990 m were 0.016, 0.211, 0.276, 0.328, 0.324, 0.294, 0.294, 
0.252, 0.219, 0.196, 0.176, 0.177, 0.165, 0.167, 0.151, 0.126, and 0.115 (Fig. 6; Table 
1). Percent cover of vegetation at the finest scale (30 m) does not explain maximum air 
temperature. In other words, a high percentage of vegetation cover in an area less than 
30 m × 30 m does not lower the maximum temperature and vice versa. As we increase 
the window size, correlations between the two variables increase exponentially until it 
reaches the peak at about the 210 m × 210 m and 270 m × 270 m windows. This pat-
tern suggests that higher abundance of vegetation at these reasonably large scales (i.e., 
210 m × 210 m and 270 m × 270 m) can decrease maximum temperature in Phoenix. 
However, these window sizes are not necessarily going to be the optimal scale if cit-
ies in other environmental settings are analyzed. The curve goes down after the 390 
m × 390 m window size, and stays almost at the same level after 570 m × 570 m. This 
implies that percent distribution of vegetation cover in windows larger than 390 m 
does not have a continually increasing strong influence on maximum air temperature, 
and hence vegetation abundance at these scales is not really effective in lowering the 
maximum air temperature at the local site. Upmanis et al. (1998) demonstrated that 
the magnitude of the temperature difference between a park and its urban surroundings 
increases with increasing park size.  They also found that temperature difference is 
related to the distance from the park edge. Although their study focused only on parks 
and did not examine areas away from park edges in a consistent manner, our results 
generally agree with their findings. However, our results reflect the relation between 
vegetation and air temperature in the environment where the average summer high 
temperature exceeds 100°F (38°C), making Phoenix the hottest of any populated area 
in the United States (http://www.wordtravels.com/Cities/Arizona/Phoenix/Climate). 

Fig. 5. Correlation coefficients between maximum air temperature and impervious fraction val-
ues generated with the use of different window sizes. Abbreviations: Imp. = impervious; Max. = 
maximum; Temp. = temperature.
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Interestingly, the effect of vegetation on temperature is not dependent on vegetation 
type. Although vegetation in our study is considered as one land cover class, the rela-
tionship between this clumped vegetation cover and air temperature is robust. 

Minimum Air Temperature vs. Impervious

There is a strong positive relation between percent distribution of impervious 
areas and minimum air temperature. The computed correlations between minimum 
air temperature and percent of impervious per unit area ranging from 30 m × 30 m to 
990 m × 990 m were 0.68, 0.53, 0.59, 0.59, 0.52, 0.51, 0.54, 0.55, 0.53, 0.54, 0.55, 
0.55, 0.55, 0.55, 0.55, 0.56, and 0.53 (Fig. 7; Table 1). These correlations were more 
scale independent and significantly higher than relationships between maximum air 
temperature and percent impervious surface. This suggests that a higher percentage of 
impervious surfaces increases minimum air temperature regardless of neighborhood 
size or local window size. This is realized due to the role of daytime absorption and 
heat storage that is expressed in heat retention at night.

Minimum Air Temperature vs. Vegetation

It is important to note that there turned out to be a weak but significant posi-
tive relationship between percent vegetation cover and minimum air temperature. 
Correlations between minimum air temperature and percent vegetation per unit area 
ranging from 30 m × 30 m to 990 m × 990 m were 0.18, 0.27, 0.19, 0.15, 0.15, 0.17, 
0.17, 0.17, 0.19, 0.21, 0.22, 0.22, 0.21, 0.21, 0.21, 0.22, and 0.21(Table 1). These 
correlation values were low compared to those between minimum temperature and 

Fig. 6. Correlation coefficients between maximum air temperature and vegetation fraction val-
ues generated with the use of different window sizes. Abbreviations: Veg. = vegetation; Max. = 
maximum; Temp. = temperature.
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percent impervious surface. The positive relation to vegetation was somewhat unex-
pected and needs to be explored further. However, there are findings elsewhere that are 
similar, where under and near tree canopies at night there is little mixing to dissipate 
heat and heat is retained more than open areas due to decreased sky view factors. 
Solar radiation that penetrates a low-density canopy during the day heats local sur-
faces that cannot radiate effectively to the night sky (e.g., Myrup et al., 1991; Heisler 
et al., 1995). The highest correlation was achieved when a 90 m × 90 m local win-
dow was considered. Correlations for all other window sizes did not differ from one 
another (Fig. 8). We can speculate that somewhat higher vegetation cover influences 
heat retention at night even though it may have reduced maximum temperatures dur-
ing the day. This is because minimum air temperature is reached in early morning and 
by then open manmade features and especially soil have cooled more than the ground 
areas near and under trees. 

Multiple Regression Model

Because percent impervious surface at the original spatial resolution and percent 
vegetation cover within a 7 × 7 pixel local window (210 m × 210 m) exhibited the 
highest correlations, we used them as independent variables to predict maximum air 
temperature for the entire metropolitan area of Phoenix. We believe that the multiple 
regression model developed using the two variables was effective (Table 2). This is 
also confirmed by a comparison of the original maximum air temperature with the 
predicted one (Fig. 9), as well as the residual plot of the model (Fig. 10). RMS error 
(Table 2) stems largely from the outlier at weather station number 12 (Figs. 9 and 10). 
Removing it would reduce the RMS error, bias, residual, standard error, and improve 

Fig. 7. Correlation coefficients between minimum air temperature and impervious fraction val-
ues generated with the use of different window sizes. Abbreviations: Imp. = impervious; Min. = 
minimum; Temp. = temperature.
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Fig. 8. Correlation coefficients between minimum air temperature and vegetation fraction val-
ues generated with the use of different window sizes. Abbreviations: Veg. = vegetation; Min. = 
minimum; Temp. = temperature.

Fig. 9. Model estimates of maximum air temperature compared with the original field measure-
ments of maximum air temperature collected at the weather stations.
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multiple R and the coefficient of determination significantly. We, however, prefer to 
keep it because no evidence exists that this is a measurement or instrumentation error. 
The regression model is highly significant and strong.  It helps us explore the interac-
tion of vegetation cover and manmade structures and their combined effects on urban 
heating in the Phoenix metropolitan area. 

The maximum air temperature map of the area (Fig. 11) predicted by this regres-
sion model effectively communicates the spatial structure of the urban heat island of 
Phoenix. The multiple regression model developed in the study is defined as

 Tc = 26.43 + 1.87(i30) = 2.54(v270), (3)

Fig. 10. Residual plot of the regression model.

Table 2. Regression Statistics

Statistic Value

Multiple R  0.5223
R2  0.2728
Adjusted R2  0.2001
RMS error  0.9966
Observations 23.0000

Bias –0.0001
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where Tc is the maximum air temperature (Celsius); i30 is the percent impervious sur-
face area in a 30 m × 30 m neighborhood; and v270 is the percent vegetation cover in a 
270 m × 270 m neighborhood.

The coefficients, standard error, t statistic, and p-values are presented in Table 3. 
We tested our multiple regression model for multicollinearity, a common limitation of 
multiple regression models in not being able to distinguish individual effects of two or 
more independent variables on an outcome variable (Belsley et al., 1980). The problem 
generally arises when two or more variables are more correlated with each other than 
they are with the dependent variable. We assessed multicollinearity by examining two 
collinearity indicators—tolerance and the variance inflation factor (VIF). Tolerance 
is computed as 1 – R2. A small tolerance value suggests that the dependent variable 
is strongly influenced by a linear combination of independent variables included in 
the model. The individual effect of each independent variable in this case is difficult 
to assess. VIF is computed as 1/tolerance, and is always greater than or equal to 1. It 
quantifies the degree to which multicollinearity increases the instability of regression 
coefficients (Freund and Littell, 2000). There is no formal criterion for determining 
tolerance or VIF values that can be used to make a decision on whether multicollinear-
ity exists in a regression model. It is generally considered that a tolerance value less 
than 0.1 or a VIF value greater than 10 imply significant multicollinearity. However, 
if the relationship between variables is weak, a VIF value between 2.5 and 10 may be 
regarded as a concern. Klein (1962) suggested an alternative criterion by comparing 
the coefficient of determination for regression of independent variables (Rk

2) and the 
original model’s R2. Significant multicollinearity is detected when Rk

2 > R2. We did not 
fnd a multicollinearity problem in our model (Table 4). The tolerance and VIF values 
for the selected independent variables (i.e., percent impervious surface at the original 

Fig. 11. Model-estimated maximum air temperature of the Phoenix metropolitan area.
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spatial resolution, percent vegetation cover within a 210 ×210  local window) were 
0.9942 and 1.0058, respectively (Table 4). The R2 of our model (0.273) was higher 
than Rk

2 (0.0058), which supports that our regression analysis is not prone to the prob-
lem of multicollinearity.

The model demonstrates the interactive nature of vegetation and manmade fea-
tures and their relative contribution to altering maximum air temperature in the rapidly 
growing desert city. Impervious surface areas directly contribute to urban heating and 
air temperature increases whereas vegetation cover effectively lowers the maximum 
air temperature. The model implies that in Phoenix an increase in impervious surface 
area by one unit (100% cover or fractional value of 1) will elevate maximum air tem-
perature by 1.87°, whereas an increase in vegetation cover by 1 unit (100% coverage or 
fractional value of 1) will lower maximum air temperature by 2.54°. The model seems 
to imply that vegetation cover can lower air temperature more effectively compared 
to the ability of impervious areas to increase maximum air temperature. However, 
it should be noted that percent impervious surface was obtained at 30 m pixel size 
(original spatial resolution), whereas vegetation fraction values were computed in 270 
m × 270 m (9 × 9 window size). This suggests that to lower air temperature we would 
need to have large patches of dense vegetation, while only a small patch in the same 

Table 3. Model Parameters

Coefficients Standard error t-statistic p-value

Intercept 26.43 0.59 44.66 0.00
Impervious (30 m)  1.87 0.88  2.11 0.05
Vegetation (270 m) –2.54 1.62 –1.57 0.13

Table 4. Collinearity Statistics

Imp-30 m Max. Temp. Max. Temp.

Veg-210 ma R –0.0759
Sig. (2-tailed)  0.7307
N 23

Imp-30 mb Pearson R  0.4304
Sig. (2-tailed)  0.0403
N 23

Veg-210 ma Pearson R –0.3280
Sig. (2-tailed)  0.1265
N 23

aTolerance = 0.9942; VIF = 1.0058.
bTolerance = 0.9942; VIF = 1.0058.
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neighborhood dominated by impervious area is capable of raising temperature signifi-
cantly. According to the model, an area of 270 m × 270 m covered by 50% vegetation 
will increase the maximum air temperature by approximately 0.5°C if the same area 
contains only about 1.92% of impervious surface. A hypothetical image is, therefore, 
created to illustrate this situation (Fig. 12). In this figure, vegetation, impervious sur-
face, and other land covers (e.g., exposed soil, water) are shown in black, white, and 
grey, respectively. It demonstrates that a small impervious area (94 cells out of 4900 
cells ~ 1.92% of impervious coverage) can still increase maximum air temperature 
by about 0.5°C even though this impervious surface is surrounded by a large area 
occupied by vegetation (2446 cells/4900 cells ~ 50% coverage). Note that there is no 
impervious surface in any other area except a small white area in the middle of the 
square area. In the real world situation, a small fraction of impervious surface and 
high percentage of vegetative cover could rarely be found in a desert city like Phoenix, 
especially in commercial, industrial, or high-density residential areas.

CONCLUSION

We examined the role of percent cover of impervious surface and vegetation at a 
range of spatial “grain sizes.” We developed a multiple regression model using frac-
tions of impervious and vegetation cover at different spatial scales to predict maximum 

Fig. 12. A hypothetical image of an urban area that can increase maximum air temperature about 
0.5° C. White = impervious; black = vegetation; grey = other land covers (e.g., soil, water).
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air temperature for the study area. It demonstrated the combined effects of impervious 
surfaces and vegetation cover and their influence on the urban heat island effect in a 
rapidly urbanizing desert city. 

Results from this study suggest that we need a sufficiently dense vegetation cover 
that occupies a reasonably large area (i.e., 210 m × 210 m and 270 m × 270 m) to 
lower the maximum temperature in Phoenix. Neither dense nor sparse vegetation 
cover within a given area of 390 × 390 m or larger have an increasing, further effect 
on maximum air temperature. This implies that vegetated patches within a 390 m 
range from a particular location do no affect maximum air temperature at that location. 
This may not be the case for cities in tropical, temperate, or polar climates. Vegetation 
distribution in a much smaller area does not appear to have an influence on maximum 
air temperature recorded at a height of 1.5 m. The percent distribution of impervious 
surface has an immediate effect on maximum air temperature at the finest resolution 
(30 m). Higher percentages of urban vegetation may lead to slight increases in mini-
mum air temperature. It should be noted that a small amount of impervious cover can 
still increase maximum air temperature even though there is a large amount of vegeta-
tion cover in a rapidly growing desert city. Our findings have potential applications in 
mitigating urban heat island effects in the Phoenix metropolitan area.
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