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Abstract
Data from flume studies are used to develop a model for predicting bed-load transport rates
in rough turbulent two-dimensional open-channel flows moving well sorted non-cohesive sedi-
ments over plane mobile beds. The object is not to predict transport rates in natural channel
flows but rather to provide a standard against which measured bed-load transport rates
influenced by factors such as bed forms, bed armouring, or limited sediment availability
may be compared in order to assess the impact of these factors on bed-load transport rates.
The model is based on a revised version of Bagnold’s basic energy equation ibsb ===== ebωωωωω, where
ib is the immersed bed-load transport rate, ωωωωω is flow power per unit area, eb is the efficiency
coefficient, and sb is the stress coefficient defined as the ratio of the tangential bed shear stress
caused by grain collisions and fluid drag to the immersed weight of the bed load. Expressions
are developed for sb and eb in terms of G, a normalized measure of sediment transport stage,
and these expressions are substituted into the revised energy equation to obtain the bed-load
transport equation ib ===== ωωωωω G 3·4. This equation applies regardless of the mode of bed-load trans-
port (i.e. saltation or sheet flow) and reduces to ib ===== ωωωωω where G approaches 1 in the sheet-flow
regime. That ib ===== ωωωωω does not mean that all the available power is dissipated in transporting
the bed load. Rather, it reflects the fact that ib is a transport rate that must be multiplied by
sb to become a work rate before it can be compared with ωωωωω. It follows that the proportion of
ωωωωω that is dissipated in the transport of bed load is ibsb/ωωωωω, which is approximately 0·6 when
ib ===== ωωωωω. It is suggested that this remarkably high transport efficiency is achieved in sheet flow
(1) because the ratio of grain-to-grain to grain-to-bed collisions increases with bed shear
stress, and (2) because on average much more momentum is lost in a grain-to-bed collision
than in a grain-to-grain one. Copyright © 2006 John Wiley & Sons, Ltd.
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Introduction

In this paper we present a model for predicting bed-load transport rates in two-dimensional open-channel flows over
plane beds. The purpose of this model is to provide a standard against which measured bed-load transport rates in
flows subject to influences such as bed forms, bed armouring, and limited sediment availability may be compared to
assess the impact of these influences on bed-load transport rates. More specifically, the model is developed for
sediment-laden flows that meet the following requirements: (1) the flow is steady, uniform, two-dimensional, turbu-
lent, and hydrodynamically rough; (2) the bed is plane and mobile and comprises non-cohesive natural sediments that
are well sorted and similar in shape; (3) the sediment in transport is the same as that forming the bed; and (4) the
sediment is readily available, enabling bed load to be transported at capacity (i.e. at the maximum possible rate). The
end-product of the model is an equation that predicts bed-load transport rates on plane beds whether the bed load
moves mainly by saltation (i.e. in the saltation regime) or by sheet flow (i.e. in the sheet-flow regime).

Whether saltation or sheet flow is the dominant mode of bed-load transport depends on the dimensionless bed shear
stress

θ τ
ρ ρ

  
(   )

=
−gD s

(1)
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where τ = ρghS is the total shear stress applied to the bed, g is the acceleration of gravity (m s−2), h is the flow
depth (m), S is the energy slope, ρ is the density of the fluid (kg m−3), ρs is the density of the sediment (kg m−3),
and D is the median grain diameter (m). As bed shear stress increases the mode of bed-load transport changes
from saltation to sheet flow. The term saltation refers to the hopping or jumping of grains over the bed; but in
this paper, for convenience, it also includes rolling and sliding, which are viewed as incipient forms of saltation
(Bagnold, 1973). At low bed shear stress (θ < 0·1), saltating grains are widely spaced and rarely collide with other
saltating grains (Leeder, 1979a). Thus intergranular collisions are mainly grain-to-bed (GB). As bed shear stress
increases, grain concentration increases and collisions between saltating grains become more common. Con-
sequently, at medium bed shear stress (0·1 ≤ θ < 0·5) intergranular collisions are predominantly grain-to-grain (GG)
(Leeder, 1979a; Sumer et al., 1996).

Finally, at high bed shear stress (0·5 ≤ θ), sheet flow occurs on upper-regime plane beds (e.g. Engelund and Hansen,
1967; Nnadi and Wilson, 1995; Sumer et al., 1996). When there is no suspended sediment, sheet flow consists of a
layer of colliding grains with a basal concentration approaching that of the stationary bed (i.e. a concentration of about
0·65) (Bagnold, 1956; Pugh and Wilson, 1999). Gao (2003) used high-speed video (at 500 frames per second) to study
the internal structure of sheet flow. Like Wang and Chien (1987), Gao (2003) observed that in addition to saltating,
grains travel in poorly defined granular sheets that slide or roll over the slower moving sheets below. Wang and Chien
(1987) and Gao (2003) referred to these sheets as laminations and attributed them to the dilation and downstream
movement of one or more layers of grains that formerly defined the bed surface. Indeed, it is evident that the bed-load
transport rate in the sheet-flow regime is controlled by a self-adjusting mechanism in which the immersed weight of
the bed load that can be dilated and transported downslope by the shearing flow is balanced by a normal dispersive
stress that arises from collisional interactions.

Bagnold (1956, 1966) argued that in sheet flow the normal dispersive stress that supports the bed load is generated
more or less entirely by intergranular collisions. In contrast, Bridge (2003, p. 60) and his colleagues (e.g. Bridge and
Bennett, 1992) have argued that in addition to grain collisions, turbulent fluid lift plays a significant role in supporting
the bed load. Given that high grain concentrations at the base of the bed-load layer suppress turbulence and hence
fluid lift (e.g. Middleton and Southard, 1984, p. 230; Wijetunge and Sleath, 1998), most investigators (e.g. Leeder,
1979b; Engelund, 1981; Hanes and Bowen, 1985; Wilson, 1987; Wang and Chien, 1987; Nnadi and Wilson, 1992;
Fredsoe, 1993; Jenkins and Hanes, 1998) agree with Bagnold (1956, 1966) that in the sheet-flow regime, fluid lift at
the base of the bed-load layer is inconsequential and the bed load is supported more or less entirely by a normal
dispersive stress generated by grain collisions.

According to Bagnold (1966, 1973), a fluid flow is a transporting machine, the performance of which is described
by the basic energy equation

ib tan α = ebω (2)

where ib = qbg(ρs − ρ) is the immersed bed-load transport rate (J s−1 m−2), qb is the volumetric bed-load transport rate
(m2 s−1), tan α is the dynamic friction coefficient, eb is the efficiency of bed-load transport, ω = uτ is the flow power
per unit bed area (W m−2), and u is the mean flow velocity (m s−1). The left side of Equation 2 represents the rate of
doing work transporting bed load per unit area of the bed (J s−1 m−2), whereas the right side indicates the power
expended on bed-load transport over the same area (W m−2).

Bagnold (1954, 1956, 1966, 1973) defined tan α as the ratio of the tangential bed shear stress to the normal stress
arising from grain collisions with the bed. According to Bagnold (1956, 1966, 1973), the immersed weight of the bed
load is supported entirely by the normal component of the dispersive stress produced by intergranular collisions.
However, there is now good evidence to suggest that at low shear stress fluid drag contributes to the tangential stress
that drives the bed load downstream (Fernandez Luque and van Beek, 1976), while fluid lift contributes to the normal
stress that supports the bed load in motion (e.g. Leeder, 1979b; Bridge and Bennett, 1992; Nino et al., 1994; Nino and
Garcia, 1994, 1998a, b; McEwan et al., 1999; Seminara et al., 2002). Inasmuch as tan α does not take either fluid lift
or fluid drag into account, Bagnold’s (1966, 1973) energy equation is revised by replacing tan α with a new coefficient
termed the stress coefficient sb. Equations are then developed for sb and eb and substituted into the revised energy
equation to obtain the bed-load transport equation.

Data

The selection of data for developing and testing the bed-load transport model was guided by the model requirements
listed above. To comply with the last requirement that bed-load transport occurs at capacity, only data for flows
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through open-channel flumes were included in this study. Flows through natural channels were excluded, as such
flows commonly transport bed load below capacity, especially where the channel is eroded in resistant materials and/
or has coarse bed sediments (e.g. Nanson, 1974; O’Leary and Beschta, 1981; Meade, 1985; Reid et al., 1985; Reid
and Frostick, 1986; Gomez, 1991; Reid and Laronne, 1995).

Nine flume studies by Guy et al. (1966), Williams (1970), Smart (1984), Graf and Suszka (1987), Aziz and Scott
(1989), Rickenmann (1991), Song et al. (1998), Gao (2003) and Gao and Abrahams (2004) were identified in which
fully rough turbulent flows were transporting well sorted non-cohesive sediments over mobile plane beds. Flows were
considered to be turbulent and fully rough if the flow Reynolds number Rh = 4hu/ν > 8000 and the roughness Reynolds
number Rks = ksu*/ν > 70, where ν is the kinematic viscosity (m2 s−1), u* = (ghS)0·5 is the shear velocity (m s−1), ks = mD
is the equivalent sand roughness (m), and m is a coefficient which is assumed to be 3 (e.g. van Rijn, 1982; Yen, 1991,
table 12).

In these nine studies a total of 365 experiments satisfied the above requirements. However, 43 of these experiments,
including all those by Guy et al. (1966), were discarded because their flows were transporting significant amounts of
suspended sediment. These flows were identified by specifying the threshold value Wt of the dimensionless settling
velocity W = w/u* at which suspension commences (Sumer et al., 1996), where w is the mean settling velocity of the
grains (m s−1) (Cheng, 1997). Cheng and Chiew (1999) reviewed the literature on the initiation of suspension in the
saltation regime and found that the criteria Wt ranged from 1·25 (Bagnold, 1966) to 2·5 (van Rijn, 1984b). Bridge
(2003, pp. 56–57) also reviewed the literature on this topic from a turbulence perspective and concluded that Wt

ranges from about 1·2 to 1·5. On the basis of these two reviews, we adopted Wt = 1·5 as the criterion for suspension in
the saltation regime.

Sumer et al. (1996) conducted an extensive set of experiments in the sheet-flow regime and concluded that suspen-
sion begins when W falls below 0·8 to 1. Abrahams (2003) analysed data from 155 flume experiments in the sheet-
flow regime and found that suspension commences when W ≈ 0·8. Evidently, suspension in the saltation regime starts
at a larger value of W than it does in the sheet-flow regime. This notion is consistent with Pugh and Wilson’s (1999)
finding that turbulent damping occurs in the sheet-flow regime. Turbulent damping reduces the mean upward-directed
turbulent velocity associated with a particular value of u*, making it possible for suspension to occur at a smaller value
of W = w/u* than if there were no damping. On the basis of these findings, we selected Wt = 0·8 as the suspension
criterion in the sheet-flow regime.

The existence of different suspension criteria for the saltation and sheet-flow regimes means that every flow must be
assigned to one regime or the other. As noted above, the variable most often used for this purpose is θ. The threshold
value of θ at which the saltation regime is replaced by the sheet-flow regime θt coincides with the transition from
washed out dunes to upper-regime plane beds. There is no single value for θt. Instead there is a range of values
extending from about 0·5 to 1 over which one finds examples of both regimes (e.g. Engelund and Hansen, 1967; Hill
et al., 1969; van Rijn, 1984c; Allen, 1985, p. 72; Wang and White, 1993; Nnadi and Wilson, 1995; Sumer et al.,
1996). In the absence of any compelling reason for selecting one value for θt rather than another, θt was set equal to
0·5 and this value is used throughout the study.

The final data set consists of 322 flume experiments. These experiments were performed in flumes of different sizes
(Table I). Where flumes are not sufficiently wide, sidewall drag has a significant effect on flow hydraulics. It is
therefore necessary to remove this effect in order to compare or combine data from different flumes and to meet the
requirement of two-dimensional flow. Consequently, all flume experimental data were corrected for sidewall drag by
Williams’ (1970) method, which uses flow depth and corrects the slope rather than the hydraulic radius.

The 322 experiments in the data set were conducted on slopes β ranging from 0·057° to 11·3°. As β increases, the
downslope component of gravity increases, thereby facilitating the transport of bed sediments. To include this effect in
a bed-load transport equation, the conventional slope variable S = sin β was divided by sin (φr − β)/sin φr, where
φr = 32° is the residual angle of repose for the grains in transport (Schoklitsch, 1914; van Rijn, 1993, pp. 4·11, 7·29).
Thus, S varies from 0 to ∞ as β varies from 0 to φr.

Finally, it is necessary to determine for each experiment the critical value of θ at which bed sediments begin to
move θc. This variable is notoriously difficult to evaluate (e.g. Buffington and Montgomery, 1997). In Williams’
(1970), Graf and Suszka’s (1987) and Song et al.’s (1998) 182 experiments, θc was estimated by plotting the volumet-
ric bed-load transport rate qb against θ, fitting trendlines to the data, and extending these trendlines to the θ axis where
qb = 0. In the remaining 140 experiments by Smart (1984), Aziz and Scott (1989), Rickenmann (1991), Gao (2003)
and Gao and Abrahams (2004), the smallest values of qb were too large to give trustworthy estimates of θc by the
extrapolation procedure. Consequently, in these 140 experiments θc was set equal to 0·04, which is close to the mean
of 0·041 for the 182 experiments in which θc was measured. Actually, the value assigned to θc was of little conse-
quence, as θ was generally so much larger than θc that an error in the order of ±0·01 in θc has a negligible effect on
θc/θ and, hence, on the predicted bed-load transport rate.
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Not only is the transport of bed sediments facilitated by the downslope component of gravity, but so is their
entrainment. Accordingly, for the flume experiments the estimated value of θc was corrected for this effect by multiplying
it by sin (φr − β)/sin φr (e.g. Chiew and Parker, 1994; Lau and Engel, 1999; Graf, 2000; Whitehouse et al., 2000).

The 322 flume flows in the present data set represent a wide range of conditions that encompass both the saltation
and sheet-flow regimes. This range of conditions is all the more remarkable when one considers that the upper limit
for many variables (e.g. h, S, θ) is constrained by the requirement that the flow transports only bed load (i.e. more
powerful flows cannot be included as they transport a significant amount of sediment in suspension). Table I lists the
range of values for each experimental variable and the dimensions of the flume used in each study. For additional
information on the experimental apparatus and procedures, the original references should be consulted.

Model

Tan α relation
In a fluid flow transporting bed load, the steady forward motion of the bed load is opposed by a frictional force caused
by intergranular collisions and fluid drag. This friction force is balanced by the total bed shear stress applied by the
fluid (kg m−1 s−2)

τ = T + τc (3)

where T is the tangential bed shear stress (kg m−1 s−2) that is required to keep the bed load in motion and τc is the
critical fluid shear stress (kg m−1 s−2) below which bed-load movement ceases. T may be divided into two parts: that
part transmitted to the bed by grain collisions and termed grain shear stress Tg (kg m−1 s−2), and that part transmitted to
the bed by fluid drag and termed fluid shear stress Tf  (kg m−1 s−2). When all, or nearly all, the shear stress transmitted
to the bed is by grain collisions (i.e. Tg ≈ T), such as occurs in the sheet-flow regime (Bagnold, 1956, 1966), the mean
tangential grain stress Tg needed to maintain the bed load in transport is proportional to the immersed weight of the
load W ′ (kg m−1 s−2), the proportionality coefficient being

tan α = Tg / W ′ (4)

The value of tan α is not easily determined. However, data from dry grain flows and various coaxial shearing
apparatus indicate that for natural mineral grains in inertial conditions, such as occur at the base of the bed-load layer
in the sheet-flow regime (see Bagnold, 1973; Bridge and Bennett, 1992; Bridge, 2003, p. 60; Abrahams, 2003), tan α
can be determined from

tan α = Tg/W ′ ≈ 0·6. (5)

This is an important observation, as it suggests that tan α is always close to 0·6 at high shear stress (i.e. in the sheet-
flow regime). At low and medium shear stresses (i.e. in the saltation regime) tan α = Tg/W′ refers to just that part of
the tangential stress that is transmitted to the bed by grain collisions. To our knowledge there are no data available on
the relative magnitudes of Tg and Tf for mobile beds in the saltation regime. Given (1) that Tg/W ′ ≈ 0·6 at high shear
stress and (2) that there is considerable uncertainty surrounding the value of Tg/W ′ at low and medium bed shear
stresses, the model assumes that Tg/W′ ≈ 0·6 regardless of bed shear stress. This assumption is simple and plausible
and it preserves the mathematical and conceptual simplicity of the model.

The Tg/T relation
Combining Equation 5 with

ib = W ′Ub (6)

and rearranging terms leads to

Tg = T − Tf = tan α W′ ≈ 0·6W′ ≈ 0·6ib/Ub (7)
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where Ub is the mean velocity of the bed-load grains (m s−1). Because ib is generally known (i.e. measured) for flows
transporting bed load at capacity, Equation 7 shows that all that is required to calculate Tg is a knowledge of Ub.

Unfortunately, no data are available on Ub for any experiments in the present data set. Therefore Ub must be
calculated from other variables. Although numerous formulas may be found in the literature (e.g. Fernandez Luque
and van Beek, 1976; Engelund and Fredsoe, 1982; Bridge and Dominic, 1984; Bridge and Bennett, 1992; van Rijn,
1984a; Sekine and Kikkawa, 1992; Seminara et al., 2002), virtually all of them are based on measurements of grains
travelling alone or in small groups over fixed beds and, hence, they overestimate grain velocities in sediment-laden
flows over mobile beds (Bagnold, 1966; Wiberg and Smith, 1989; Abrahams and Atkinson, 1993). Only the formula
developed by Fernandez Luque and van Beek (1976) is based on data collected entirely from flume flows over mobile
beds. However, these authors confined their measurements to flows in which θ/θc ≤ 2·7 (presumably because tracking
individual grains in a cloud of saltating grains becomes increasingly difficult as the concentration of moving grains
increases with shear stress.) Consequently, their equation

Ub = 9·2(u* − 0·7u*c) (8)

applies exclusively to flows that have low bed shear stress.
In the present data set there are 177 flows over mobile beds with θ < 0·1, which is equivalent to θ/θc < 2·7 if

θc = 0·04. Using Equation 8, Ub was calculated for each flow, and the calculated value of Ub substituted into Equation
7 to obtain the value of Tg for that flow. Tg was then divided by T, and Tg/T was plotted against 1 − (θc/θ) hereafter
denoted by G, a normalized measure of sediment transport stage (Figure 1). Logically, when G is close to 0, there is
little or no shear stress being transmitted to the bed by moving grains (i.e. Tg ≈ 0), so Tg/T ≈ 0 (e.g. Fernandez Luque
and van Beek, 1976). On the other hand, when G is close to 1 and there is an abundant supply of sediment (McEwan
et al., 1999), the concentration of grains at the base of the bed-load layer approaches that of the stationary bed, the
fluid flow is virtually occluded from the bed, and almost all the shear stress is transmitted to the bed by grain
collisions (i.e. Tg ≈ T), so Tg/T ≈ 1 (e.g. Bagnold, 1956, 1966; Fernandez Luque and van Beek, 1976). In other words,
the relation between Tg/T and G is constrained to pass through or very close to the points (0, 0) and (1, 1). For
mathematical convenience, we will assume that the relation passes through these points. A power function that both
meets this requirement and fits the data well is

T

T
Gg   = 2 (9)

This equation is displayed in Figure 1 along with the data from the 177 flume flows over mobile beds.

Figure 1. Graph of Tg/T against G for the 177 flows over mobile beds with θ < 0·1.
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Stress coefficient
Definition. Bagnold (1956, 1966, 1973) postulated that the bed load is supported entirely by a normal stress arising
from grain collisions with the bed. Subsequent research has shown that while this may be true at high shear stress (e.g.
Wilson, 1987; McEwan et al., 1999), it is not the case at low shear stress, where the bed load is largely supported by
fluid lift (e.g. Leeder, 1979b; Nino and Garcia, 1998a, b; Seminara et al., 2002). Furthermore, Figure 1 implies that at
low shear stress as G approaches 0, Tf approaches T, and Tg approaches 0 (e.g. Fernandez Luque and van Beek, 1976).
Given the roles of fluid lift and fluid drag in bed-load transport, the limitations of tan α become apparent. One way of
dealing with this problem is to replace tan α with a new coefficient that includes both Tg and Tf. We term this
coefficient the stress coefficient sb and define it as

s
T

W

T T

W
b

g f    
  

= =
+

′ ′
(10a)

s
W

b
c  

  
=

−τ τ
′

(10b)

or

s
U

i
b

b c

b

  
(   )

=
−τ τ

(10c)

The revised energy equation then becomes

ibsb = ebω (11)

To derive a bed-load transport equation from Equation 11, functional equations are needed for the coefficients sb

and eb. In these equations sb and eb are related to G, but they are plotted against θ to highlight the fact that both
coefficients asymptotically approach 0·6 as θ approaches ∞.

Functional equation. Combining the three equations

s
T

W
b   =

′
(10a)

T

W
g

′
  ≈ ⋅0 6 (5)

T

T
Gg   = 2 (9)

yields the functional equation

sb = 0·6G−2 (12)

This equation is plotted in Figure 2 along with the sb and θ data for the 322 flume experiments. The graph shows
that Equation 12 is a good fit to the data where θ < 0·1 but that the data tend to plot above Equation 12 where θ ≥ 0·1.
This occurs because sb is calculated using Equation 10c, with Ub in Equation 10c being estimated by Equation 8. As
explained above, Ub is estimated by Equation 8 because Equation 8 is based on data from mobile beds. However, such
data are available only for flows where θ < 0·1 and intergranular collisions are relatively infrequent. In flows where θ
≥ 0·1 intergranular collisions become more frequent and reduce both flow and grain velocities (Wiberg and Smith,
1989; Abrahams and Atkinson, 1993). Consequently, Equation 8 overestimates Ub, and hence sb, where θ ≥ 0·1 (Figure
2). If this line of reasoning is correct, one might expect to find a positive correlation between the bed-load concentra-
tion Cb and the degree to which Equation 12 underestimates sb (i.e. log sb minus predicted log sb). As can be seen in
Figure 3, such a correlation does in fact exist, though the correlation coefficient is modest (r = 0·67). The salient point
here is that the tendency in Figure 2 for the points to plot above Equation 12 where θ ≥ 0·1 can be explained by our
use of Equation 8 to estimate Ub and does not in any way impugn the validity of Equation 12.
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Figure 2. Graph of the stress coefficient against dimensionless bed shear stress. The line is Equation 12. Ub is calculated using
Equation 8.

Figure 3. Graph of log sb – predicted log sb against log Cb for the 145 flows for which θ ≥ 0·10.
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Efficiency coefficient
Definition. The efficiency coefficient eb is the proportion of the flow power or total work rate that is expended
transporting bed load at capacity. A general definition for eb can be obtained by rearranging the revised energy
equation (i.e. Equation 11)

e
i s

b
b b  =
ω

(13a)

or

e
U T U

u

T
b

b b      = = ×
ω τ

(13b)

where ibsb = UbT is the rate of doing work transporting the bed load (J s−1 m−2).
Functional equation. Given that T/τ = G, Equation 13b may be written as

e
U

u
Gb

b  = (14)

which corresponds to the functional equation

eb = aG b (15)

where

U

u
aGb b  = −1 (16)

The intercept a is the value of eb and Ub/u when G = 1. Equations 12, 15 and 16 show that when G = 1, sb = eb = Ub/
u = a = 0·6. Unlike a, in the present circumstances b cannot be determined algebraically and so must be evaluated
statistically.

Values of eb for the 322 experiments in the data set were computed using Equation 14 and plotted against θ in
Figure 4. Because eb is calculated from Equation 14 which contains Ub, and Ub is obtained from Equation 8 which
overestimates Ub where θ ≥ 0·1, calculated values of eb plotted in Figure 4 might be expected to overestimate their true
values where θ ≥ 0·1 and therefore should not be used to compute the functional equation between eb and G over this
range of θ. However, where θ < 0·1 intergranular collisions are relatively infrequent, and values of eb calculated from
Equation 14 can be used to compute the functional equation.

Thus, the functional equation between eb and G was obtained by fitting Equation 15 to the data from the 177
experiments where θ < 0·1. This was done by setting the intercept a equal to 0·6 (Abrahams, 2003) and performing a
non-linear regression to determine the value of the exponent b. The regression yielded a value of 1·35 for b with
R2 = 0·85. Rounding b upwards to 1·4, Equations 15 and 16 become

eb = 0·6G1·4 (17)

U

u
Gb   = ⋅ ⋅0 6 0 4 (18)

Figure 4 shows that Equation 17 is a good fit to the data where θ < 0·1, but that the data tend to plot above Equation
17 where θ ≥ 0·1. The tendency for Equation 17 to underestimate eb is reminiscent of Equation 12 underestimating sb

and is attributed to intergranular collisions which reduce Ub and inflate eb. This explanation is supported by a positive
correlation (r = 0·87) between Cb and the difference between the computed and predicted values of eb (i.e. log eb minus
predicted log eb) (Figure 5).

That Equations 12 and 17 tend to underestimate sb and eb where θ ≥ 0·1 is ascribed to Equation 8 being used to
estimate Ub. Equation 8 was developed for flows with low bed shear stress (θ < 0·1) and overestimates Ub when it is
applied to flows with medium to high bed shear stress (θ ≥ 0·1). This overestimation of Ub, in turn, causes Equations
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Figure 4. Graph of the efficiency coefficient against dimensionless bed shear stress. The line is Equation 17. Ub is calculated using
Equation 8.

12 and 17 to underestimate sb and eb, as can be seen in Figures 2 and 4. This problem disappears, however, if the
equation employed to estimate Ub applies to flows with mobile beds in both the saltation and sheet-flow regimes.
Equation 18 is such an equation, and Figures 6 and 7 show that when it is used to estimate Ub, Equations 12 and 17
yield relatively unbiased estimates of sb and eb in both regimes. Further testing with other data sets is needed to
establish the generality of Equation 18.

Figure 5. Graph of log eb – predicted log eb against log Cb for the 145 flows with θ ≥ 0·10.
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Figure 6. Graph of the stress coefficient against dimensionless bed shear stress. The line is Equation 12. Ub is calculated using
Equation 18.

Figure 7. Graph of the efficiency coefficient against dimensionless bed shear stress. The line is Equation 17. Ub is calculated using
Equation 18.
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Bed-load Transport Equation

Equation
Rearranging the revised energy equation (i.e. Equation 11) and replacing sb and eb with their functional relations
(Equations 12 and 17) yields the equation

i e

s
Gb b

bω
    = = ⋅3 4 (19)

Taking the first and last terms in this equation and multiplying them by ω produces the bed-load transport equation

ib = ωG3·4 (20)

Figure 8 displays a graph of measured ib against ib predicted by Equation 20 for the 322 flume experiments in the
present data set. The plotted points scatter symmetrically around the line of perfect agreement over six orders of
magnitude. Clearly Equation 20 is a good predictor of ib in both the saltation and the sheet-flow regimes.

It has been known for some time that ib becomes proportional to ω at high shear stress (e.g. Colby, 1964, figure 16;
Bagnold, 1973, p. 498; Leopold and Emmett, 1976, figure 1; Reid and Laronne, 1995, figure 3; Bridge, 2003, p. 61).
However, Abrahams (2003) found that ib is not just proportional to ω but where shear stress is high enough and bed
load is being transported at capacity

ib = ω (21)

This equality is explained in the section Transport Efficiency. In the meantime, a comparision of Equations 20 and 21
reveals that as G increases and approaches 1, Equation 20 reduces to Equation 21. Thus, Equation 21 is an asymptote
that plots of (ω, ib) approach as G increases. In the saltation regime ib is sensitive to D, so flows transporting bed load
of different sizes plot along separate curves below the ib = ω line (Figure 9). The value of D associated with each

Figure 8. Graph of predicted ib against measured ib. The predictive equation is Equation 20.
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curve increases from left to right. By contrast, in the sheet-flow regime, the entire bed is moving, and the immersed
weight of the bed load is equal to the normal stress regardless of D. Consequently, ib is insensitive to D (Wilson, 1987;
Abrahams, 2003), and all the data plot along the ib = ω line.

Boundaries
Abrahams (2003) concluded that bed-load transport by sheet flow conforms to and may be characterized by Equation
21, that is, ib/ω = 1. In actuality, Equation 21 or ib/ω = 1 defines the upper limit of a range of ib/ω values that are
associated with sheet flow. The lower limit of this range is a function of θc and θt and may be calculated from
Equation 20. For example, if we assume that θc = 0·04 and θt = 0·5, the computed value of ib/ω is 0·75. It follows that
as flow intensity increases, ib/ω increases and asymptotically approaches 1. When ib/ω reaches 0·75, the mode of bed-
load transport changes from saltation to sheet flow. Thus, ib/ω = 0·75 defines the lower boundary and ib/ω = 1 the
upper boundary of the sheet-flow regime. Given that ib/ω = G3·4 (Equation 20), it can be seen that these boundaries
may also be defined in terms of G. For example, where θc = 0·04 and θt = 0·5, G = 0·92 defines the lower boundary
and G = 1 the upper boundary of the sheet-flow regime. That the sheet-flow regime occupies a range of ib/ω (and G)
values means that Equation 21 does not fully define this regime. However, the range is so narrow and Equation 21 is
so appealing in its simplicity that we recommend that this equation continue to be used to characterize and predict
bed-load transport rates in this regime.

Transport Efficiency

That ib = ω in Equation 21 does not mean that all the flow power in the sheet-flow regime is dissipated in the transport
of bed load. As a measure of transport rate, ib (= W ′Ub) has the same dimensions as rate of doing work, but it is not a
work rate because the force W ′ acts normal to the bed while the velocity Ub acts parallel to it. For the transport rate ib

to become a work rate (= TUb), it must be multiplied by sb (= T/W ′). The efficiency coefficient eb (i.e. the proportion
of the flow power dissipated in the transport of bed load) can now be calculated using

eb = ibsb /ω (13a)

Figure 9. Graph of immersed bed-load transport rate against flow power. The line is Equation 21.
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Substituting the bed-load transport equation (i.e. Equation 20) into Equation 13a yields

e
G s

G sb
b

b    = =
⋅

⋅ω
ω

3 4
3 4 (22)

which is a general expression for bed-load transport efficiency that applies in both the sheet-flow and saltation
regimes. Equation 22 shows that the proportion of the total power supply that is dissipated transporting bed load
increases with G and reaches a maximum of 0·6 when G = 1. This remarkably high coefficient of 0·6 (cf. Bagnold,
1966; Hanes and Bowen, 1985; Reid and Laronne, 1995, table 1) is attributed to changes in the type and frequency of
intergranular collisions as bed shear stress increases.

Type and Relative Frequency of Grain Collisions

It is evident from the bed-load transport model presented above that the sb − G and eb − G relations are the key to
understanding the bed-load transport equation (i.e. Equation 20). However, although it is clear that these two relations
control Equation 20, it is not clear what controls these two relations.

As noted above, in bed-load transport grain collisions are either grain-to-grain (GG) or grain-to-bed (GB). On
average one might expect the loss of streamwise momentum to be greater in a GB collision than in a GG one. In a GG
collision, momentum is transferred from one moving grain to another. Because the grains are moving at similar speeds
in approximately the same direction (i.e. downstream), little momentum is lost as a result of the collision. On the other
hand, in a GB collision a moving grain strikes a stationary one and either stops or rebounds at a reduced velocity. In
both scenarios, streamwise momentum is lost to the bed, and the loss is total where there is no rebound. Thus GG
collisions conserve momentum better than GB ones, and the relative frequencies of these two types of collision might
be expected to have an important influence on the bed-load transport rate.

With the object of predicting these relative frequencies, we define the property

P
N

N N
g

GG

GG GB

  
  

=
+

(23)

where Pg is the proportion of the total number of collisions per unit area per unit time that are GG collisions, and NGG

and NGB are the numbers of GG and GB collisions, respectively, and then set out to determine the relation between Pg

and G.
This relation is established with the aid of Leeder’s (1979a) grain-collision model. Utilizing the gaseous kinetic

theory, Leeder (1979a) formulated a theoretical model for the collisional behaviour of bed-load grains in saltation. In
this model, Leeder (1979a) derived an expression for the mean free path length λ of a saltating grain between
collisions, which he then compared with the average length of a saltation trajectory L at a given transport stage u*/u*c.
If λ = L, the probability that a saltating grain will collide with another saltating grain in one saltation is 0·50 – that is,
the probability of a GG collision is 0·50, which is the same as the probability of a GB collision. If λ > L, the
probability of a GG collision is less than 0·50, and if λ < L, the probability of a GG collision is greater than 0·50.

Using the data from Abbott and Francis’ (1977) experiments, Leeder (1979a, figure 4B) produced a graph of λ /L
against transport stage. This graph shows that λ /L = 1 when u*/u*c = 2. Thus, Leeder (1979a) concluded that GG
collisions occur at the same frequency as GB collisions when u*/u*c = 2. In other words, Pg = 0·50 when u*/u*c = 2.
Noting that θ/θc = (u*/u*c)

2, then u*/u*c = 2 corresponds to θ/θc = 4 or G = 0·75. Therefore, the relation between Pg and
G must pass through the point (0·75, 0·5). In addition, logic dictates that the relation also passes through the points (0,
0) and (1, 1). Assuming the relation passing through these three points is a power function, then its equation is

Pg = G2·4 (24)

Although Leeder’s (1979a) model is concerned with grain collisions, it depends on the relation between u*/u*c and
λ/L developed from Abbott and Francis’ (1977) flume experiments. Inasmuch as fluid lift would have been present
in Abbott and Francis’s experiments, its effect is included in Leeder’s (1979a) model and therefore in Equation 24.

The Pg − G relation (Equation 24) was derived independently of the bed-load transport equation (Equation 20), yet
the exponent in the Pg − G relation (Equation 24) is exactly 1 less than the exponent in the bed-load transport
equation, and this difference is accounted for by the exponent of 1 in the eb − G relation (Equation 14). It is difficult
to imagine this congruence occurring by chance. Consequently, it is concluded that this result strongly supports the
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proposed bed-load transport model in general and the explanation for the Pg – G relation based on the relative
frequency of GG and GB collisions in particular.

The connections between Equations 20 and 24 are displayed in Figure 10 which, in a sense, is a summary of the
bed-load transport model. The diagram contains the key equations of the model and shows how they are related to one
another. It suggests that changes in G cause changes in Pg which, in turn, cause sb and eb to change. Thus, sb and eb are
controlled by G via Pg. Inasmuch as eb/sb = ib/ω, ib and ω must also be controlled by G via Pg.

Although a distinction may be drawn between uninterrupted saltation, interrupted saltation, and sheet flow, it
appears that GG collisions conserve streamwise momentum better than do GB ones and that the mechanics of bed-
load transport form a continuum along which Pg increases with G. As a result, the efficiency of bed-load transport eb

increases with Pg and approaches its maximum value of 0·6 as G approaches 1.

Alternative Forms

The bed-load transport equation developed here has its origins in Bagnold’s (1966, 1973) energy equation. As a result,
it uses ib as the measure of bed-load transport rate and ω as the measure of flow intensity. However, this equation may
also be written in the form

φ θb G
u

u
  

*

= ⋅ ⋅1 5 3 4 (25)

where φb = qb/ [(g∆D)0·5D] is the measure of bed-load transport rate (Einstein, 1950) and θ is the measure of flow
intensity. Equation 20 is in fact the product of Equation 25 and ρ(g∆D)1·5, which means that although Equations 20
and 25 contain different variables, they are algebraically equivalent and give identical predictions. Thus, just as

Figure 10. Flow diagram showing the paths whereby shear stress G controls sb, eb, and ib/ω via Pg.
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Equation 20 is a good predictor of ib, Equation 25 is a good predictor of φb. This can be seen in Figure 11 where the
data plot symmetrically around the line of perfect agreement over six orders of magnitude.

Furthermore, just as Equation 20 reduces to Equation 21, so Equation 25 reduces to

φ θb

u

u
  

*

= ⋅1 5 (26)

in the sheet-flow regime (Abrahams, 2003). Equation 26 is of interest because many, if not most, equations for
predicting the rate of bed-load transport in the sheet-flow regime (e.g. Wilson, 1966; Engelund, 1981; Jenkins and
Hanes, 1998) have the form φb = kθ1·5, where the intercept k, whether it is a coefficient or a function, is a measure of
flow resistance. Thus the right side of the equation has the attractive property of being a force-resistance ratio.

Conclusion

In this paper we develop a bed-load transport model that applies to rough turbulent open-channel flows transporting
well sorted non-cohesive sediments over plane mobile beds. It is not the object of this model to predict bed-load
transport rates in natural channels. Rather it is to develop an equation for predicting bed-load transport rates in simple
two-dimensional flows over plane beds. These predicted bed-load transport rates may then be compared with meas-
ured rates in flows affected by bed forms, armouring, or limited sediment availability to assess the impact of these
factors on bed-load transport rates.

This model is based on a revised version of Bagnold’s (1966, 1973) basic energy equation in which the dynamic
friction coefficient tan α is replaced by a new coefficient termed the stress coefficient sb. The stress coefficient is the
tangential bed shear stress transmitted to the bed by grain contact and fluid drag divided by the immersed weight of
the bed load which equals the normal dispersive stress due to grain collisions and fluid lift. The end-product of the
model is the equation

ib = ωG3·4 (20)

Figure 11. Graph of predicted φb against measured φ b. The predictive equation is Equation 25.
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where ib is the immersed bed-load transport rate, ω is flow power, and G is a measure of sediment transport stage. This
equation predicts ib for a wide range of bed shear stress conditions that encompass both the saltation and sheet-flow
regimes.

At high bed shear stress Equation 20 reduces to

ib = ω (21)

which is the bed-load transport equation proposed for sheet flow by Abrahams (2003). This equation would seem to
imply that all the available power is expended in the transport of bed load. But this is not the case, as ib (= W′Ub) is a
measure of transport rate in which the force W′ acts normal to the bed while the velocity Ub acts parallel to it. To
become a work rate, ib must be multiplied by sb (= T/W′). Then the proportion of ω that is dissipated in the transport
of bed load is ibsb/ω. In the sheet-flow regime where ib = ω, sb = tan α ≈ 0·6. Thus, it can be seen that up to 60 per cent
of the available power may be expended in the transport of bed load. This remarkably high transport efficiency is
attributed to two properties of bed-load transport: (1) the loss of streamwise momentum is generally much smaller in
GG collisions than in GB ones; and (2) the relative frequency of GG collisions increases with bed shear stress.

There are many investigators (e.g. Simons and Senturk, 1992, pp. 548–549) who feel that the problem of predicting
bed-load transport rates on plane beds has been solved. Their position is that equations capable of predicting bed-load
transport rates on plane beds already exist in the literature and that, consequently, there is little merit in introducing yet
another one. In defence of Equation 20, we would argue that this equation has several properties that distinguish it
from other equations. For example:

(1) Equation 20 is the only bed-load transport equation that predicts the existence of the ib = ω line (which coincides
with the sheet-flow regime) and the convergence of the (ib, ω) data on this line (which coincides with the saltation
regime);

(2) without adjustments of any kind, Equation 20 provides unbiased estimates of bed-load transport rates in both the
saltation and sheet-flow regimes;

(3) Equation 20 is extraordinarily simple in that it contains only one coefficient and this coefficient is the same in
both the saltation and sheet-flow regimes.

The simplicity, parsimony, accuracy and generality of Equation 20 combine to make this equation uncommonly
attractive as a predictor of bed-load transport rates on plane beds. In addition, Equation 20 provides unbiased esti-
mates of bed-load transport rates in both the saltation and sheet-flow regimes. Given these attributes, Equation 20
would seem to be well suited to serve as a standard against which bed-load transport rates might be compared. Such
a standard would be useful in identifying and quantifying the impact of various phenomena, such as bed forms, bed
armouring and sediment availability, on bed-load transport rates. Employed in this way Equation 20 promises to be a
valuable tool in the study of bed-load transport.
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