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[1] The objective of this study is the evaluation of the spatial variability and intrinsic
connectivity features of model input parameters for the parameterization of process-based,
spatially distributed overland flow models. Parameter scaling tools based on the
statistical and geostatistical properties of an extensive field data set were developed. These
allowed the reproduction of the spatial heterogeneity of model parameters associated with
the soil- and vegetation-related properties of semiarid shrubland environments to a
varying degree. The outcome of the study emphasizes that connectivity plays a
fundamental role in the modeling of water fluxes within semiarid catchments. The larger
the degree to which connected features are represented, the better the model performance.
In contrast, the parameterization approaches that did not contain connected patterns of
parameter values performed comparatively poorly. A spatially connected overland flow
model therefore enabled the generation of realistic overland flow patterns that qualitatively
resembles field surveys of overland flow generation not only at the outlet of the model

domains but also within the catchments without the need of calibration.
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1. Introduction

[2] The spatial arrangement of hydrologically significant
components of the landscape, such as infiltration, surface
roughness and variations in gradient play an important role
in the generation and movement of runoff and thus require
consideration in the parameterization of spatially distributed
overland flow models. Of particular significance is the
degree of spatial association of these landscape components
because, for example, where areas of low infiltration are
connected to each other they provide connected pathways of
runoff through the landscape. The term connectivity is
frequently used to denote the extent to which these
connected features are present in a hydrologically relevant
spatial pattern [Western et al., 2001]; that is, it describes a
certain degree of spatial organization of parameter values.
Examples of connected features include connected low
values of flow resistance in barren, nonvegetated interrill
areas, connected high values of hydraulic conductivity in
aquifers leading to preferential flow [Koltermann and
Gorelick, 1996], and connected band-shaped saturation
zones in catchments [Grayson et al., 1995]. This spatial
association of hydrologically significant landscape compo-
nents in the form of connected patterns is herein termed
connectivity.

[3] Various hydrological modeling studies have shown
that the adequate spatial representation of model parameters,
specifically in regard to their connectivity features, can be
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critically important for the performance of a process-
based, spatially distributed numerical rainfall-runoff model
[Bronstert and Bardossy, 1999; Merz and Bardossy, 1998;
Grayson et al., 1995]. This study investigates the impact of
connectivity on the process-based, spatially distributed
modeling of overland flow generated by high-intensity,
short-duration rainstorm events in shrubland environments
of the Chihuahuan Desert, in the southwestern United
States. The parameterization of spatially distributed models
is a complex task and is further complicated by the
heterogeneous nature typical of dryland shrublands with
regard to the spatial distribution of their soil- and vegeta-
tion-related characteristics, which are at the same time often
highly sensitive model parameters (see, for example, the
modeling studies by Parsons et al. [1997] and Howes
[1999]). It appears to be essential to include both the spatial
heterogeneity of dryland settings as well as the intrinsic
connectivity characteristics of shrubland environments
implicitly in the parameterization approaches by developing
parameter-scaling tools for the spatially correct interpola-
tion, extrapolation and disaggregation of model input
parameters.

[4] The following two research questions were formulated
regarding parameterization and parameter scaling:

[s] 1. How does the spatial representation of parameter
values influence the modeling outcome; that is, does an
increase in the degree of the representation of spatial
organization of model parameters improve the modeling
results?

[6] 2. Is it possible to obtain realistic modeling results
without the need for calibration; that is, by using solely the
information derived from field plot studies in combination
with adequate scaling tools to scale model parameters to the
catchment scale?
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[7] For this study it was hypothesized that if the spatial
distribution and connectivity patterns of model parameters
are preserved and thus the modeling scale corresponds to
the observation scale of field or remotely sensed data (and
the observation scale accurately resolves the physical pro-
cesses in both space and time), and the process descriptions
are correct, then the model outcome should be accurate and
acceptable and not in need calibration.

[8] Calibration of the modeling results is problematic and
often not desired, as calibrated models frequently give
reasonable results at the outlet of a catchment, but not
inevitably within the catchment [e.g., Grayson and Bléschl,
2000; Senarath et al., 2000]. The main goal of this
modeling exercise is a realistic reproduction of overland
flow characteristics, not only at the outlet but for the entire
catchment area, as this is a prerequisite for, for example, the
adequate performance of spatially distributed sediment and
nutrient transport models.

[s] Because of the general lack of measured data, the
spatial distribution of runoff production is often not
known. However, there are several studies with evidence
that demonstrate that the production of overland flow in
dryland shrublands is spatially very heterogeneous, as can
be seen, for example, in the flow patterns in the photo-
graphs of Figure 1. Large-scale plot studies by Scoging et
al. [1992] showed that overland flow is not generated
uniformly over space, but concentrated within interplant
spaces and within a complex network of rills and flow
paths where large amounts of total overland flow was
generated, whereas other areas, particularly around shrub
patches, contributed only insignificant amounts to the
overall runoff production. Therefore, in this study a model
parameterization will be considered satisfactory if it both
reproduces this spatial variability in runoff generation
typical of dryland shrublands, and considers the above
described connectivity requirements of the distribution of
input model parameters.

2. Testing Data Sets and Study Area

[10] The modeling studies derived from different spatial
representations of model input parameters were tested by
comparing the simulated with observed discharge data.
Observations are from instrumented semiarid shrubland
catchments in the Jornada Experimental Range that com-
prises the Long-Term Ecological Research Site (LTER),
Chihuahuan Desert. The Jornada Basin (32°31'N, 106°47'W)
is situated ~40 km NNE of Las Cruces, New Mexico.
Location experiences a semiarid to arid climate with a mean
annual precipitation of 245 mm and a mean annual potential
evapotranspiration of 2204 mm. The majority (65%) of the
precipitation falls as intense, short-duration, convective
summer storms with a duration of 20—30 min and intensi-
ties frequently exceeding 50—100 mm/h [Wainwright,
2006]. Dominant shrubland associations of the region are
creosotebush (Larrea tridentata), honey mesquite (Prosopis
glandulosa) and tarbush (Flourensia cernua).

[11] Testing data are available for water discharge and
rainfall intensity for one rainstorm event in three represen-
tative, instrumented catchments within the three dominant
shrublands (mesquite, tarbush and creosotebush shrubland)
with an approximate size of 0.15 km” and average sine
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slope between 0.01 and 0.05. The mesquite catchment is
located in the central northern part of the basin (32°41'N,
106°43'W) within a dune landscape with sandy soils. The
creosotebush catchment is located at the lower piedmont
slope in the central eastern part of the basin (32°39'N,
106°36'W) with gravelly sandy loamy soil. The tarbush
catchment is located in the central part of the basin with fine-
sandy loamy, occasionally heavily crusted soil (32°32'N,
106°41'W). These catchments exhibit features typical for
the three shrubland types such as inherent soil structure,
vegetation patterns and topographical location and slope
characteristics.

[12] Each catchment terminates in a dam constructed to
create a ponded water supply for stock ranched on the
Jornada Experimental Range. Inside each of these stock
ponds, stilling wells and pressure transducers were installed
in 2001 to measure the changes of depth of the water level.
Figure 2 shows a typical stock pond after a flow event. Data
were recorded using a Druck Campbell PDCR 1830 Pressure
Transducer fitted to a CR510 data logger that registered
depth records at 5-min intervals. Conversion to changes of
water volume was made from a depth-volume relationship
derived from high-resolution digital elevation models of the
stock tanks using tacheometric surveys. Water discharge
into the stock tanks is therefore given by the change of
water volume divided by the measurement time interval of
five minutes. A tipping bucket rain gauge is located
adjacent to each stock tank. Data from these rain gauges
are assumed to be valid for the catchments as a whole
because of the relatively small size of the catchment relative
to a typical runoff-producing storm event at the Jornada
[Wainwright, 2006]. Table 1 summarizes the characteristics
of the selected, representative rainfall storm events typical
for the Jornada Basin and the corresponding discharge data
of the testing data set for each shrubland catchment, which
were used for modeling validation. Typical rainstorm
events in the Jornada Basin, that lead to the generation
of substantial overland flow during the summer monsoon
months July and August and that are investigated in this
study, are characterized by their short duration of normally
less than one hour, their high rainfall intensities often
exceeding 100 mm/h and their infrequent occurrence (only
one to four storm events per year) [Wainwright, 2006]. As
the storm events are highly localized, it was not possible
use the same date for all three shrubland catchments.
Instead, for each study catchment, an individual storm
event was tested in this study with the specific dates as
given in Table 1.

3. Modeling Approach

[13] The overland flow modeling approach is based on a
kinematic wave approximation to the St. Venant equations
for the routing of overland flow. Runoff is generated by a
Hortonian infiltration submodel and the Darcy-Weisbach
equation is used to rate the depth-discharge component of the
kinematic wave model. The model uses a two-dimensional,
finite difference grid with regular, rectangular cells for the
spatial representation of model parameters. The model has
previously been proven to describe overland flow processes
and patterns of flow adequately in arid and semiarid environ-
ments by Scoging et al. [1992], Smith et al. [1995], Parsons
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Figure 1.
the Jornada Basin in July 2002.

et al. [1997], and Howes [1999]. The continuity equation
and the rating equation are given by

dq  0d .
a—kafr—t (1)

g=v-d 2)

where ¢ is the discharge per unit width (mm?/s), d is the
flow depth (mm), r is the rainfall rate (mm/s), i is the
infiltration rate (mm/s), v is the flow velocity (mm/s), and
Ox and Ot are space and time increments. A finite difference
solution (Euler backward difference form) is used to solve
equation (1) numerically [after Scoging, 1992].

[14] Flow velocity v (mm/s) is calculated using the
Darcy-Weisbach flow equation

=B ()

where g is the gravitational constant (mm/s?), S is the sine
of the slope gradient (m/m), and f is the Darcy-Weisbach
friction factor (dimensionless).

[15] Infiltration i (mm/s) is estimated using the Smith and
Parlange [1978] model, which is suitable for simulating
nonuniform rainfall and run-on infiltration:

F/B
i = K€ (4)
ef/B — 1

where Kg, is the saturated hydraulic conductivity (mm/s),
F is the cumulative infiltration rate to present (mm), and
B (mm) is a soil-moisture-storage parameter accounting for
both capillary suction and initial moisture conditions. The
suitability of this infiltration equation for describing
infiltration rates in semiarid environments has been
demonstrated by Smith et al. [1995] and Howes [1999].
The model allows complete or partial run-on to occur as a
function of current infiltration rate and current water depth
within individual model cells [Wainwright and Parsons,
2002]. The routing of overland flow and corresponding flow
lines toward flow concentrations and thence to main rill
networks are derived from a digital elevation model using
vector analysis of height differences with simple steepest

Photographs of overland flow concentrations during a runoff event in mesquite shrubland in

descent as described by Scoging et al. [1992] with flow
being routed along four cardinal directions. The simulation
time step is set to one second to account for the sudden
changes of rainfall intensities during storm events, where
rainfall intensities may reach more than 100 mm/h over very
short time periods of several minutes that lead to the
generation of substantial amounts of overland flow in time
intervals of sometimes less than one minute [Wainwright,
20006].

[16] As the modeling studies concentrate on the influence
of the small-scale variability of model input parameters on
model behavior, a very small pixel resolution of 2 m is used
for model domains of an approximate size of 0.2 km?. This
model resolution is small enough to describe the flow
processes in rill and interrill areas adequately and at the
same time large enough to avoid extensive computing times
[Parsons et al., 1997].

4. Scaling and Parameterization Approaches

4.1. Parameter Scaling of Saturated Hydraulic
Conductivity and Friction Factor

[17] In general, the most sensitive parameters of the
hydrological overland flow model are the K, parameter,
the Darcy Weisbach friction factor and the slope estimates
[Wainwright and Parsons, 2002]. While the latter is usually
derived from digital elevation models, the first two param-
eters are normally derived from single point measurements

Figure 2. Typical stock tank with water discharge
measurement equipment after an overland flow event in
the Jornada Basin.
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Table 1. Characteristics of the Representative Rainstorm and Overland Flow Events for the Three Instrumented

Catchment With Characteristic Shrubland Vegetation

Total Rainstorm Max. Rainfall Total Peak
Catchment Date Rainfall, mm Duration, min Intensity, mm/h Discharge, m® Discharge, m®/s
Tarbush 27 Jul 2002 25.5 42 105 1706 1.9
Mesquite 2 Aug 2002 27.7 45 172 1585 2.0
Creosote 20 Jul 2002 30.3 37 115 7474 33

of rainfall simulations at the plot scale in the field. The
spatial distribution of K, and the friction factor are nor-
mally not known and are often neglected in the parameter-
ization process. However, the observation scale of the two
parameters in the field is often significantly different from
the model scale in terms of data spacing, data extent and
data support as has been discussed thoroughly in the
corresponding hydrology scaling literature [e.g., Bloschl
and Sivapalan, 1995]. Hence the point measurements of
K, and friction factor require adequate transformation from
the observation scale to the model scale. This study aims to
develop adequate transformation tools and thus to include
the spatial heterogeneity of model parameters into the
parameterization process by applying appropriate scaling
techniques to reproduce the intrinsic spatial parameter
variations. For this purpose, the parameterization of the
hydrological model is based on a field work integrated
approach, which combines the efforts of a numerical model-
ing study with an extensive field campaign carried out by
Mueller [2004] at the three shrubland catchments to obtain
an enhanced understanding of the spatial distribution of
hydrological properties and their connectivity patterns. As
repeated performance of rainfall simulations in the field is
costly, it was not possible for this study to carry out a large
enough number of experiments that would have been
necessary to obtain the spatial distribution of the two
parameters. Therefore the average values of K, and the
friction factor were derived from a survey of previously
published field experiments as described below, whereas
their spatial variations in form of their geostatistical
properties were derived from surrogate parameters that
were collected in a fieldwork campaign over a period of
7 months during the spring and summer of 2002 and 2003.

[18] Vegetation cover is an important control on the flow
hydraulics, and thus on the spatial distribution of the friction
factor [Singh, 1996]. It is therefore assumed that the friction
factor varies significantly as a function of presence or
absence of vegetation cover; hence the spatial distribution
of vegetation cover was estimated as a surrogate for the
spatial distribution of the friction factor. The average values
of the friction factor were derived from the field studies of
Howes [1999] and Weltz et al. [1992]. Howes [1999] carried
out overland flow simulations by trickle-induced flow for
friction factor estimation in the Jornada Basin and obtained
a Darcy-Weisbach friction factor value of ~1.0 [dimension-
less] for bare intershrub areas. Following the recommenda-
tions after Weltz et al. [1992], who carried out rainfall
simulation experiments at vegetated shrubland plots in the
Chihuahuan Desert, a friction factor of 20.0 [dimensionless]
is used to characterize vegetated surface cover. As a
reasonable first approximation, the same parameter set of

(20, 1) for the binary representation of vegetated and bare
surface cover, respectively, is used to describe the friction
factor for all shrub vegetation associations.

[19] The average values for the K, parameter for bare
and vegetated surface covers were derived from rainfall
simulation experiments after the field studies of Parsons et
al. [2003], J. Herrick (Rainfall simulation experiments to
estimate final infiltration rates on field plots in tarbush
vegetation of the Joranda Basin, New Mexico, unpublished
data set, 2001) and Howes [1999], who carried out rainfall
simulations on 1—2 m? plots with high-intensity rainfall on
bare and vegetated surface covers in mesquite, tarbush and
creosote shrublands within the Jornada Basin (Table 2).
Ponded infiltration experiments in the field with a single-
ring infiltrometer were used as a surrogate for the spatial
distribution and the geostatistical properties of the infiltra-
tion rate. Although ponded infiltration rates tend to be
higher than the actual final infiltration rates of natural or
simulated rainfall events, and therefore cannot be used
directly as estimates for K, it is assumed that both rates
posses the same pattern of spatial continuity.

[20] The spatial field measurements for vegetation cover
and ponded infiltration rate were carried out on a 60 m X
60 m field plot area within each of the three shrubland
catchments with a total number of 108 sampling locations
per plot. The field plots were subdivided into 30 m x 30 m,
10 m x 10 m and 3 m x 3 m rectangular cells; two sets of
nine random locations have been chosen within the four
30 m cells, four sets of nine random locations in the 10 m
cells, and six sets of random locations in the 10 m cells with
nine sampling points lying on a 3 m x 3 m grid. Vegetation
cover [%] was estimated for 1 m” plots using a vertical
photograph method. A 35-mm SLR camera with a 35-mm
lens was mounted on a 2-m-high tripod and used to take
transparencies which were then scanned at a resolution of
1250 x 1900 pixels. The resulting digital images were
categorized into shrub or grass cover or bare ground using
the IDRISI software package. Ponded infiltration rate [mm/h]
was measured using a single-ring infiltrometer with a
diameter of 12.5 cm (equivalent to a support of ~0.012 m?)
following the guidelines of Herrick et al. [2005] for
monitoring grassland, shrubland and savannah ecosystems.

[21] The statistical properties of the friction factor and the
K, values as derived from the above specified literature
and the geostatistical properties (fitted models to the exper-
imental semivariogram, range and sill values following the
model definitions of Olea [1999]) of vegetation cover and
ponded infiltration rate derived from the field survey as
surrogate parameters for K, and the friction factor are
summarized in Table 2. The following sections describe the
scaling tools used for interpolation and extrapolation to
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Table 2. Statistical and Geostatistical Characteristics of the Parameterization Data for the Three Shrubland

Associations
Mesquite Tarbush Creosotebush Source®
Vegetation cover,% 21 20 23
Saturated hydraulic conductivity
Ksatbare, mm/h 30 15 11 1,2,3
Kiat, vergy mm/h 153 40 33 1,2,3
sat.arca-weighted» mm/h 55.8 26.0 16.0
Ponded infiltration rate as surrogate
Semivariogram model” Gaussian Gaussian Gaussian
Range, m 5.5 8.0 3.0
Sill 0.7 0.78 0.43
Nugget 0.3 0.22 0.57
Friction factor
fhare» dimensionless 1 1 1 3
fyerg, dimensionless 20 20 20 4
farca-weighted> dimensionless 6.1 9.4 5.4
Vegetation cover as surrogate
Semivariogram model® Gaussian Exponential Gaussian
Range, m 5.5 6.0 3.0
Nugget 0.3 0.15 0.3
Sill 0.7 0.75 0.7

Sources are 1, Parsons et al. [2003]; 2, J. E. Herrick (unpublished work, 2001); 3, Howes [1999]; 4, Weltz et al. [1992].
Definition of semivariogram model according to Olea [1999].

develop parameterization approaches for the parameters K,
and friction factor. The parameterization approaches differed
in their degree and detail of spatial parameter representation,
and thus incorporated connectivity patterns. In each case, the
representation of slope is the same.
4.1.1. Scheme 1: Binary Approach

[22] The first parameterization approach is based on a
binary approach which uses the spatial distribution of
vegetation cover within the different shrubland associations
to distribute the values for the saturated hydraulic conduc-
tivity and friction factor values. This approach is based on
the fact that the connectivity of a hydrological system is
strongly tied to the spatial distribution and possible frag-
mentation of vegetation cover [Wu et al., 2000a, 2000b].
Patches of vegetation serve an important function of cap-
turing and retaining limited resources of overland flow
particularly in semiarid and arid ecosystems. Landscapes
with an undisturbed vegetation cover retain and utilize these
resources, whereas highly patchy landscapes tend to gener-
ate concentrated overland flow and soil erosion in a highly
connected rill network [Ludwig et al., 2002]. For this
approach, Digital Orthophoto Quadrangles aerial photogra-
phy from the year 1996 and provided by the U.S. Geological
Survey with a ground resolution of 1 m was classified in
patches with bare and vegetated surface covers.
4.1.2. Scheme 2: Area-Weighted Approach

[23] The second parameterization approach, called the
area-weighted approach is a spatial simplification of the
binary system approach as it assumes a spatially uniform
distribution of model parameters. It uses the average frac-
tions of vegetated and bare areas for the entire catchment
area to calculate uniform, weighted parameters based on the
two parameter sets derived from vegetated and bare surface
covers. Thus the area-weighted approach does not contain
any spatial variability, but is nonetheless employed in this
study to compare this simple, spatial integration over spatial
variations with the more sophisticated scaling approaches.
The average fractions of vegetation cover for the individual

modeling catchments are derived from the classification of
the aerial photographs and are given by 27% for the
mesquite site, 44% for the tarbush site and 23% for the
creosotebush site. The weighting scheme is given by

Xareaweighted = FraCtionvegetation Xvegetated + Fractionpare Xpare (5)

where X is the model input parameter.
4.1.3. Scheme 3: Unconditioned Gaussian Stochastic
Simulation Approach

[24] The third approach is based on unconditioned
Gaussian stochastic simulation of surface patterns based
on the geostatistical properties of the two parameters. The
models fitted to the experimental semivariograms of ponded
infiltration rates and vegetation cover as surrogate parame-
ters for K,; and the friction factor as was summarized in
Table 2 were used. The FORTRAN routine sgsim for
sequential Gaussian simulation from GSLIB (Geostatistical
Software Library [Deutsch and Journel, 1998]) was
employed to produce equiprobable realizations of sequential
Gaussian simulations. For this approach, five equally
probably realizations were prepared for comparison with
the other approaches.
4.1.4. Scheme 4: Conditioned Gaussian Stochastic
Simulation Approach

[25] The fourth approach is based on conditioned Gaussian
stochastic simulation. In contrast to the previous approach,
this approach directly incorporates existing features of the
connectivity pattern of the model parameters. This approach
assumes that the generation of overland flow is significantly
influenced by the distribution of individual shrubs and
shrub patches in the form of a fragmentation of vegetation
cover and the creation of connected pattern features result-
ing in the layout of the rill network. On the one hand,
overland flow is slowed down within patches of high K
and friction factor values associated with vegetated areas.
On the other hand, substantial overland flow is generated in
bare areas with low K and friction factor values in the
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Figure 3. Representation of spatial parameterization approaches for the tarbush catchment.

vicinity of minor flow concentrations and rills which
meander around the vegetation patches. These bare areas
may form large, coherent patches, which are connected by
the major rills of the rill network (depicted for the tarbush
catchment on the right in Figure 3). To incorporate the
hydrologic connectivity associated with the existence of the
rill network, the following methodology is proposed to
produce structured variability in the form of connectivity
patterns for the K, and friction factor parameters. The
realizations of the stochastic simulations are conditioned in
accordance to the rill network locations of the three model
domains. Within the major rill network, approximately a
cell every 20 m was selected and the low parameter values
of K, and the friction factor for bare surface covers as used
for the binary system approach were assigned to this cell.
As a rule of thumb, not more than one percent of the total
number of model cells was conditioned, as excessive
conditioning would affect the statistical properties of the
realizations. When the GSLIB sgsim routine [Deutsch and
Journel, 1998] is executed, the points in the local neighbor-
hoods adjacent to the conditioning points are assigned
similarly low values in accordance to the autocorrelation
length given by the semivariogram model. As with the third
approach, five equally probably realizations were prepared
for comparison with the other approaches.

4.1.5. Scheme 5: Calibrated Approach

[26] The fifth approach is called the calibrated approach
and is based on the best fit parameters for K, and the
friction factor. This calibrated approach may be understood
as the more or less traditional way of dealing with and
overcoming poor model performance due to either the lack
of field data for model parameterization, or to the negli-
gence of scaling tools for the interpolation, extrapolation
and disaggregation of model parameters. However, it should
be recognized that this approach often leads to a faulty
parameterization as it does not represent the spatial distri-
bution of model parameters and is normally not based on
K, and friction factor data measured in the field.

[27] For each catchment, the best fit parameters for K,
and the friction factor were derived by comparing the
simulated with the observed hydrographs. The main criteria
for the fitting of these two parameters were the reproduction
of the shape, magnitude and timing of peak discharge of the
observed hydrographs at the outlets of the catchments and
by optimizing a goodness of fit measure, in this case the
Nash and Sutcliffe [1970] coefficient of efficiency measure.
The derived calibrated values for K, and the friction
factor are presented in Table 3. It is notable that the
parameter values derived from the calibrated approach

6 of 13



W09412

Table 3. Best Fit Parameters for K, and Friction Factor After
Calibration for the Simulated Runoff Events

Model Kat Friction
Domain Date mm/h factor £, dimensionless
Tarbush 27 Jul 2002 15 0.5
Mesquite 2 Aug 2002 35 0.5
Creosote 20 Jul 2002 10 0.5

differ markedly from the mean values as derived from the
field measurements.

[28] Figure 3 exemplifies the five parameterization
approaches for K, and the friction factor for the model
domain at the tarbush site. Note that the same color scale
was used for the illustrations of each parameter to aid
comparability. It is noteworthy that all parameterization
approaches, except the calibrated one, have the same areal
average values for K, and the friction factor integrated
over the individual, entire catchment areas. This equiva-
lence is due to the fact that the area-weighted approach
uses essentially the average values of the binary system
approach, and stochastic simulation approaches were
derived using a normal probability distribution based on
the average area-weighted parameters. The various color
patches clearly show the large differences of the uniformly
and spatially distributed approaches and their spatial and
quantitative compositions. For example, the unconditioned
realization produces scattered patterns in the form of small
islands of relatively high and low values. In contrast, the
binary system approach and the conditioned stochastic
simulation approach reproduce produces the large patches
of high or low parameters values similar to the agglom-
eration of shrub patches and large patches of bare areas.

4.2. Parameter Scaling of the Slope Estimates

[29] Slope estimates for the parameterization of the
Darcy-Weisbach flow equation and the routing of the rill
network were derived from a digital elevation model (DEM)
acquired by the U.S. Geological Survey in the year 2004
with a 10-m cell resolution. Slope values derived from
digital elevation models are often underestimated due to
smoothing over surface features. In the Darcy-Weisbach
equation, sine slope has a reciprocal relationship with the
friction factor. This implies that an underestimation of the
slope is equivalent to an overestimation of the friction
factor. The friction factor is known to be one of the most
influential factors in runoff calculations [e.g., Singh, 1996],
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as it influences the shape of the hydrograph and the timing
of peak runoff and at the same time affects total runoff. The
correct estimation of slope is therefore crucial for the model
performance as its underestimation may lead to a severe
underestimation of peak and total discharge of water fluxes.
To obtain a first approximation on the slope underestima-
tion, slopes derived the 10-m DEM were compared to
several high-resolution field surveys for slope estimates that
were carried out at different locations within the Jornada
Basin:

[30] 1. Howes [1999] produced a DEM for a creosotebush
site within the Jornada Basin with a resolution of 0.5 m.

[31] 2. L. Cunningham (Topographical survey of field
plots in tarbush vegetation of the Joranda Basin, New
Mexico, unpublished data set, 2006) surveyed three 6 X
12 m plots with a resolution of 2 m within the tarbush
catchment of this study.

[32] 3. Rango et al. [2000] carried out field surveys at a
mesquite site in the central plain of the Jornada Basin in the
vicinity of the mesquite catchment, using 100-m transects
and a 0.5-m spacing of measurements.

[33] Precise locations and full data sets were accessible
for all three field surveys. The comparison in Table 4
indicates that average sine slope is underestimated by
166% for the creosotebush site, 400% for the tarbush site
and between 450% for the bare interspaces and 1700% for
the dunes of the mesquite site. The large variation for the
mesquite site is due to the detailed slope measurements of
individual mesquite dunes in the field survey, which can
reach heights up to 3 m.

[34] The field surveys give a strong indication that the
average slope is underestimated in the 10-m USGS DEM by
a scaling factor of 4.5 to 5 for areas in the central part of the
Jornada Basin, and by a factor of 1.6 for the piedmont
slopes. It is problematic to transfer the knowledge from a
small number of field studies with a small extent to the
catchment scale. Even so, the four field surveys were
carried out at locations that were representative of the
different vegetation associations. The area averages of the
sine slopes without scaling are 0.03, 0.01, and 0.01 for
the creosotebush, mesquite, and tarbush model domains,
respectively. These estimates compare well to the under-
estimated sine slope values of the field surveys carried out
in the corresponding vegetation associations as given in
Table 4. As a reasonable first approximation, the underes-
timation of slope is therefore explicitly considered by using
the scaling factors derived from these surveys for adjusting
the underestimated slope estimates. Slope scaling is often
neglected in the process of parameterization of overland

Table 4. Comparison of Slope Measurements Derived From Field Surveys and USGS 10-m DEM for the Various Locations Within the

Jornada Basin

Sine Slope + SD

Dominant  Resolution,  Extent of Slope
Study Vegetation m Survey From Field Surveys From 10-m DEM  Scaling Factor®
Howes [1999] creosote 1 889 m? 0.05 £ 0.04 0.03 £ 0.02 166%
L. Cunningham (unpublished data set, 2003)  tarbush 2 72 m? 0.04 +0.03 0.01 + 0.005 400%
Rango et al. [2000] mesquite 0.5 100 m 0.04 £+ 0.04 (bare area) 0.01 = 0.003 450%
0.17 £+ 0.08 (dunes) 1700%

“Corresponds to the percent underestimation of average sine slope.
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Figure 4. Disaggregation schemes of the digital elevation model from 10-m to 2-m resolution and
corresponding slope distributions for 10-m and two different 2-m resolution scenarios for a section of the

tarbush catchment.

flow models, which is linked to a lack of appropriate slope-
scaling methods and rules. The above described approach
should therefore to be understood as a novel and prelimi-
nary one that requires further testing and elaboration.

[35] Because the modeling studies are run on a 2-m
resolution grid, the 10-m DEM had to be adequately disag-
gregated from the 10-m to the 2-m cell size. Automated
procedures implemented by common GIS software such as
Idrisi and ArcMap use the distance-weighted average rou-
tines to disaggregate digital elevation models, and thereby
often introduce artifacts to the disaggregated DEM. To
illustrate this point, Figure 4 compares the 10-m DEM with
the 2-m DEM (Figures 4a, left, and 4a, right) and the slope
estimates derived from the 10-m DEM (Figure 4b, left) and
from the disaggregated 2-m DEM (Figure 4b, middle) that
was created using a distance-weighted average routine (for a
section of the tarbush catchment). The images show that the
slope patterns related to the major rill network character-
istics are preserved in the 2-m image in comparison to the
10-m slope image; however, the spatial distribution of slope
of the 2-m image (Figure 4b, middle) is severely affected by
a pattern of numerical artifacts. These numerical artifacts are
characterized by a regular, quadrangular pattern of zero
values that do not correspond to the slope estimates of the
10-m image. The erroneous zero slope values in Figure 4b
(middle) cause severe numerical instability in the overland
calculation when used for the calculation of the Darcy-
Weisbach equation (equation (3)). To reduce the disaggrega-
tion errors in slope estimation, it is reasonable to disaggregate
the slope distribution directly from the 10-m slope esti-
mates, rather than first disaggregate the 10-m DEM to 2-m

resolution and then calculate the slope from the disaggre-
gated 2-m DEM. The spatially distributed slope estimates
with a 2-m resolution as depicted in Figure 4b (right) are
then used as input to the Darcy-Weisbach equation thus
avoiding the introduction of artifacts derived from the
disaggregated 2-m DEM.

[36] According to Zhang et al. [1999], it is currently not
possible to disaggregate the existing spatial patterns of
topography to a smaller scale. The uniform distribution of
slope estimates is a considerable simplification of the true
spatial pattern within a single 10 x 10m cell, but is assumed
to be a sufficient first approximation as the piedmont slopes
of the Jornada Basin and the central part of the basin are
characterized by gently sloping interrill areas. The analysis
of scaling properties and the development of scaling tech-
niques for the disaggregation of DEMs calls for further
investigation, but is beyond the scope of this study.

5. Modeling Results and Discussion
5.1.

[37] The five parameterization approaches were tested for
several high-intensity rainfall events of the years 2002 and
2003. The results of a typical storm event (with rainfall
characteristics and dates as summarized in Table 1) for each
of the three shrubland catchments are presented here.
Figure 5 provides an example that compares the simulated
hydrographs for the tarbush catchment using each of the
five parameterization approaches with the observed hydro-
graph for the rainstorm event on 27 July 2002. Table 5
comprises quantitative comparisons of observed and simu-

Evaluation of the Five Parameterization Schemes
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lated peak and total discharge and Nash and Sutcliffe’s
[1970] coefficient of efficiency for all three model domains.
A first visual inspection of the observed and simulated
hydrographs at the outlet of the three model domains reveal
that (1) the binary and conditioned approaches perform well
with regard to peak and total discharge and the timing of
peak discharge; (2) the calibrated hydrographs show the
(seemingly) best overall performance; and (3) the area-
weighted average approach and the unconditional stochastic
simulation approach perform very similarly: both heavily
underestimate peak and total discharge and show a delay in
timing of the peak discharge.

[38] The Nash and Sutcliffe [1970] coefficient of effi-
ciency (CE) measures for the calibrated parameterization
approach as given in Table 5 are generally large for most of
the events, ranging from 0.7 to 0.95, thus reflecting a good
correspondence with observed discharge. This outcome is
not surprising, as the two crucial parameters of the hydro-
logical model were calibrated to obtain the best fit to the
observed hydrographs. The calibrated parameterization ap-
proach apparently outperforms the other parameterization
approaches in the reproduction of discharge characteristics

at the outlet of the catchments. However, there are several
major drawbacks to this parameterization approach. First,
different parameter sets of the K, and friction factor
parameters would have to be used for different rainstorm
events, which drastically limited the portability of the model
to other rainstorm events and therefore limit its use for the
reliable estimation of water fluxes (as was tested for a range
of different rainstorm events in the work by Mueller [2004]).
Second, the K, and friction factor values employed for this
parameterization approach deviate significantly from actual
field measurements and which draws into question a real-
istic reproduction of overland flow characteristics within the
interrill and rill areas of the entire catchment area. Third,
from field observations it is known that overland flow
generation is greatly influenced by the small-scale
variability of soil and vegetation parameters, as, for exam-
ple, described by Scoging et al. [1992], and that therefore a
spatially uniform description of the model parameters is
very unrealistic. In contrast, Figure 1 demonstrates the
presence of flow paths in an overland flow event, illustrat-
ing concentrated flows in areas with low measured infiltra-
tion rates and friction factors meandering around vegetation

Table 5. Modeling Results for the Three Model Domains Within Tarbush, Creosotebush, and Mesquite Shrub

Observed Calibrated Area-Weighted Binary Unconditioned Conditioned

Tarbush

Total, m* 1706 2385 1299 1715 1150 1732

Peak, m*/s 1.9 2.0 0.6 1.4 0.6 1.3

CE,” dimensionless - 0.71 —0.09 0.85 —0.05 0.80
Creosote

Total, m® 7474 6450 4609 5045 4709 4913

Peak, m’/s 33 35 22 2.8 22 2.6

CE,* dimensionless - 0.93 0.21 0.76 0.28 0.75
Mesquite

Total, m’ 1585 1805 83 1319 157 901

Peak, m’/s 2.0 2.1 0.1 1.5 0.1 0.9

CE,” dimensionless - 0.95 —0.31 0.90 —0.29 0.63

CE, coefficient of efficiency.
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patches that are characterized by high infiltration rates and
friction factors.

[39] The area-weighted average approach severely under-
estimates the peak and total discharge and leads to a
considerable delay of the timing of peak discharge in all
simulation studies. The coefficients of efficiency for the
area-weighted average approach are negative or close to
zero in most cases, which signifies very poor model
performance. The area-weighted approach is, in contrast
to the calibrated approach above, based on field measure-
ments. However, the modeling results demonstrate that it is
not possible simply to average and thus scale over the small-
scale variability and aggregate model parameters derived
from vegetated and bare surface covers by taking their area-
weighted average. A uniform description of input parame-
ters is inadequate for the same reasons as were previously
described for the calibrated approach above. This simple
integration over the spatial small-scale variability of the K
and friction parameters and possibly their connectivity
features is therefore inadequate for parameter aggregation.

[40] The binary system approach produces satisfying
results overall for all catchments with coefficients of effi-
ciency ranging between 0.76 and 0.90, however, all events
underestimate the peak and total discharge. The general
underestimation of the binary system approach may be
partly explained by the possible presence of inadequate fits
between the vegetation cover maps and the simulated rill
network derived from the digital elevation models due to
projection errors or faults of the two sets of remotely sensed
data as well as the downscaling of the 10-m resolution to the
2-m resolution digital elevation model. An incorrect overlay
of the two types of spatial data may cause overland flow in
the main rill network to be simulated as flowing through
supposedly vegetated areas characterized by large K, and
friction factor values, which consequently leads to the
calculation of larger infiltration rate and a deceleration of
the flow velocity and therefore to a decrease of total
discharge. An examination of the two data sets revealed
that divergences exist for some parts of the catchments but
which overall represents only a small proportion of the
model domain. Another possible explanation for the under-
estimation is the fact that the binary system approach is not
able to adequately reproduce the flow characteristics of
locations where pathways of rills run under the canopy of
shrubs or shrub patches; that is, the canopy cover possibly
screens the location of existing rills. Both types of mis-
matches introduce errors into the representation of the
system configuration and consequently to a decreased
representation of connected patterns.

[41] For the calculations of the hydrographs calculated
using the stochastic simulation approaches, five nearly
equiprobable realizations were used for each parameter
presentation. The corresponding five hydrographs for the
tarbush domain are presented in the associated hydrograph
plots in Figure 5. Visual inspection reveals that differences
between hydrographs using different realizations are insig-
nificant for both the unconditional and conditional cases.The
hydrographs calculated with the unconditioned stochastic
simulation approach show essentially the same character-
istics in terms of peak and total discharge, timing and
coefficient of efficiency as the area-weighted average
approach for all catchments and runoff events. In this
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case, the hydrological system is chiefly governed by the
statistical rather than the geostatistical properties of the
K, and friction factor parameters. This result implies that
by adding the geostatistical characteristics of the K, and
friction factor parameters, and ergo its continuity descrip-
tion, does not influence or improve the model performance
whatsoever. This result strongly suggests that not only the
continuity but also the connectivity of a parameter space is
important.

[42] The application of the conditioned rather than uncon-
ditioned stochastic simulation approach greatly improves the
model performance: peak and total discharge increases and
the timing of peak discharges improve substantially. In
comparison to the unconditioned approach, the CE value
increases from —0.29 to 0.63 for the mesquite catchment,
from —0.05 to 0.8 for the tarbush catchment and from 0.28
to 0.75 for the creosotebush catchment.

[43] These results indicate that the geostatistical parame-
ter characteristics and the reproduction of connectivity in
the form of connected pattern features are of great impor-
tance for the performance of the hydrological model. Both
the binary and the conditioned stochastic simulation
approach enable the reproduction of pattern features of
connected bands of high and low K, and friction factor
values and yielded satisfactory model results. The increase
of the hydrological connectivity from the unconditioned to
the conditioned stochastic simulation approaches and from
the area-weighted to the binary approach is echoed by an
increase of peak and total overland flow; that is, the
hydrological system becomes increasingly leaky which in
turn enabled a better reproduction of observed hydrographs.

[44] The binary and the conditioned approach are in fact
very dissimilar in the way they represent the parameter
space. The former reproduces the effects of a discontinuity
with discrete zones; that is, an abrupt change in the behavior
of a parameter at the edge of the vegetation cover boundary.
In contrast, the latter is characterized by a continuous, rather
smooth spatial change of the small-scale variability of
parameter values. Both approaches efficiently incorporate
intrinsic connectivity patterns of high and small values for
the K, and friction factor in the parameter distribution of
the three shrubland associations. A smooth, continuous
change of parameter values appears to be a more realistic
representation of the variability of soil- and vegetation-
related model parameters.

[4s] However, the stochastic simulation approach does
not work acceptably for the mesquite shrubland. The dis-
advantages of the stochastic simulation approach are three-
fold. First, stochastic simulation based on Gaussian
sequential simulation requires the use of a normal proba-
bility distribution function. As many environmental data
tend to follow lognormal rather than normal distributions
[Nielsen and Wendroth, 2003], the higher K, and friction
factor values are potentially overrepresented in the spatial
reproduction of the parameter space using a normal distri-
bution. In contrast, a lognormal distribution would favor the
reproduction of smaller K, and friction factor values,
which would result in an increase of overland flow gener-
ation. Second, the preparation of stochastic simulation
images is costly as the geostatistical properties of the model
parameters are often not known and need to be derived from
labor-intensive field studies. Third, problems arise when
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Figure 6. Spatial representations of total water fluxes versus contributing area of the tarbush model
domain for the calibrated, area-weighted, binary, and stochastic simulation approaches.

this approach is applied to model domains that contain more
than one vegetation association and its related parameter
distributions. It is uncertain how to overlay the statistical
and geostatistical properties of such parameters, for
example, at vegetation boundaries, for example, between
tarbush and creosotebush areas. Sophisticated geostatistical
software libraries such as the GSLIB [Deutsch and Journel,
1998] do not contain any routines or even mathematical
concepts for the stochastic simulation of mixed distribu-
tions. This issue substantially restricts the applicability of
this approach to the flux estimation of real, dynamically

changing landscapes. In comparison, the binary system
approach is a conceptually cruder approach, but easier to
parameterize. The main disadvantage of the binary system
approach is the possible error introduced by an inadequate
overlay of characteristics derived from the vegetation cover
maps and the digital elevation model.

5.2. [Evaluation of the Simulated Spatial Patterns of
Overland Flow Generation

[46] The plots in Figure 6 give a comparison of the spatial
representations of total water fluxes versus contributing area
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(Figure 6 (left), <1000 m?, and Figure 6 (right) <200,000 m?)
for the calibrated, area-weighted, binary and conditioned
stochastic simulation approaches (showing results for the
tarbush catchment). The plots signify that for the large-scale
representation (area < 200,000 m?), all four approaches yield
an approximate linear relationship between contributing area
and water flux, but at the small-scale representation (area <
1000 m?), the binary and the stochastic simulation
approaches show a much more complex distribution of
water flux as a function of area. The two spatially uniform
distributed cases (calibrated and area weighted) behave
nearly linearly for the full range of contributing areas,
whereas the spatially distributed cases (binary and stochas-
tic simulation) exhibit large fluctuations of water fluxes (see
particularly contributing areas smaller than 1000 m” in
Figure 6). For this range of areas, the conditioned stochastic
simulation approach is characterized by slightly larger
fluctuations than the binary system approach. As pictured
in the two photographs in Figure 1 and as previously shown
through the detailed spatial measurements of flow depth in
field studies by Scoging et al. [1992], overland flow is
known to be heterogeneously distributed as a function of
area. The two spatially distributed parameterization ap-
proaches appear to reproduce therefore a much more realistic
picture of flow distributions than the uniform ones, although
at the moment there are no independent spatial field
measurements available to prove this point except through
qualitative evidence of observations such as the observa-
tions of fresh trash lines or photographs taken directly after
rainstorm events in the field. The results for the other model
domains show qualitatively the same behavior, and are
therefore not depicted separately.

6. Conclusion

[47] In answer to the research questions, the following
can be stated from the modeling results: First, from the same
field data sets (i.e., the same statistical properties), different
scaling tools yielded very different parameterizations,
resulting in different degrees of reproduction of spatial
details and pattern of connectivity of model parameters,
and thus modeling results. The more connectivity, in the
form of connected pattern features, is included in the
parameterization approach (as, for example, incorporated
in the binary system and the conditioned stochastic simula-
tion approaches), the better the modeling results. Second, it
was possible to obtain satisfactory modeling results without
the need for calibration, by using parameters derived from
field measurements in combination with adequate scaling
tools that retained the spatial pattern of connectivity and
employed scaled slope estimates in the parameterization
procedure. Many modelers take calibration of hydrological
models for granted, but at the same time risk degrading the
process description through excessive calibration of their
underlying formula and parameters [Grayson and Bléschl,
2000; Loague, 1990]. Here, it was shown that a calibration
of the model parameters, and thus disregarding the under-
lying connectivity pattern, has indeed a large effect on the
spatial distribution of the overland flow generation, and
leads to a faulty reproduction of spatial overland flow
behavior for rill and interrill areas (as depicted in Figure 6).

[48] The outcome of the study is that connectivity plays a
fundamental role in the appropriate parameterization and the
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modeling of water fluxes within semiarid catchments. The
four parameterization approaches derived from the statisti-
cal and geostatistical properties of large field data set had
one common characteristic; they all have the same overall
areal average value for the K, and friction factor param-
eters. However, their different ability to incorporate small-
scale variability had a crucial impact on model performance.

[49] The different parameterization approaches did not
only influence the hydrographs at the outlet of the catch-
ments, but also the simulated production of overland flow
within the catchments. The binary system approach and the
conditioned stochastic simulation approach succeeded in
producing a realistic spatial variability of runoff generation.
The binary system approach has the added advantage of
being relatively easy to parameterize in comparison to the
stochastic simulation approach which requires as input
extensive spatial field data sets for the underlying geo-
statistical analysis. The generated runoff patterns of both
approaches reflect the fragmentation of the landscape into
surface patches that capture and retain water resources, and
into surface areas that promote the water transport along a
highly connected rill network.

[50] An overland flow model that produces appropriate
spatial patterns of runoff is desirable not least because it is a
necessary prerequisite to minimize error propagation for
dependent modeling studies, such as the spatially distributed
modeling of sediment and nutrient transport in overland
flow. This paper has succeeded in identifying two candidate
spatially distributed parameterization approaches that
achieve this goal.
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