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Abstract
For overland flows transporting predominantly bed load over rough mobile beds without
rainfall, resistance to flow f may be divided into four components: surface resistance fs, form
resistance ff , wave resistance fw, and bed-mobility resistance fm. In this study it is assumed
that f ===== fs +++++ ff +++++ fw +++++ fm, and an equation is developed for each component. The equations for
fs and ff are borrowed from the literature, while those for fw and fm are developed from two
series of flume experiments in which the beds are covered with various concentrations of
large-scale roughness elements. The first series consists of 65 experiments on fixed beds,
while the second series contains 194 experiments on mobile beds. All experiments were
performed on the same slope (S ===== 0·114) and with the same size of sediment (D ===== 0·00074 m).
The equations for fw and fm are derived by a combination of dimensional analysis and
regression analysis. The analyses reveal that the major controls of fw and fm are the Froude
number F and the concentration of the roughness elements Cr. When the equations for fw

and fm are summed, the Cr terms cancel out, leaving fw+++++m ===== 0·63F−−−−−2. An equation is developed
that predicts total f, and the contributions of fs, ff, fw and fm to f are computed from the series
1 and 2 experiments. An analysis of the first series reveals that in clear-water flows over fixed
beds, fw accounts for 52 per cent of f. A similar analysis of the second series indicates that in
sediment-laden flows over mobile beds fw comprises 37 per cent and fm 32 per cent of f, so
that together fw and fm account for almost 70 per cent of f. Finally, regression analyses
indicate that where F >>>>> 0·5, fw and fm each vary with F −−−−−2 and fw/fm ===== 1·18. The equation
developed here for predicting total f applies only to the range of hydraulic, sediment, and
bed roughness conditions represented by the experimental data. With additional data from a
broader range of conditions the same methodology as employed here could be used to de-
velop a more general equation. Copyright © 2006 John Wiley & Sons, Ltd.
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Introduction

On natural dryland hillslopes, interrill overland flow occurs as a shallow sheet of water containing threads of deeper,
faster flow diverging and converging around obstacles such as microtopographic highs, rocks, plants and litter. Such
obstacles are referred to as large-scale roughness elements because they protrude through the flow and impede its
passage downslope. By retarding the flow, the roughness elements contribute to flow resistance herein measured by
the Darcy–Weisbach friction factor:

f = 8gSh/u2 (1)

where g is the acceleration of gravity (m s−2), S is the energy slope, h is the mean flow depth (m), and u is the mean
flow velocity (m s−1). The Darcy–Weisbach friction factor is dependent on flow rate and is therefore often related to
the flow Reynolds number:
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Re = 4uh/ν (2)

where ν is the kinematic viscosity of the fluid (m2 s−1).
Where overland flow is undisturbed by rainfall and has a mobile bed and large-scale roughness elements, the total

resistance f may be divided into four components which are assumed to be additive but not necessarily independent.
Thus:

f = fs + ff + fw + fm (3)

where fs = surface resistance, ff = form resistance, fw = wave resistance and fm = bed-mobility resistance.
Surface resistance is imparted by the bed and the submerged sides of the large-scale roughness elements. Tradition-

ally, surface resistance has been viewed as the kinetic energy dissipated in overcoming the no-slip condition at the
boundary. But where the flow is turbulent, it also includes energy dissipated in separation eddies generated by surface
grains that protrude through the viscous sublayer at the base of the flow. Form resistance is created by obstacles that
protrude into or through the flow, thereby giving rise to spatially varied cross-sections and/or changing flow directions,
which cause energy to be dissipated in separation eddies, secondary circulation, and locally increased shear (Abrahams
et al., 1994). Wave resistance refers to the energy dissipated in maintaining an uneven water surface around protruding
roughness elements (Abrahams and Parsons, 1994). Bed-mobility resistance refers to all processes associated with a
moving bed that contribute to flow resistance. These processes include bed-load transport, bed deformation and bed
elasticity. In an earlier paper (Hu and Abrahams, 2004) we were able to isolate bed-load transport resistance from the
other processes associated with bed-mobility resistance and analyse it separately. Thus, in the present paper, bed-
mobility resistance includes bed-load transport resistance, whereas in the previous one it did not.

Since Emmett’s (1970) pioneering work, considerable progress has been made in the analysis and modelling of the
effect of large-scale roughness on resistance to overland flow. Hirsch (1996) developed a flow resistance model
(outlined by Abrahams et al., 1992) for predicting f based on separate equations for fs, ff and fw that apply where clear
water flows over rough fixed beds. This model is defined by:

f C A A ed i b
Cr= ⋅ +− ⋅ ⋅ [(  )  (( )/ )]319 40 45 6 45Re Σ (4)

total grain form wave
resistance resistance resistance resistance

where Ai is the wetted cross-sectional area of the ith element (m2), Ab is the area of the flume bed (m2), Cd is the drag
coefficient, and Cr is the concentration of the roughness elements. This model is neither additive nor multiplicative but
a hybrid of the two: f = (fs + ff)fw. Application of Hirsch’s model reveals that where the Froude number F = u/(gh)0·5 > 0·5,
wave resistance increases with Cr and dominates the resistance to flow wherever Cr > 0·1.

Lawrence (1997) formulated a model for predicting f for clear-water flows over fixed beds with various concentra-
tions of hemispheres. Implicit in the derivation of this model is the assumption that f consists entirely of form
resistance, i.e.

f = ff = 8/π Cr Cd min[π/4, h/k] (5)

where min [x, y] denotes the smaller of the values x and y. In Equation 5, f ∝ h/k, where k is the height of the
roughness elements. Because Lawrence (1997) used hemispheres as roughness elements, k = b/2, where b is the
diameter of the sphere. Thus f is actually a function of h/(b/2) rather than h/k. Where the roughness elements are
cylinders that protrude through the flow (as in the present study), Equation 5 becomes (Abrahams, 1998):

f f C C
h

b
f r d= = 

16

π
(6)

However, when h/b ≤ 1 and Cd = 1·2 (the conventional value of Cd for an isolated cylinder), the right-hand side of
Equation 5 underestimates f calculated using Equation 1. Lawrence (2000) showed that this underestimation can be
corrected by increasing Cd and that Cd is negatively correlated with h/b, which is positively correlated with the
deformation of the water surface and, hence, wave resistance. Thus Lawrence (2000), like Hirsch (1996) and Abrahams
et al. (1992), concluded that wave resistance is the dominant component of flow resistance in overland flow on rough
fixed beds.
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The flume studies summarized above all investigated the effect of bed roughness on flow resistance by placing
various concentrations of large-scale roughness elements on a fixed bed. A failing of these studies is that they neglect
the effect of bed mobility on flow resistance. Accordingly, the purpose of this study is to evaluate the effect of bed
mobility on resistance to overland flow on rough beds (i.e. beds covered with large-scale roughness elements). This is
done by analysing two series of flume experiments with similar hydraulic and bed roughness characteristics. In the
first series the water is free of sediment and flows over a fixed bed, whereas in the second the water is laden with
sediment and flows over a mobile bed. The data collected during these experiments are recorded in two Appendices
which are located at the following Internet address: http://www.esu.edu/~shu/appendices1&2.htm. These data are
summarized in Table I.

Methods

The first series of experiments was performed by Hirsch (1996) in a flume 0·5 m wide and 4·9 m long with Plexiglas
walls and a smooth aluminium bed covered with cylinders which served as large-scale roughness elements. These
cylinders have diameters Dr of 0·020 and 0·031 m and concentrations Cr ranging from 0·02 to 0·24. In these experi-
ments the mean flow depth h was determined by using a Vernier point gauge to measure the distance from the bed
to the water surface. Measurements were made at 50 randomly selected locations and then averaged to arrive at
the mean flow depth. Water discharge Qw (m3 s−1) was determined by measuring the time it took for the outflow to
fill a bucket of known volume. The mean flow velocity u was then obtained from u = Qw/Wh, where W is the flume
width (m).

Hirsch performed a total of 83 experiments, 65 of which are included in this study because they have the following
properties: (1) k > h, (2) F > 0·5 and (3) Re > 2000. These properties ensure: (1) that the roughness elements protrude
through the flow; (2) that f, which is dominated by wave resistance, is inversely related to F (e.g. Hsieh, 1964;
Flammer et al., 1970; Abrahams and Parsons, 1994); and (3) that the flow over the rough bed is turbulent.

The second series of 194 experiments is a subset of a much larger data set collected by Abrahams et al. (2001).
These experiments were selected because their hydraulics and bed roughness characteristics are similar to those in the
series 1 experiments. The flume used in the series 2 experiments is 0·4 m wide and 5·2 m long with Plexiglas walls
and an aluminium floor covered with a layer of loose sand approximately 0·015 m thick. This sand has a median
diameter D of 0·00074 m and is well sorted with a standard deviation of (D84/D16)

0·5 = 1·08. Like series 1, the series 2
experiments employed cylinders as large-scale roughness elements. Two sizes of cylinder (Dr = 0·0216 and 0·0317 m)
were used in the experiments, while concentrations Cr ranged from 0·04 to 0·26. These sizes and concentrations of
roughness elements are almost identical to those employed in the series 1 experiments.

Water entered the second flume by overflowing from a head tank. The inflow rate Qw (m3 s−1) was measured by a
flow meter located on the inlet pipe to the tank. The volumetric sediment discharge Qs (m3 s−1) was determined by
sampling the water–sediment mixture leaving the flume, weighing the water and sediment in each sample, and
converting the weights to volumes by multiplying by the water and sediment densities of ρ = 1000 kg m−3 and
ρs = 2650 kg m−3, respectively. The volumetric sediment concentration C was then obtained from:

C = Qs/(Qw + Qs) (7)

Mean flow velocity u was determined by a salt tracing technique described by Li and Abrahams (1997, 1999).
Knowing Q = Qw + Qs and u, mean flow depth h was calculated from h = Q/uw, where w is the effective flow width:

w = W(1 − Cr) (8)

Table I. Variable ranges in two series of experiments

h u v Dr Cr D
Series (×××××10−−−−−2 m) (m s−−−−−1) (10−−−−−4 m2 s−−−−−1) F Re (10−−−−−2 m) (m) C (10−−−−−3 m) S

1* 0·20–1·86 0·16– 0·79 0·0095– 0·0166 0·51– 2·81 2028–28 380 3·1, 2·0 0·02– 0·24 – – 0·114
2 0·16– 0·43 0·28–1·99 0·0100– 0·0123 0·50–1·61 2045–17 390 3·165, 2·155 0·04– 0·26 0·016 – 0·04 0·74 0·114

* The data in this series are available in Hirsch (1996).

http://www.esu.edu/~shu/appendices1&2.htm
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The kinematic viscosity of the water ν (m2 s−1) was obtained from its temperature.
In overland flow sediment may be transported as bed load or suspended load. Because these two modes of transport

affect flow resistance differently (Bridge, 2003, pp. 55–67), we confined the series 2 experiments to flows in which
Pb ≥ 0·85, where Pb is the proportion of the total sediment load that moves as bed load. In other words, we restricted
the study to flows that were transporting predominantly bed load. The value of Pb was calculated by estimating the
bed-load transport rate qb (m

2 s−1) for each flow and then expressing this rate as a proportion of the measured total
sediment transport rate. The bed-load transport rate in overland flow on rough surfaces can be estimated using
Abrahams and Gao’s equation (Abrahams et al., 2001):

φ θ θ
θb

c u

u
= −





⋅
⋅

1 5
3 4

1  
*

(9)

where φb = qb/[(g∆D)0·5D] (Einstein, 1950), ∆ = (ρs − ρ)/ρ is dimensionless sediment density, ρs is the sediment density
(kg m−3), u* = (ghS)0·5 is the shear velocity (m s−1), θ = hS/∆D is the dimensionless bed shear stress, and the subscript
c denotes the critical value at which bed load begins to move. The bed-load transport rate qb obtained from Equation
9 is then compared with the total-load transport rate qt (m

2 s−1) calculated using:

qt = CQw/w (10)

In the series 2 experiments in which the bed is rough and mobile, qb/qt ranges from 0·85 to 1·40 with a mean of 1·09.
Thus, it seems fair to conclude that during the experiments in the second series most, if not all, of the sediment is
travelling as bed load.

In both series of experiments the bed is inclined at a slope β of 5·5°, and the effect of the downslope component of
gravity on sediment transport is taken into account by replacing sin β with S = sin β tan α/[cosβ(tan α − tan β)], in
which α is the angle of repose, which is generally assumed to be about 32° (van Rijn, 1993; Abrahams et al., 2001).
In the present study where β = 5·5°, sin β = 0·096, and corrected sin β = 0·096 × 1·188 = 0·114.

Table I shows that the series 1 and series 2 experiments have identical slopes and similar ranges of hydraulic and
bed roughness characteristics. The principal difference between these two series is that the series 2 experiments have
mobile beds while the series 1 experiments do not. Inasmuch as f = fs + ff + fw in the series 1 experiments and
f = fs + ff + fw + fm in the series 2 experiments, fm may be estimated by subtracting the former equation from the latter.
However, before fm can be estimated in this manner, it is necessary to obtain equations for predicting fs, ff and fw. In
what follows, we select equations for predicting fs and ff from the literature, and we develop an equation for predicting
fw from the series 1 experiments.

Surface Resistance

In this study the surface resistance fs is calculated by two different methods. The first method is used where the bed is
smooth (as in the series 1 experiments), while the second is employed where the bed is granular (as in the series 2
experiments).

For smooth beds fs is computed using:

fs = 3·19 Re− 0·45 (11)

This equation was obtained by Hirsch (1996) by regressing fs against Re for 20 flows on smooth, fixed plane beds in
the same flume, at the same slope, and with a similar range of Re values as the series 1 experiments. It is emphasized
that this equation is not a valid predictor of fs beyond the range of hydraulic and boundary conditions covered by the
series 1 experiments (Table I). The values of fs for these experiments are listed in Appendix 1. The ratio fs/f ranges
from 0·018 to 0·723 and averages 0·186 (Table II).

For granular beds, fs is obtained from the Savat (1980) algorithm. Savat developed an algorithm that computes fs

using slope, temperature, unit discharge, and the 90th percentile of the grain size distribution D90. This algorithm was
originally created to compute the hydraulic properties of sediment-free overland flows on plane fixed beds. G. Govers
refined this algorithm and kindly provided us with a copy of the code in Pascal. Extensive testing of the algorithm for
flows up to 0·02 m deep (e.g. Govers and Rauws, 1986; Rauws, 1988; Everaert, 1991; Takken and Govers, 2000; Hu
and Abrahams, 2004, 2005) has confirmed its accuracy.
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Table II. Proportion of total flow resistance accounted for by each resistance
component

Proportion of total flow resistance f

Resistance components Fixed bed Mobile bed

fs 0·186 0·128
ff 0·294 0·178
fw 0·520 0·372
fm – 0·322
fw+m – 0·694

In the series 2 experiments fs is calculated by:

f
u

s
s

s

= 
8τ
ρ 2

(12)

where τs is the surface shear stress (N m−2) and us (m s−1) is the calculated hydraulic velocity provided by the Savat
algorithm. The values of fs in the series 2 experiments are listed in Appendix 2. The ratio fs/f ranges from 0·022 to
0·422 and averages 0·128 (Table II).

Form Resistance

The total form drag exerted by all the roughness elements in an area AB (m2) is given by:

ΣFD = Cdρu2 Σ AF/2 (13)

where ΣAF is the sum of the inundated frontal areas of the roughness elements (m2). Hirsch (1996) showed that
Equations 1 and 13 can be combined to provide a simpler equation for form resistance:

ff = 4Cd Σ AF/AB (14)

where AF = Drh. Abrahams (1998) subsequently rewrote Equation 14 in the form:

ff = (16/π)Cd (h/Dr)Cr (15)

for cylindrical roughness elements, where Cd is assumed to be 1·2 (Petryk, 1969, p. 43; Li and Shen, 1973).
Equation 15 is used to calculate ff for all experiments in this study (Appendices 1 and 2). For the series 1

experiments (in which clear water flows over a cylinder-covered fixed bed), the ratio ff/f ranges from 0·066 to 0·609
and averages 0·294 (Table II). For the series 2 experiments (in which sediment-laden water flows over a cylinder-
covered mobile bed), the ratio ff/f ranges from 0·030 to 0·332 and averages 0·179 (Table II). Clearly, the values of ff /
f for the flows over rough fixed beds are greater than those over rough mobile beds, implying that bed mobility
reduces form resistance. This finding comes as no surprise as horseshoe vortices scour on the upstream side and
deposit on the downstream side of most if not all roughness elements (e.g. Bunte and Poesen, 1994). The resulting
deformation of the bed streamlines the flow, causing form drag and hence ff to decline. At the same time, bed
deformation reduces irregularities in the water surface, causing fw to shrink. In the following section we calculate fw

and then examine its contribution to flow resistance on rough mobile beds.

Wave Resistance

Calculation of fw
In contrast to Hirsch’s (1996) model (i.e. Equation 4), where ( fs + ff) is multiplied by e6·45Cr to obtain f, in the following
analysis all the components of f are assumed to be additive. Thus, for sediment-free overland flows on rough fixed



Partitioning resistance to overland flow on rough mobile beds 1285

Copyright © 2006 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms 31, 1280–1291 (2006)
DOI: 10.1002/esp

beds, f = fs + ff + fw. Wave resistance fw is then calculated for each experiment in the first series by subtracting fs and ff

from f. The calculated values of fw are listed in Appendix 1. The ratio fw/f ranges from 0·176 to 0·743 and averages
0·520 (Table II).

Predictive equation for fw
The calculated values of fw in the first series of experiments may now be used to develop a predictive equation for fw.
The relevant predictive variables in this equation are identified by dimensional analysis, and the coefficients are
determined by multiple regression analysis.

All the basic variables in the functional relation for fw are as follows:

fw = Φ(ρ,µ,g,h,u*,u,S,Cr,Dr) (16)

where µ is dynamic viscosity of the fluid (N s m−2). Selecting ρ, u* and Dr as the repeating variables and applying the
Π-theorem leads to:

f
h

D
F R C Sw

r
r r=







 , , , ,Φ (17)

where the roughness (or cylinder) Reynolds number Rr = uDr /ν.
Given that S is a constant in this study, Equation 17 may be written in the form of a power function:

f a
h

D
F R Cw

r

b

c
r
d

r
e=







 (18)

The coefficients a, b, c, d and e are then evaluated by performing a multiple regression analysis on the data from the
first series of experiments. The derived regression equation is:

f
h

D
F R Cw

r
r r= ⋅







⋅
− ⋅ − ⋅ ⋅ 85 31

0 250

0 505 0 328 1 035 (19)

with R2 = 0·927 and the standard error of estimate SEE = 0·136 log units. The standardized (beta) coefficients for h/Dr,
F, Rr and Cr are 0·126, −0·221, −0·147 and 0·671, respectively. The largest beta coefficients are associated with Cr and
F, indicating that these variables are the main controls of fw.

The exponents on h/Dr, F, Rr and Cr in Equation 19 are not significantly different from 0·25, −0·5, −0·33 and 1,
respectively. Consequently, the exponents in Equation 19 are changed to these values, and the intercept is recomputed
using non-linear regression. The functional relation then becomes:

f
h

D
F R Cw

r
r r= ⋅







⋅
− ⋅ − ⋅ 7938

0 25

0 5 0 33 (20)

with R2 = 0·931 and SEE = 0·127 log units. Figure 1 shows that Equation 20 is an unbiased estimator of fw. Equa-
tion 20 may now be combined with Equations 11 and 15 to predict f for sediment-free overland flow on rough
fixed beds.

Given that Cr and F are the dominant controls of fw, we explored the possibility of developing a simpler equation for
predicting fw that utilizes just Cr and F as the predictive variables. This was done by retaining the exponents 1 and
−0·5 on Cr and F, and then employing non-linear regression analysis to determine the value of the intercept. The
derived equation is:

fw = 3·32F− 0·5Cr (21)

with R2 = 0·88 and SEE = 0·166 log units (Figure 2). R2 is smaller and SEE is larger for Equation 21 than for Equation
20. However, the differences are modest, and a comparison of Figures 1 and 2 suggests that both equations give
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Figure 1. Comparison of computed fw with fw predicted by Equation 20.

unbiased estimates of fw. The salient point here is that Equation 20 can be replaced by Equation 21 without introducing
any bias into the model.

Prediction of fw on rough mobile beds
The second series of experiments represents resistance to flow over rough mobile beds. The values of fw for mobile
beds may be calculated using Equation 21. The calculated values of fw for the second series are listed in Appendix 2.
The ratio fw/f ranges from 0·117 to 0·564 and averages 0·363 (Table II). Comparison of the mean values of fw /f for the
first and second series indicates that fw accounts for a larger proportion of f where the bed is fixed (i.e. fw/f averages
0·520) than where it is mobile (i.e. fw/f averages 0·363) (Table II). This is because where the bed is mobile, the flow
around the roughness elements forms horseshoe vortices that deform the bed, streamline the flow, flatten the water
surface, and reduce fw.

Figure 2. Comparison of computed fw with fw predicted by Equation 21.
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Bed-Mobility Resistance

Calculation of fm
Given the assumption that the components of f are additive, for rough mobile beds f = fs + ff + fw + fm. The value of fm

is then calculated for each experiment in the second series by subtracting fs, ff and fw from f, where fs, ff and fw are
obtained from Equations 12, 15 and 21, respectively. The calculated values of fm are listed in Appendix 2. The ratio fm/
f ranges from 0·088 to 0·711 and averages 0·322 (Table II).

Predictive equation for fm
The computed values of fm in the second series of experiments may now be used to develop a predictive equation for
fm. The relevant predictive variables in this equation are identified by dimensional analysis, and the coefficients are
determined by multiple regression analysis.

The initial functional relation for fm containing all the basic variables for the dimensional analysis is given by:

fw = Φ(ρ,µ,g,h,u*,u,S,Cr,Dr,Cs,D) (22)

Selecting ρ, u* and Dr as the repeating variables and applying the Π-theorem yields:

f
h

D
F R C C S

D

D
m

r
r r s

r

=






 , , , , , ,Φ (23)

Given that S is a constant in this study, Equation 23 may be written in the form of a power function:

f a
h

D
F R C C

D

D
m

r

b

c
r
d

r
e

s
f

r

g

=




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





 (24)

The coefficients a, b, c, d, e, f and g are then determined by performing a multiple regression analysis on the data from
the second series of experiments. The derived regression equation is:

fm = 0·287F−3·688Rr
−0·086Cr

−0·804C0·340 (25)

with R2 = 0·955 and SEE = 0·073 log units. The standardized (beta) coefficients for F, Rr, Cr and C are −1·478, −0·038,
−0·643 and 0·095, respectively. These beta values indicate that F and Cr are the main controls of fm. Neither h/Dr nor
D/Dr appears in the equation because their contributions to the explained variance in fm are not significantly different
from 0. In the case of D/Dr, this may be due in part to D being a constant in the data set (i.e. the series 2 experiments).

The exponents on F, Rr, Cr and C in Equation 25 are not significantly different from −4, −0·1, −1 and 0·33,
respectively. Consequently, the exponents in Equation 25 are changed to these values, and the intercept is recomputed
using non-linear regression analysis. The functional relation then becomes

fm = 0·2F−4Rr
−0·1Cr

−0·1C0·33 (26)

with R2 = 0·95 and SEE = 0·078 log units. Figure 3 shows that Equation 26 is a good unbiased estimator of fm.
Equation 26 may now be combined with Equations 12, 15 and 21 to predict f for sediment-laden overland flows on
rough mobile beds.

Given that F and Cr are the main controls of fm, an attempt was made to develop an equation for predicting fm that
contains just F and Cr as the predictive variables. Accordingly, the exponents of −4 and −1 on F and Cr in Equation 26
are retained, and the intercept is recomputed using non-linear regression. The derived equation is:

fm = 0·025F−4Cr
−1 C > 0 (27)

with R2 = 0·95 and SEE = 0·076 log units (Figure 4). Given (1) that the values of R2 and SEE for Equations 26 and 27
are almost identical, (2) that the differences between Figures 3 and 4 are very small, and (3) that Equation 27 is
simpler than Equation 26, fm is calculated using Equation 27 rather than Equation 26. Total flow resistance is therefore
obtained by summing Equations 11, 15, 21 and 27 which represent fs, ff, fw and fm, respectively.
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Figure 3. Comparison of computed fm with fm predicted by Equation 26.

Predicting Resistance to Overland Flow

Wave and bed-mobility resistance combined
Given the similar structures of the equations for fw and fm (i.e. Equations 21 and 27), we investigated the possibility of
simplifying the predictive equation for total resistance by combining fw and fm (calculated using Equations 21 and 27)
into a composite resistance component fw+m. The calculated values of fw+m for the second series of experiments are
listed in Appendix 2. The ratio fw+m/f ranges from 0·511 to 0·817 and averages 0·694 (Table II). As the average value
of fm/f on rough mobile beds is 0·322 (Table II), the mean value of fw/f is 0·372 (= 0·694 − 0·322), indicating that on
average fw is 54 per cent and fm is 46 per cent of fm+w.

A predictive equation for fw+m was derived by dimensional analysis and multiple regression analysis following the
same procedure as was used to develop equations for fw and fm. The derived equation for fw+m is:

fw+m = 0·63F−2 (28)

Figure 4. Comparison of computed fm with fm predicted by Equation 27.
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Figure 5. Comparison of computed fw+m with fw+m predicted by Equation 28.

with R2 = 0·98 and SEE = 0·042 log units. Figure 5 indicates that despite its simplicity, Equation 28 is a good unbiased
estimator of fw+m. Note that Equation 28 has only one predictive variable, namely F, whereas Equations 21 and 27 each
have two, namely F and Cr. Evidently, the contributions of Cr to fw and fm cancel out when fw and fm are summed before
being regressed against f.

Additive nature of the resistance components
That fw and fm are additive rather than multiplicative components of flow resistance is demonstrated by performing
non-linear regression analyses in which fw and fm are each regressed against F −2 to determine the value of the
intercepts. The resulting equations are:

fw = 0·33F−2 (29)

with R2 = 0·81 and

fm = 0·28F−2 (30)

with R2 = 0·79. Summing Equations 29 and 30 gives:

fw+m = fw + fm = 0·61F−2 (31)

which is very close to Equation 28.
Although Equation 28 is the result of a fairly lengthy statistical analysis, the final equation is wholly consistent with

the known relation between f and F:

f = 8gSh/u2 = 8SF −2 (32)

Given that the average value of fw+m/f is 0·694 (Table II) and S = 0·114, it can be seen that

fw+m = 0·694f = 0·694 × 8SF −2

= 0·694 × 8 × 0·114 × F −2

= 0·632F −2 (33)

which is Equation 28. This finding lends confidence to the methods employed in this study in general and to the
dimensional analysis and regression analysis that give rise to Equation 28 in particular.
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Predictive equation for f
Replacing fw + fm (that is Equation 21 plus Equation 27) with fw+m (Equation 28), the total resistance f may be predicted
by summing Equations 11, 15 and 28:

f
u

C
h

D
C Fs

s
d

r
r= + + ⋅ −    

8 16
0 63

2
2τ

πρ
(34)

Figure 6 confirms that Equation 34 gives good unbiased predictions of total resistance to overland flow on rough
mobile beds. However, Equation 34 applies only to the range of conditions represented by the experimental data
(Table I). Predictions based on data from outside this range are likely to be in error. (For example, Equation 34
is based on data from flume experiments in which S = 0·114. If Equation 34 were used to predict f for any other flow
with a different slope, the prediction would inevitably be wrong.) Although Equation 34 is not a general equation
for predicting f, it demonstrates that resistance to overland flow on rough mobile beds can be well predicted by
partitioning the flow resistance into components, developing separate equations for each component, and summing the
components.

Conclusion

This study is concerned with overland flows transporting bed load over mobile beds covered with large-scale rough-
ness elements. In the absence of rainfall, the total flow resistance is divided into four components: surface resistance
fs, form resistance ff, wave resistance fw, and mobile-bed resistance fm. Equations for predicting fs and ff are borrowed
from the literature, while equations for estimating fw and fm are developed from two series of flume experiments using
dimensional analysis to identify the relevant predictive variables and regression analysis to determine their coeffi-
cients. The first series is conducted on smooth fixed beds, and the second on rough mobile beds. The major controls of
fw and fm are the Froude number F and the concentration of the roughness elements Cr. However, when the equations
for fw and fm are summed, the Cr terms cancel out, making fw + fm an inverse function of F2. As slope is constant
throughout this study, it is not possible to evaluate the nature and importance of S as a control of fw + fm.

Analyses of the series 1 and 2 experiments enable the contributions of fs, ff, fw and fm to f to be computed (Table II).
An analysis of the first series reveals that in clear-water flows over fixed beds fw constitutes 52 per cent of f. A similar
analysis of the second series indicates that in sediment-laden flows over mobile beds fw constitutes 37·2 per cent and
fm 32·2 per cent of f. These percentages are consistent with Equations 29 and 30, suggesting that on average
fw/fm = 1·18 and that fw and fm are both inversely related to F2.

Given the limited range of hydraulic, sediment and bed roughness conditions represented by the experimental data
(for example, S is always 0·114), it is clear that Equation 34 is not a general equation for predicting f. Consequently,

Figure 6. Comparison of computed f with f predicted by Equation 34.
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it should not be used for this purpose outside the range of conditions for which it was developed (i.e. Table I).
However, the methodology employed here can be extended to include other experimental data representing different
conditions. Should such data become available, the present methodology could be used to develop a general equation
for predicting total f.
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