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Patchiness of above-ground vegetation, such as that in semi-arid grasslands
and shrublands, can pose problems in sampling plant cover, biomass and
productivity. We present a method of measuring above-ground plant biomass
and production that can be applied consistently among vegetation types and
that generates seasonal, spatially-explicit results. Results from 15 sites within
the Jornada Basin (Chihuahuan Desert, New Mexico, U.S.A.) confirm con-
siderable patchiness and non-normal distributions of plant biomass, even in
grasslands. However, tests of adequacy of sample size and of sample error
associated with the regression-based estimates of biomass confirmed that the
estimates of above-ground net primary productivity are sufficiently precise
to be useful in comparisons of both shrub-dominated and grassland sites.
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Introduction

Semi-arid ecosystems are characterized by low plant biomass and vegetative cover,
relative to more mesic systems. Moreover, most arid and semi-arid ecosystems are
highly variable in both spatial and temporal dimensions. Long-lived perennials (woody
plants and succulents) may form patches of high biomass, interspersed by nearly bare
areas. During occasional wet periods, average biomass values may increase due to the lush
growth of annuals and other short-lived or opportunistic plants. This extreme vari-
ability poses challenges for any attempt to quantify plant cover, biomass or productivity.
Both sparseness (low mean values) and patchiness of semi-arid vegetation demand
extensive and careful sampling to determine mean values and to compare means and
variability between sites or over time. However, few published reports describe the
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patchiness of these systems in quantitative terms, or document the adequacy of sampling
regimen or sample size relative to the heterogeneity of the systems under study. Hence
comparisons between published values are difficult to interpret with confidence.

The Jornada Basin Long-Term Ecological Research (LTER) program is investigating
spatial and temporal patterns of above-ground net primary production (ANPP) in
ecoystems of varying structure, from semi-desert grasslands to shrub-dominated sys-
tems, as part of an integrated assessment of the causes and consequences of desertifica-
tion. In the south-western U.S.A., as in several other semi-arid regions of the world, the
desertification of perennial grasslands concerns land managers. Of particular import-
ance is understanding how these structural changes in ecosystems have altered the
magnitude of productivity, the seasonal timing of plant production and the spatial
distribution of production. One hypothesis is that redistribution of soil resources, exacer-
bated by the presence of long-lived woody plants, has resulted in the accumulation of
resources under shrubs and the loss of resources from inter-shrub openings—the ‘resource
redistribution’ hypothesis (Schlesinger et al., 1990; Reynolds et al., 1999). This hypothesis
has generated interest in the spatial patterns of plant biomass and productivity.

Primary productivity, the fixation of carbon dioxide into organic molecules by
photosynthetic organisms, is a key feature of ecosystem function. However, net primary
production (NPP) has proven a difficult process to quantify and understand. First,
some portion of NPP is realized as growth of below-ground plant parts, and in terrestrial
communities this portion can be difficult to quantify. Second, even investigations of
above-ground NPP (ANPP) have been problematic. Conventional approaches in grass-
lands have differed from those in forests, woodlands and shrublands. Some
methods introduce substantial multiplicative errors, leading to low confidence in the
measurements; other approaches involve clipping or other manipulations, that in them-
selves can alter plant growth and allocation patterns. Most methods cannot provide
repeated estimates of productivity for specific plots of ground. This has limited our
ability to study spatial variation, which is critical to our understanding of temporal
variation in production patterns.

We sought to develop a method for measuring ANPP that can be applied consistently
over space and time, in vegetation of different types, and that can quantify the
relative heterogeneity of different ecosystems. Our criteria for such a method
included: field and lab methods efficient enough to allow effective sampling
over a large number of field sites; field and lab measures straightforward enough that
trained crews can apply them consistently, even with turnover of personnel over time;
methods equally effective or sensitive in ecosystems of very different structure;
both spatial and temporal patterns detectable with some resolution; sampling non-
destructive, to permit long-term monitoring in a particular study site; powerful enough
to detect differences of ecological significance (e.g. 10% or greater).

This paper describes such a method, which we have used successfully in long-term
studies in the northern Chihuahuan Desert, New Mexico, U.S.A. We present here
a description of our method and an assessment of its strengths and weaknesses com-
pared with conventional methods of measuring ANPP. We use the method to describe
the spatial patchiness of grasslands and shrub-dominated ecosystems at the Jornada
Basin LTER site, and then discuss the implications for estimating and comparing plant
community properties between sites or over time. This approach provides the basis for
the Jornada Basin LTER program’s ANPP monitoring.

Materials and methods

Study site

The Jornada Basin LTER program carries out research on the Jornada Experimental
Range, administered by the U.S. Department of Agriculture’s Agricultural Research



PATCHINESS OF SEMI-ARID ECOSYSTEMS 259
Service (ARS), and on the Chihuahuan Desert Rangeland Research Center (formerly
the College Ranch), administered by New Mexico State University. The sites are located
37 km north-east of Las Cruces, NM, U.S.A. Together they encompass about 104,000
ha devoted entirely to research. The Experimental Range was established in 1915, and
the College Ranch in 1927; research efforts since then have been carried out by
university staff, ARS scientists, other federal agencies, the International Biological
Programme (IBP), and, most recently, the U.S. National Science Foundation-funded
LTER program.

The Jornada Basin of southern New Mexico has been the site of a dramatic and
well-documented conversion of vegetation from semi-desert grassland (dominated by
Bouteloua eriopoda, black grama) to shrublands of creosote bush, mesquite, and tarbush.
Long-term data sets from the Jornada Experimental Range document this change in
composition and structure (Buffington & Herbel, 1965; Gibbens & Beck, 1988),
with increasing numbers and sizes of shrubs accompanying a decrease in the abundance
and cover of perennial grasses. The flora of the Jornada Basin is well-known. The
Jornada LTER program maintains a plant species checklist (available via the World
Wide Web at http://jornada.nmsu.edu/), with voucher specimens in the New Mexico
State University Herbarium. Plant nomenclature follows that of Correll and Johnston
(1970), except for grasses which are named according to Allred (1993). Those few
non-grass taxa not found in Texas are named according to Kearney & Peebles (1964).

Fifteen sites were selected for study, three in each of five ecosystem types: Bouteloua-
dominated grasslands; Larrea tridentata or creosote bush shrub stands on bajada slopes;
Prosopis glandulosa or mesquite shrublands; Flourensia cernua or tarbush shrub areas on
alluvial flats; and grass-dominated playas or ephemeral lakebeds. Livestock grazing has
been excluded from all sites since at least 1989.

Sampling design and methods

The three sites of each ecosystem type were explicitly selected to encompass the range of
natural variation within ecosystem types. For example, very small, medium, and large
playas are each represented in the playa type; differences in size are undoubtedly
associated with differences in frequency of flooding, nutrient status, etc. Shrub-
dominated sites (creosote, mesquite and tarbush) range from those with short or small
shrubs to those with large and well-developed shrub canopies. Because sampling
effort at each site is so intensive, there were real limitations on the number of sites of
each type that could be studied. We considered three sites per type to be the maximum
number feasible, but n"3 is too few for random selection to adequately represent the
range of site conditions present. Our intention in the selection of sites was to represent as
large a range of variation as possible within the southern portion of the Jornada Basin,
and to make any statistical test of differences among vegetation types as rigorous as
possible.

Within each site, we established a systematic grid of permanent quadrats. The
1]1 m quadrats are located on a grid, with 10 m between the equivalent corners of
quadrats. The grids contain 49 quadrats laid out in a square pattern of 7]7 (Fig. 1).
The one exception is the College Playa, where the small area available for experimental
work forced us to arrange quadrats in a 3]16 pattern, yielding only 48 quadrats.
Buffer strips lie between the outermost quadrats and any nearby fences or other
studies; in the smallest study sites these buffer zones are a minimum of 5-m wide,
but in most sites such buffers are several tens of meters in width. Quadrats are
marked by large aluminum nails with washers, two nails marking the diagonal corners of
each quadrat.

Plant biomass within these quadrats is estimated by making non-destructive mea-
surements of the dimensions (cover and height) of individual plants or plant parts.



Figure 1. Diagram of arrangement of grid of permanent 1 m2 quadrats at each site. Quadrats
(not shown to scale) are located on a 10 m]10 m grid.
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A portable square frame with internal area 1 m2 is mounted with hose clamps on four
tubular PVC legs, which fit over the nails marking the corners of the quadrat. The
interior of the frame is gridded with twine into 100 10 cm]10 cm sections (each
constituting 1% of the quadrat’s area). The frame slides up or down the corner legs to
allow placement as close as possible to the plant canopy; the frame is kept horizontal
even if the ground surface is uneven or sloped. Cover or projected surface area for
a plant or a plant part is estimated by counting the grid squares or portions of squares
occupied by that plant or part. Very small plants or plant parts are measured with
a hand-held clear acrylic plate on which are marked squares of 0)5, 0)1, 0)05 and 0)01%
area (that is, one-half, one-tenth, one-twentieth, and one-one-hundredth of the area of
a single 10 cm]10 cm grid square). Vertical height is measured with a hand-held tape
measure, to the nearest cm. When a plant part extends into the quadrat from outside, or
grows out of the quadrat from the inside, only the portion of the plant physically
encompassed in the rectangular volume above the quadrat is measured.

During the first three years of work, reference specimens of each species encountered
in the quadrats of a site were harvested from plants adjacent to that site. Plants or plant
parts were measured in the same way as in the permanent quadrats; samples were taken
of plants or plant parts encompassing the range of sizes encountered in the quadrats.
Sample size was ten for most species, but 15 or 20 for dominant shrubs and perennial
grasses. Sparse or infrequently-encountered species were harvested as available; sample
sizes for these were often quite small. Harvested material was returned to the laboratory,
where dead material was removed and living biomass (or in the case of plants where
portions may have senesced, the current season’s growth) was dried at 603C.
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Sampling and harvests take place three times per year. Winter sampling occurs in
February, at a time when most species are dormant but some winter annuals have
germinated and are present as rosettes. Spring sampling occurs in May, when most
shrubs have leafed out and winter and spring annuals have reached full size and
reproduction has commenced. Fall sampling takes place in September–October, when
shrubs, perennial grasses, and summer annuals have reached peak biomass, and repro-
ductive activity associated with late-summer rains has begun.

Analysis and interpretation

Harvest data were used to construct regressions of plant dimensions (plant volume) vs.
live biomass. We evaluated several different ways of measuring plant dimension
(e.g. diameter for small rosettes), but regressions were most satisfactory using the
measurements of cover and height as described above. Consistent field methods also
minimized within- and between-observer variation relative to special protocols for
different species. Where plants were large or plant volumes diffuse (as for
Bouteloua eriopoda, a stoloniferous grass that forms large patches) or irregular (as for the
many branch systems of large shrubs), greater precision of cover estimates and tighter
regressions were obtained by treating the plant as a series of small parts, each measured
individually. Harvests were made by site and by sampling date, and initial regressions
were calculated separately. After 4 years (1989–1992), we calculated composite regres-
sions using the total data set for each species.

Volume (cm3) for a plant or plant part (observation) is calculated as the product of
cover (where cover"100 cm2 multipled by the % cover measured), and height in cm.
Volume thus is not actual plant volume but instead the volume of a rectangular solid of
the same linear dimensions as the plant or plant part, used as an index. Linear
regressions of live biomass (g) against volume were calculated for each species; each
regression was tested for significant improvement due to separate consideration of sites
or of harvest dates (using PROC GLM of SAS System for Windows; SAS Institute Inc.,
1989–1996). The true relationship between plant volume and biomass is probably not
linear, but this regression approach proved robust enough to estimate plant biomass
adequately, and simple enough to allow application of the method to the diverse species
and structures of Jornada vegetation.

Regressions were calculated for 154 species (plus pooled small forb seedlings, treated
as a single group for each vegetation type). Of these, only two species demonstrated
significant differences among individual harvest dates (Pleuraphis["Hilaria]
mutica and Panicum obtusum, both playa grasses; year-to-year differences in playa
flooding probably shape inter-annual variability in greening of the perennial grasses).
Regressions for ten other species demonstrated significant differences among sea-
sons, when harvests for different years were combined. These include some of the
important dominants of the area (e.g. Larrea tridentata, Bouteloua eriopoda, and Muhlen-
bergia porteri ). Significant differences among sites were encountered for 13 other
species, requiring the use of separate regressions for each site in which that species was
encountered; Prosopis glandulosa or mesquite was among these. All other species were
represented adequately by a single regression covering all seasons and sites (that is, no
improvement in r2 noted when season and/or site was included in the analysis). In all,
240 regressions were used to calculate biomass for plant species encountered on the
study sites.

Error is minimized using quality control procedures at each step: field measurements
and sampling, data recording, sorting and analysis. First, field sampling is performed
by teams familiar with the local flora and with measurement protocols. Group
calibration of measurements and review of methods are integrated into the
field-sampling program. All lab-sorting of live from dead biomass is done by a single
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individual to maintain consistency in the measurements from which the biomass regres-
sions are derived.

For each quadrat, biomass is estimated from the appropriate regression for each
observation (plant or plant part) for each species; then the estimated biomass values are
summed by species to create an output data set containing the calculated biomass for
each species in each quadrat. Biomass is summed across all species to obtain total
biomass per m2 quadrat. ANPP is measured as the positive increment of biomass for
a species in a quadrat, summed for all species in a quadrat, over a time interval. This is
certainly an underestimate, as plant parts might be produced and lost (e.g. to herbivory
or senescence) within a time interval. However, sample dates are timed to minimize
senescence or failure to detect short-lived plants; dates of sampling are sometimes
shifted in response to unusual weather conditions that hasten or retard the customary
phenological pattern.

Results of this sampling regimen are quantitative estimates of biomass and ANPP of
all species in the plant community for each quadrat. After summing across all species in
a quadrat, standard statistical techniques can be used to describe means, ranges, and
other measures of central tendency and of variability for the quadrats within a site.
Alternatively, the spatially-explicit values for each grid can be used in geostatistical
analyses to model the distribution of biomass or of productivity across the study area. In
this paper we present descriptions of the variability associated with our regression
estimates. We also document the distribution of biomass and of production values for
individual grassland and shrub-dominated sites in both spring and late-summer growing
seasons. Finally, we document the adequacy of sampling to allow characterization and
comparison of biomass and production among sites and among ecosystem types.

Results

Regressions of biomass vs. volume for individual species

The general approach of calculating a rectangular index of plant volume and using
a linear regression between live mass and volume appears to be satisfactory for most
species. Harvests over the first 4 years of data collection resulted in sufficient sample
sizes for most species to perform a rigorous test of whether regressions were significantly
improved by considering site or season. The linear regressions for most species had
associated p-values of 0)001 or less, with r2 values of 0)6–0)99 (Fig. 2). Regressions for
dominant species (those shrubs, grasses, and forbs contributing substantial biomass on
any site) generally yielded r2-values greater than 0)75. Those species with poor fits (low
values of r2) were annual or perennial forbs of low biomass (low slopes) and therefore of
relatively little importance at the community level. Regressions for the important
perennial grasses had excellent fits for the growing season (spring and fall) but the
poorest fits for winter seasons, when the amount of above-ground material remaining
green was small and highly variable.

Visual inspection of residuals for individual regressions revealed that fits for larger
plant volumes (greater biomass values) were unbiased. Allowing the regressions to have
non-zero intercepts facilitated good fits for the larger volumes, but sometimes resulted in
poor fits for the smallest volumes (negative intercepts); in the analysis this problem is
handled by substituting a very small positive (trace) biomass value for any negative value
calculated from the regression. We were more willing to accept errors in the estimation
of very small biomass values, since these constitute such a small proportion of the total
for the community, than of the larger values, especially for dominant species. Figure 3
presents examples of regressions for two dominant plant species, Larrea tridentata (fall
season biomass, n"144, r2

"0)9168) and Bouteloua eriopoda (fall season biomass,
n"198, r2

"0)8134).



Figure 2. Frequency distribution of r2-values for the 240 regressions of live biomass (dry mass, g)
against plant volume index.
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Distribution of values of biomass and of productivity

We plotted the frequency distribution of values of total biomass for individual 1-m2
quadrats, for spring 1991 and fall 1991 (Fig. 4). Strong differences in the spatial
distribution of biomass were apparent between shrub-dominated ecosystems and grass-
lands. The modal (most frequent) values of aboveground biomass in shrub-dominated
systems were the lowest values (0}(25)0 g m!2), but creosote, mesquite, and tarbush
communities also include many quadrats with very high biomass. In contrast,
Bouteloua-dominated grasslands have modal values in the range of 50}200 g m!2, with
most quadrat values clustered near the mode (and mean). However, even grasslands
include a small number of patches of extremely high biomass (generally clumps of large
succulents such as Yucca elata or Opuntia phaeocantha); hence patchiness is an important
characteristic of Chihuahuan Desert grasslands as well as shrublands. Overall, biomass
is clearly not distributed homogeneously across the landscape; nor are biomass values
normally distributed in a statistical sense.

Variability at different spatial scales

The extreme patchiness shown within individual sites far exceeds the range of variation
between sites. Calculations of standard deviation or of coefficients of variation are
misleading when individual values are not normally distributed; hence we chose not to
use these as measures of variability in comparing biomass and production between
ecosystem types. Parameters such as range or (better) interquartile range (the spread
among the central 50% of data values) are more robust indicators of variability when
data are distributed non-normally, as is the case for these patchy semi-arid systems. We
used simple ranges of values to compare variation within sites, between sites within an
ecosystem type, and across the five ecosystem types in the Jornada Basin. The range of
biomass values within a single site was clearly much larger than the range of mean
biomass between sites within an ecosystem type, or even the range of mean biomass
across the five ecosystem types (e.g. fall 1991 values in Table 1).



Figure 3. Sample regression lines and 95% confidence intervals for two dominant species. (a) fall
biomass vs. volume for Larrea tridentata; (b) fall biomass vs. volume for Bouteloua eriopoda.
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Adequacy of sample size

We used a jack-knife or resampling technique to assess the adequacy of sample size
(number of quadrats) for estimates of mean biomass per site and mean ANPP per time
interval per site. We assumed that sites with the greatest ‘patchiness’ of biomass would
be the most difficult to sample adequately, and therefore selected the most patchy
shrubland, the North Mesquite site, and the most patchy grassland, the IBP Grassland,
for investigation. We chose 1991 as a ‘typical’ year for plant production (neither drought
nor unusually wet conditions), and used data from spring 1991 and fall 1991 for the
assessment. These data consisted of estimated total biomass for each of the 49 quadrats
per site, and estimated net above-ground production over the February–May (spring)
and May–October (fall) intervals for each of the 49 quadrats. The 49 values for a site



Figure 4. Frequency distributions of total biomass values (g m!2) for individual quadrats from
five ecosystem types at the Jornada LTER site. All quadrats from the three sites per ecosystem
type are pooled. (a) spring 1991; (b) fall 1991.
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were randomly ordered; then a running mean was calculated for samples of the range
1–49 quadrats. A given sample size was considered ‘adequate’ when the running mean
reached (and stayed within) the interval of the final mean $10%. The randomization
procedure and running average calculations were repeated 100 times for each data set.
We inspected both the plots of running means vs. cumulative sample size (number of
quadrats), and the frequency distribution of adequate sample sizes for the 100 runs.

Mean biomass for the IBP grassland site was 106 g m!2 in spring 1991 and 237 g m!2

in fall 1991. Most of the resampling runs reached adequate sample size (running mean
consistently within $10% of the final mean) at fewer than 45 quadrats (Fig. 5a). There
were a few sample runs, especially in spring when mean biomass was relatively low, in
which adequate sample size was not reached until nearly 49 quadrats. The patchiness of



Table 1. Ranked ranges of variation in values of biomass and of seasonal produc-
tion for fall 1991 data from 15 sites at the Jornada Basin LTER

Range of biomass Range of production
Site or scale values Site values

P-SMAL 33 T-ALL 13
T-ALL 77 P-SMAL 29
P-ALL 113 C-ALL 30
C-ALL 142 C-CALI 64
G-ALL 144 G-ALL 69
ALL SITES 206 ALL SITES 80
M-ALL 236 P-ALL 107
P-COLL 323 M-ALL 113
P-TOBO 516 P-TOBO 175
C-CALI 527 G-SUMM 192
G-BASN 620 C-SAND 227
T-WEST 645 C-GRAV 248
T-TAYL 739 M-RABB 261
C-GRAV 943 G-BASN 269
M-RABB 1060 T-WEST 303
M-WELL 1087 T-EAST 321
C-SAND 1119 P-COLL 365
T-EAST 1245 T-TAYL 437
M-NORT 2078 M-WELL 696
G-IBPE 3445 M-NORT 1082
G-SUMM 3546 G-IBPE 2226

Ranges for individual sites (capital font) represent the total range of values (g m!2) for the 49 quadrats per
site. Ranges for ecosystem types (bold italic font) represent the range of the mean values for the 3 sites per
ecosystem type. C, creosote sites; G, grassland sites; M, mesquite sites; P, playas; T, tarbush sites; four-letter
acronyms following letter indicate specific site name. Ranges for all sites (italic font) represent the range of the
mean values for the five ecosystem types.
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biomass in the IBP grassland was caused by the occurrence of just two large clumps of
Yucca elata; these large woody succulents caused unusually high values of biomass in
two quadrats relative to the other 47.

The North mesquite site is dominated by large ‘coppice dunes’ of Prosopis glandulosa,
where blown soil and organic matter have accumulated at the base of the low multi-
stemmed clumps, separated by extensive, nearly bare inter-dune spaces. Mean above-
ground biomass for this site was 253 g m!2 in spring 1991 and 412 g m!2 in fall 1991.
Again, most sampling runs reached adequate sample size in fewer than 45 quadrats
(Fig. 5b). A substantial portion of the sample runs reached adequate size in as few as 30
quadrats.

Net productivity for the interval February–May 1991 (spring 1991) averaged
55 g m!2 for the IBP grassland, compared with 151 g m!2 for the same site in fall 1991
(May–Oct interval). Adequate sample sizes for the spring sampling runs ranged from 40
to as high as 49 (running mean not stabilizing until the final quadrat sampled), but again
the majority of sample runs reached adequate sample size at fewer than 45 quadrats
(Fig. 5c). In fall 1991, adequate sampling sizes ranged from fewer than 10 quadrats to
46 quadrats.

Productivity for the North Mesquite site increased from an average of 34 g m!2 for
the spring 1991 interval, to 164 g m!2 for fall 1991. Adequate sample sizes ranged from
20 quadrats to roughly 45 quadrats for the large majority of sample runs (Fig. 5d).



Figure 5. Running means against sample sizes for jack-knifed calculations of estimated mean
biomass and mean productivity for two Chihuahuan Desert sites. The 49 quadrats per site were
resampled in random order and the running mean for the parameter of interest was calculated, for
100 runs per site. For sake of clarity, only the first and the last run to converge to within 10% of the
final mean value, and 25 other randomly selected runs of the 100, are shown. (a) running mean of
biomass (g m!2) in spring 1991 in the IBP grassland site; (b) running mean of biomass (g m!2)
in spring 1991 in the North Mesquite site; (c) running mean of ANPP (g m!2) for the
summer–fall interval in 1991 in the IBP grassland site; (d) running mean of ANPP (g m!2) for the
summer–fall interval in 1991 in the North Mesquite site.
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Results of field sampling program

Results of the first few years of data collection demonstrated the feasibility of our
approach for estimating biomass and productivity in these semi-arid ecosystems. Dif-
ferences between sites in a season, or between seasons for a given site, for mean
above-ground biomass typically exceeded 10% of the average value by a comfortable
margin. Often the differences were in the order of 50% or more of the mean value
for the three sites in an ecosystem type; for example, mean above-ground biomass values
for the three Larrea-dominated shrublands in fall 1991 were 103, 192, and 245 g m!2,
while the three grassland values for that sample period were 172, 237, and 315 g m!2.
The same pattern holds true for seasonal productivity estimates. Winter season values
for most ecosystem types range from 0 to 30 g m!2; spring (February–May) values,
usually highest in shrub-dominated systems, range from 50 to 150 g m!2; and late
summer productivity (May–October) values are in that same range, usually highest for
grasslands. Summing across an entire year (1991), mean annual ANPP ranged from
48 g m!2 yr!1 in one playa site to around 250 g m!2 yr!1 in two of the grasslands and
nearly 325 g m!2 year!1 in another playa. Our results confirm that ANPP can be quite
variable between years in these semi-arid ecosystems, subject as they are to considerable
inter-annual differences in precipitation. However, preliminary results do not
suggest dramatic and consistent differences between ecosystem types in ANPP.

Discussion

Our system for estimating ANPP has a number of advantages. Chief among these are
the comparability and consistency of methods and sampling intensity in ecosystems of
varying structure; the relative efficiency of field sampling, allowing the study of
a large number of sites (15) multiple times per year; and, after initial harvests are
completed, minimal destructive sampling and impact on long-term study sites. Resulting
data sets contain valuable information on both the relative abundance of species in the
community (biomass estimates) and the functional contributions of those species (sea-
sonal productivity estimates).

Our methodology, like any other, is a trade-off between advantages and defi-
ciencies. Quadrat size, sampling frequency, and plant dimensions used as measures of
volume are all compromises; each could be optimized for particular species or species
groups, but we have foregone this optimization in favor of efficiency and consist-
ency of field sampling. Our 15 dispersed field sites can be sampled with a 4–6 person
team in 5–15 days of field work, depending on the biomass and diversity of annuals
present in a given season. Like most other measures of ANPP based on physical samples
or measurements of plants, it is growth of above-ground tissues that is estimated, not
productivity in the sense of photosynthetic carbon fixation.

As reviews of available methodologies suggest, measuring net primary productivity is
not a straightforward exercise (Singh et al., 1975; Whittaker & Marks, 1975;
McNaughton et al., 1996). Major approaches might be classified as plot-based, plant-
based, and physiological; each of these has limitations in the context of a long-term
program aimed at quantifying spatial and temporal variaibility. The typical approach for
grasslands is the repeated harvest of replicate plots over time. This is logistically
difficult in slow-growing perennial vegetation, as one quickly exhausts the supply of
undisturbed replicate plots in a long-term study. Spatial variability exacerbates the
problem, as a large number of replicates is needed at each sample date to provide an
adequate sample. Harvest or clipping has its own limitations of interpretation, even in
grasslands (Singh et al., 1975; Lauenroth & Whitman, 1977), especially if grazing or
protection from grazing must be taken into consideration (McNaughton et al., 1996).

Conventional measures of productivity in western U.S. rangelands are usually based
on visual estimates, with calibration data rarely presented. Use of these estimates for
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comparative purposes is problematic since one must take on faith consistency between
observers and over time. Also, reported rangeland productivity values often include
only forage species, omitting those plants not often used by livestock; thus it is difficult
to compare these values with those obtained in any other way for the entire plant
community.

Conventional plant-based methods such as dimension analysis can lead to large
multiplicative errors in scaling up from individual plants to some area-based estimate of
production. In practice, the labor (and the destructive harvests) required to make such
measurements limits investigators to no more than a handful of dominant species in an
ecosystem. This is a real problem in diverse systems where there is value in understand-
ing the productivity of a large number of species. Finally, these plant-based measures
make it difficult to relate productivity estimates to specific areas or to understand
spatial patterns of productivity.

Seasonal measurements of photosynthetic rates and carbon fixation (or models of
those processes) will not necessarily be well correlated in time with the appearance of
above-ground growth, as much fixed carbon can be stored in below-ground tissues. We
acknowledge that much of the above-ground ‘growth’ we measure comes from stored
reserves and not from current photosynthesis. Annual totals, though, should be more
closely correlated. Detailed physiological approaches are also difficult to apply to the
diverse mix of species in these semi-arid communities, and are not easily adapted to
assessing spatial patterns of productivity.

Any technique involving episodes of sampling at discrete dates will lead to errors of
underestimation, for example, where leaf turnover is rapid, damage by herbivores is
severe, or some annual species mature and senesce in between sample dates. We
presume these errors of underestimation to be considerable in this as in other environ-
ments, but have attempted to minimize these by sampling seasonally and by adjusting
sampling dates according to phenology.

Errors of overestimation come from the inherent bias of using increments or dif-
ferences between sample dates as the basic measure of productivity. Negative in-
crements, whether true declines in the standing crop of a plant or simple measurement
error, are ignored, while all positive ones (some of which might be error) are counted as
production (Sala et al., 1988; Biondini et al., 1991). Biondini et al. (1991) asserted that
these overestimation errors will usually outweigh underestimations. The statistical tech-
nique of Sala et al. (1988) uses the observed variances of the biomass estimates at each
sample date to adjust the mean differences to eliminate the overestimation error;
application of the statistical correction to every increment for each species in our 15 sites
would be unwieldy, though possible. For our purposes, though, we are satisfied with
comparative estimates. Our greatest interest is in the patterns of variability between sites
and between sample periods; given that all our values are subject to the same limitation,
we can compare and contrast values obtained for different sites or for different
years with confidence.

Our approach allows a quantitative characterization of spatial heterogeneity in semi-
arid ecosystems, with important lessons for researchers. First, patchiness within indi-
vidual sites is tremendous, far exceeding the differences in mean biomass between
sites or even between ecosystem types of vastly differing structure. This patchiness
poses severe challenges for sampling; nearly 50 quadrats (or 50 m2) per site are
sometimes necessary to arrive at any confidence in estimates of mean above-ground
properties. Many studies in the literature have presented estimates of cover or biomass
based (apparently) on less intensive sampling, and sample size adequacy is rarely
documented. We suggest caution, therefore, in using published values from differ-
ent studies to compare cover, biomass or productivity estimates unless such documenta-
tion is available.

Second, the dramatic non-normality of distribution of biomass values means that
summary statistics such as the coefficient of variation or the standard deviation or
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standard error (so commonly presented) are not useful measures of the real variability of
estimates of biomass and production. These parameters are quite sensitive to non-
normality in the underlying distributions, and the distribution of biomass across the
surface of these ecosystems is definitely non-normal. Simple transformations (e.g.
a logarithmic transformation) of our data were not sufficient to arrive at normality.
Hence we recommend strongly that researchers use caution and select more appropriate
measures of variability when comparing means or variation between sites or in the same
site over time.
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