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 Selection of Models of Invasive Species Dynamics

 DEBRA P. C. PETERS2

 Abstract: Mathematical and process-based simulation models are powerful tools for synthesizing
 information about invasive species. However, there are a number of different types of models, ranging

 from simple to complex that can be selected for any given application. In this article, a model

 classification framework of three types of models is applied to studies of invasive species that allows

 the objective selection of a model type on the basis of its ability to capture key processes and

 dynamics, yet minimize the errors in prediction. Model selection is illustrated using a series of
 increasingly complex models.

 Additional index words: Nonspatial models, spatially explicit models, spatially implicit models.

 INTRODUCTION

 Biotic invasions remain a critical challenge to ecolo-
 gists, weed scientists, and land managers despite efforts
 to restrict the introduction of alien species and to mini-

 mize the amount of area infested. Although many studies
 have been conducted on various aspects of invasive spe-
 cies, we still lack the ability to successfully predict three
 main aspects of biotic invasions: (1) the conditions under
 which a species will become invasive, (2) the attributes
 that make some species more invasive than others, and
 (3) the dynamics of invasions (Mack et al. 2000). Math-
 ematical and process-based simulation models with an
 ecological conceptual foundation are a powerful tool for
 synthesizing known information about invasive species
 and can be used to examine these three aspects of biotic
 invasions (Higgens and Richardson 1996; Higgens et al.
 1996). However, there are a number of different types
 of models ranging from simple to complex that can be
 selected for any given application. The decision as to
 which type of model to select is not always obvious, yet
 the consequences in terms of errors in prediction of se-
 lecting an inappropriate model can be serious (Peters et
 al. 2004). An objective decision-making framework
 based on study goals relative to trade-offs in the
 strengths and weaknesses of different types of models is
 needed. The objective of this article is to apply a model
 classification framework and selection procedure to stud-
 ies of invasive species. This framework will allow the
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 objective selection of a model type on the basis of its
 ability to capture key processes and dynamics, yet min-
 imize the errors in prediction.

 TYPES OF MODELS AND ERRORS

 There is a broad range of models available for simu-
 lating invasive species dynamics. These models range
 from simple models with very few parameters to com-
 plex models with many parameters. The ability of mod-
 els to represent complex ecological dynamics as well as
 the errors in prediction varies by model type. There are
 two classes of errors that typically occur: "errors of
 omission" refer to those errors associated with missing
 parameters that are potentially important to dynamics,
 and "errors of commission" refer to errors associated
 with including parameters that are not necessary as well
 as to the accumulation of small errors associated with
 each parameter as the number of parameters increases
 (Gardner et al. 1980; O'Neill 1973; Peters et al. 2004;
 Reynolds and Acock 1985).

 In selecting a model type, there is a trade-off between
 simple and complex models in terms of the class of error.
 Simple models with few parameters have small errors of
 commission and yet have limited predictive ability be-
 cause of large errors of omission associated with missing
 processes that are critical to system dynamics. As model
 complexity increases, errors of omission decrease and
 errors of commission increase as more parameters are
 added. The challenge is to select a model that is suffi-
 ciently complex to represent the key processes and yet
 does not include unnecessary parameters.

 Several classifications for distinguishing simple and
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 complex models have been proposed (e.g., Higgens and

 Richardson 1996; Peters et al. 2004). One classification

 is particularly relevant to modeling invasive species dy-

 namics because it distinguishes three types of models

 based on the degree of spatial interactions, the processes

 often cited as important to the spread of invasives: non-

 spatial, spatially implicit, and spatially explicit models

 (Peters et al. 2004). The models are differentiated by

 their inclusion or exclusion of spatial location of simu-

 lated plots and spatially contagious or neighborhood pro-

 cesses that connect simulated plots. Both these charac-

 teristics are often included in studies of invasive species.

 In general, complexity increases from nonspatial to spa-

 tially implicit and spatially explicit models (Peters et al.

 2004), although exceptions are possible (e.g., Cummings

 2002).

 Nonspatial Models. The simplest models are often non-

 spatial where neither spatial location nor contagious pro-

 cesses are included in the input parameters (Peters et al.

 2004). These models are often used to represent specific
 aspects of ecological systems, such as population growth

 and mortality using exponential growth and logistic

 models (Higgens and Richardson 1996). Nonspatial sim-

 ulation models are used to account for variation among

 individuals without regard to spatial variation in the en-

 vironment. For example, plots containing individual

 plants of perennial grasses have been simulated using

 within-plot parameters, such as local recruitment, com-

 petition, and mortality, to successfully represent the av-

 erage dynamics of a large homogeneous grassland (e.g.,

 Symstad et al. 2003). Nonspatial models generally re-

 quire the fewest number of parameters and are expected

 to have the smallest errors of commission of the three

 types of models (see Crawley 1986; Williamson 1989

 for exceptions). However, these models can have the

 highest errors of omission if important spatial processes

 are not represented.

 Spatially Implicit Models. The inclusion of spatially

 structured data into nonspatial models results in spatially

 implicit models (Peters et al. 2004). This type of model

 is most appropriately used when spatial location is im-

 portant, but spatial processes and the landscape context

 are not important to plot dynamics. These models are

 often used in ecology because the physical environment

 is spatially structured and ecological processes are fre-

 quently correlated with spatial variation in the environ-

 ment (Legendre et al. 1989). Examples include regres-
 sion models used to predict potential range distributions

 of invasive trees on the basis of current habitat prefer-

 ences (e.g., Lee et al. 1991). Spatially implicit simulation

 models have been used for the invasion dynamics of

 Russian knapweed [Acroptilon repens (L.) DC], where

 variation in soil texture and native grass sensitivity to

 allelochemicals were examined (e.g., Goslee et al. 2001).

 This type of model often combines a simulation model

 with spatial databases in a geographic information sys-

 tem. Model assumptions include a readily available seed

 source and no net movement of water onto or away from

 a plot. Thus, these models are most useful when local,

 yet spatially variable, plant-scale processes dominate

 system dynamics rather than connectivity among plots,

 such as seed dispersal and water runon-runoff patterns.

 Spatially Explicit Models. The third type of model in-

 cludes both spatial location and contagious or neighbor-

 hood processes to determine dynamics for a specific plot.

 Contagious processes are important under three condi-

 tions: (1) transfers of materials, organisms, energy, etc.

 among sites are large, (2) rates of transfer are determined

 by local conditions, and (3) variables governing local

 scale transfers are spatially heterogeneous (Peters et al.

 2004). Reaction-diffusion models are the simplest form

 used for invasive species. These models have been used

 successfully to represent range expansion of a number

 of animal species and diseases (Hengeveld 1989; Holmes

 et al. 1994; With 2002). However, in some cases, these

 models can underestimate rates of spread by an order of

 magnitude (Andow et al. 1990). Although spatial loca-

 tion of individual modeling elements is not tracked ex-

 plicitly, these models fit best under the spatially explicit

 type of model.

 Simulation models have been developed to represent

 variation in plant attributes, environmental heterogene-

 ity, and stochasticity that cannot be addressed in analyt-

 ical models (Higgens et al. 1996, 2000; Kriticos et al.

 2003; Rastetter et al. 2003). For example, the spread of

 wild oats (Avena fatua L.) in New South Wales was sim-

 ulated based on seed dispersal, a spatial process that con-

 nects simulated cells, and local population processes,

 such as seedling establishment (Auld and Coote 1990).

 Cellular automaton models provide another familiar ex-

 ample for invasive species (Tilman and Kareiva 1997)

 that have been used to examine how habitat shape affects

 rates of colonization (Cummings 2002). Although these

 models are appealing because of the complexity of pro-

 cesses included, they also often have the highest errors

 of commission and highest prediction error of the three

 model types.
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 MODEL SELECTION

 An appropriate model should successfully meet the

 goals of the study by including only the key processes

 and driving variables with important influences on sys-
 tem dynamics. One approach to model selection that is

 often invoked is to start with the simplest model possible
 that includes the key processes expected to be important
 and then add parameters until the model output is similar

 to field observations. An example of this approach is

 provided by research conducted on the recovery of a

 perennial grass across disturbed areas, a process similar

 to the spread of an invasive species. The objective of the

 modeling exercise was to predict recovery times after

 disturbance and to identify the key processes influencing
 recovery. This example also illustrates the close connec-

 tion between modeling and experiments that is required

 for successful problem solving.

 Initial simulations were conducted using a nonspatial

 individual plant-based gap dynamics model (STEPPE)

 for one disturbance size (<1 m2, Coffin and Lauenroth
 1990). Plots were simulated with the same environmen-

 tal input parameters; however, each plot had slightly dif-

 ferent species parameters for recruitment and mortality

 because STEPPE is stochastic for these processes. Seeds

 were assumed to always be available, thus recruitment

 was controlled by the probability of seedling establish-

 ment. Because simulated recovery times were faster than

 expected on the basis of field observations, additional
 runs were conducted where seed availability was related

 to annual precipitation. These model results were similar

 to field observations on small disturbances and led to

 new experiments on seed production and presence in the

 soil (Coffin and Lauenroth 1989, 1992).

 Because many disturbances are larger than 1 m2 and

 occur across a range of soils with properties that influ-

 ence seedling establishment, additional simulations were

 conducted for disturbances ranging in size from 1 to 16

 m2 with one of five soil textures (Coffin and Lauenroth
 1994). In one set of simulations, independent plots were

 simulated using a spatially implicit model that accounted

 for variation in soil type and the range in disturbance
 sizes. In the other set, the contagious process of seed

 dispersal by wind was simulated using a grid of con-

 nected plots in a spatially explicit model. Results showed

 that the spatially implicit model was able to capture re-
 covery dynamics on different soils for small, disturbed

 areas where seed availability is not limiting. However,
 the spatially explicit model provided better predictive
 ability as disturbance size increased beyond the seed dis-

 persal distance of the recovering grass.

 In conclusion, the sequential addition of parameters

 and increase in model complexity can allow the identi-

 fication of key parameters and processes, both for inclu-

 sion into the model and as hypotheses to be tested by

 new experiments. This approach minimizes the error of

 commission by only adding parameters when needed and

 minimizes the error of omission by adding new param-

 eters when model results have low predictive ability. A

 similar approach of sequential model development and

 selection, from simple to complex, can be used for sim-

 ulating invasive species dynamics. Objective selection of

 a model is particularly important in invasive species

 studies where errors of prediction need to be minimized

 when predicting dynamics and making management de-
 cisions.
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