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Abstract. Geostatistical analyses show that the distribution of soil N, P and K is strongly
associated with the presence of shrubs in desert habitats. Shrubs concentrate the biogeochemical
cycle of these elements in ‘islands of fertility’ that are localized beneath their canopies, while
adjacent barren, intershrub spaces are comparatively devoid of biotic activity. Both physical
and biological processes are involved in the formation of shrub islands. Losses of semiarid
grassland in favor of invading shrubs initiate these changes in the distribution of soil nutrients,
which may promote the further invasion and persistence of shrubs and causc potential fecdbacks
between desertification and the Earth’s climate system.

Introduction

Where arid environments are dominated by shrub vegetation, the distribu-
tion of soil propertics is markedly patchy, with strong accumulations of plant
nutrients under shrubs and relatively infertile soils in the intershrub spaces
(Noy-Meir 1985). These ‘islands of fertility’ characterize desert habitats on all
continents, but they are particularly well described in the American South-
west. Recently, Schlesinger et al. (1996) used geostatistics to compare the
scale of soil heterogeneity in arid habitats dominated by shrubs and in adja-
cent areas of semiarid grassland. A near-random distribution of extractable
nitrogen was found in grassland soils, but in deserts dominated by Larrea
tridentata. the distribution of soil N was markedly autocorrelated at a scale
close to the average size of shrubs (Figure 1).

Patchy distributions of microbial biomass (Mazzarino et al. 1991, Gallardo
& Schlesinger 1992; Smith et al. 1994; Herman et al. 1995), nematodes
(Freckman & Mankau 1986), and microarthropods {Santos et al. 1978) refiect
the heterogeneous distribution of soil nutrients in deserts. The patchy habitat
created by shrubs also determnines the biodiversity of animmals at higher trophic
levels, including lizards and birds (Pianka 1967; Naranjo & Raitt 1993).
Indeed, most ecosystem function in shrub deserts is localized under vegeta-
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Figure 1. Spherical model semivariograms for the distribution of available N in grassland and
desert soils at the Sevilleta National Wildlife Refuge (2= 1 each) and the J ornada Experimental
Range (1 = 2 each), in the Chihuahuan Desert of New Mexico. The range of spatial dependence
or autocorrelation is designated as Ao in each panel. From Schlesinger et al. (1996).

tion, while the adjacent shrub interspaces are comparatively devoid of biotic
activity.

Origins of islands of fertility in desert shrublands

Despite widespread observations of shrub islands in deserts, we have only
a limited understanding of their dynamics — including processes leading to
their formation and degradation. Biotic processes, such as the deposition of
plant litter beneath the shrub canopy, are certainly involved, but the potential
contributions of abiotic processes, such as soil erosion, are less frequently
investigated. Coppinger et al. (1991) examined the distribution of 1%7Cs in
a semiarid steppe, concluding that wind erosion redistributes soil materials
across the landscape. where they are caught by shrub canopies and accumulate
in the soil mounds beneath shrubs. Working in an area of southeastern Arizona
where grasslands have recently been invaded by shrubland, Parsons et al.
(1992) suggested that differential rainsplash, mediated by the dissipation of
raindrop energy in the shrub canopy, resulted in a net transport of soil fines
from interspaces to shrub mounds. Under many of the larger shrubs, the soil
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mound containcd remnants of the surface (A-) horizon of the former grassland
soil. Between the shrubs, the A-horizon had been eroded when the grassland
was replaced by shrubland. Thus, the large mounds were partly erosional
and partly depositional features (Abrahams & Parsons 1991, Abrahams ct al.
1995).

Biotic processes leading to the development of islands of fertility include
plant uptake of essential nutrients, followed by the deposition of litter in the
localized areas beneath shrubs. In some areas, shrubs appear to ‘mine’ nutri-
ents from the soils of the interspace (Garner & Steinberger 1989), where the
bare soils may support a cryptobiotic crust of algae, fungi and soil bacteria
that fix nitrogen (West 1990). Some desert shrubs, such as acacia (Acacia
ssp.) and mesquite (Prosopis glandulosa) maintain symbiotic nitrogen-fixing
bacteria in their rooting system, coniributing to the accumulation of nitrogen
beneath their canopy (Gerakis & Tsangarakis 1970; Garcia-Moya & McKell
1970; Tiedemann & Klemmedson 1973; Virginia & Jarrell 1983; Lajtha &
Schlesinger 1986; Wright & Honea 1986). A number of desert shrubs also
funnel nutrient-rich stemflow waters to the soil beneath their canopy (Névar
& Bryan 1990; Mauchamp & Jancau 1993; Martinez-Meza & Whitford 1996;
Whitford et al. 1997). Digging by rodents, especially kangaroo rats, redis-
tributes soil materials in desert landscapes, leading to patches of fertility that
may become preferred sites for the establishment of annual plants and shrub
seedlings (Mun & Whitford 1990; Chew & Whitford 1992; Whitford 1993).

Development of horizontal pattern in desert soils

Schlesinger et al. (1996) attempted to distinguish the importance of biotic
versus abiotic processes leading to the formation of shrub islands by compar-
ing the spatial pattern of various clements in the surface horizon of desert
soils. If biotic processes were solely responsible, then only the elements
essential to biochemistry should be concentrated under shrub canopies, while
non-essential elements, such as Na, Li, Sr, and Cl, should be distributed
randomly (cf. Garner & Steinberger 1989). Support for this hypothesis was
equivocal: extractable N, P and K were strongly concentrated under shrubs
in all desert habitats, but so was Cl in 4 of 6 cases. Sodium, Rb, Li, and 5r
were frequently more concentrated in the soils berween shrubs, suggesting
that physical pracesses lead to localized accumulations of some non-essential
elements in deserts — in this case in the intershrub spaces.

Frequency distributions for the occurrence of soil nutrients at the Sevilleta
National Wildlifc Refuge in New Mexico show that N, P, K and Cll are concen-
trated in shrub islands at levels above those found in adjacent grasslands, so
that the ‘islands of fertility’ are not simply a lag deposit left by erosion
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Figure 2. Frequency histogram for the concentration of available N and water-soluble P in soils
from adjacent grassland and shrubland sites at the Sevilleta National Wildlife Refuge, New

Mexico. In each graph, the solid line is for samples taken under vegetation and the dashed line
is for samples taken between vegetation. From the data reported by Schlesinger et al. (1996).

(Figure 2). Although islands of fertility are well developed for N and P in
nearly all shrublands, Schlesinger et al. (1996) found that localized patches of
high Cl concentration were more striking in shrub islands in the Mojave desert,
where shrubs have persisted for 1000s of years, than in the Chihuahuan desert,
where shrubs have invaded recently. Compared to the rapid accumulation of N
and P by biotic processes, the accumulalion of Cl in shrub islands may occur
relatively slowly, perhaps carried passively in the mass-flow of water driven
by plant transpiration. Working in an Artemisia shrubland in Idaho, Ryel et
al. (1996) found that seasonal changes in the spatial autocorrelation for soil
nitrogen, the most limiting soil nutrient in their ecosystem, were greater than
for P and K, which were more abundant in the soil.



173

CONCENTRATION mmot !

000 001 010 10 100
7"r T ] 1

25p-
E
Iz .50
O
W
]

751

K
| 50
100 4 Cl Na

Figure 3. Depth distribution of K, Na, Cl and 80O, at 5-cm intervals in a soil profile sampled
in the southern Mojave Desert. From Schlesinger et al. (1989).

Development of vertical pattern in desert soils

Vegetation also has a strong effect on the vertical dimensions of the soil profile
in deserts. Concentrations of nutrients in the ‘islands of fertility” are greatest
at the soil surface and attenuate with depth (Nishita & Haug 1973; Charley &
West 1975; West & Klemmedson 1978; Rostagno et al. 1991). High surface
concentrations of K have begn attributed to the deposition of illite in aeolian
materials (Singer 1989), but this process is undoubtedly enhanced by nutrient
cycling and mineral weathering under shrubs (Rostagno et al. 1991; Kelly et
al., this volume). In contrast, the concentrations of non-essential ions (e.g.,
Na and Cl) or non-limiting elements (e.g., Ca and SOi_) tend to increase
with depth (Yaalon 1965, Figure 3).

At some depth, usually related to mean maximum infiltration of rainfall,
Ca is deposited as calcium carbonate in calcic horizons, informally known
as caliche in many arid soils (Arkley 1963). T'he process is enhanced by the
removal of soil water by plant roots and retarded by the maintenance of high
CO, in the soil atmosphere due to respiration of roots and soil microbes
(Marion et al. 1985). The relevant equation is:

Ca?t + 2HCO5; » CaCOj; | + CO; + H20 1)

Carbonate is precipitated most rapidly during seasonal periods of drought
which simultaneously lower both soil moisture and root activity (Schlesinger
1985). The precipitation of calcite may be inhibited by the presence of
dissolved organic compounds that lower the ion activity of calcium in the
soil solution (Reynolds 1978; Suarez & Rhoades 1982; Inskeep & Bloom
1986; Reddy et al. 1990; Marion et al. 1990). Calcic horizons are found at
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greater depth beneath the soil mounds of desert shrubs than in the shrub inter-
spaces (Wallace & Romney 1972, p. 308), and at greater depth in semiarid
grasslands compared to arid shrublands (Hallmark & Allen 1975).

Recanse CO; in the soil pore space is derived from plants, the isotopic
composition of the carbon in pedogenic calcite is easily traced to a photosyn-
thetic origin. Changes in the isotopic ratio of soil carbonates can be used to
record the past distribution of C-3 versus C-4 plants in arid lands (Amundson
et al. 1989; Quade et al. 1989a). The oxygen isotope composition in calcite
is related to the 6'%0 in incident rainfall and the proportion of water that is
lost from the soil profile by evaporation vs. plant transpiration (Cerling 1984;
Quade et al. 1989b).

The deposition of pedogenic calcite also affects the availability of
phosphorus in arid soils, where much of the P may be bound to calcium
minerals (Lajtha & Bloomer 1988; Marion & Babcock 1977). In response to
potential phosphorus deficiency, desert plants appear to have special adap-
tations to extract P from these soils (Lajtha & Schlesinger 1988) and to
retranslocate P efficiently from senescent foliage (Lajtha 1987). A small
amount of phosphorus held in organic forms may be critical to the biogeo-
chemical cycle of phosphorus in arid soils (Cross 1994). Often, organic-
and bicarbonate-extractable P — forms easily available for plant uptake — are
concentrated beneath the canopy of shrubs, while Ca-bound P is greatest in
the shrub interspace (Charley & West 1975; Cross 1994).

Changes in soil nutrients with desertification

The 1994 United Naticns Convention on Desertification defines desertifica-
tion as ‘land degradation in arid, semiarid, and dry subhumid areas, resulting
from various factors including climatic variations and human activities.” In
southern New Mexico, desertification is associated with the loss of semiarid
grassland, dominated by black grama (Bouteloua eriopoda) and the invasion
of desert shrubs, primarily mesquite (Prosopis glandulosa) and creosotebush
(Larrea tridentata) (Buffington & Herbel 1965). Here, desertification is not
so much associated with a loss of biotic productivity as with the redistribution
of soil resources on the landscape (Schlesinger et al. 1990, 19906).

Our emphasis on the heterogeneous pattern of soil nutrients in shrub deserts
is not to say that the distribution of soil nutrients in semiarid grasslands is
homogeneous, but rather that the scale of patchiness in grasslands 15 much
smaller than that seen in desert shrublands (Hook et al. 1991; Tongway &
Ludwig 1994). Working at the Jornada Experimental Range in southern New
Mexico, Pilmanis and Schiesinger (1998) sampled soil nitrogen at four sites
in a grassland showing progressive invasion by mesquite, and they applied
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Figure 4. Spherical model semivariograms for available nitrogen at 4 sites representing a
gradient from grassland {A) to a mesquite-dominated shrubland (ID) at the Jornada Experi-
mental Range in southern New Mexico. From Pilmanis and Schlesinger (1998).

geostatistics to deduce the scale of patchiness in each habitat. At the scale
of their sampling, a random distribution of available nitrogen was found in
the grassland (Figure 4). With the invasion of shrubs, the distribution of
soil nitrogen became patchy, showing a progressive autocorrelation of values
at distances in a range of 20 to 260 cm — typical of the mean diameter of
mesquite in these shrublands. OQver 70% of the total variance in soil nitrogen
was associated with the presence of shrub islands. Thus, the invasion of shrubs
changed the scale of patchiness from a fine-grained pattern in grasslands to a
coarse-grained pattern in shrublands.

Allogenic factors, for instance kangaroo rats and grazing cattle, that lead to
the development of patches of fertility in grasslands may promote the invasion
of shrubs (Afzal & Adams 1992; Chew & Whitford 1992), since local areas of
high fertility are likely to be favored sites for shrub regeneration. A reduction
in the density of grass or the formation of a gap in the grass canopy seem
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essential for Prosopis to establish (Bush & Van Auken 1989, 1995). Once
established, however, the shrubs enrich the nutrient content of soils beneath
their canopy through autogenic, biological processes that may help to ensure
the persistence and regeneration of the shrub ecosystem (Schlesinger et al.

1990).

Degradation of shrub islands

In study plots near Porlal, Arizona, Jin Brown and his colleagues have
removed kangaroo rats from plots of desert scrub since 1977. While the
shrubs persist, these areas have been invaded by an annual grass, Aristida
adscensionis, and an exotic perennial bunchgrass, Eragrostis lehmanniana
(Brown & Heske 1990; Heske et al. 1993). In the summer of 1994, we
sampled these plots, and adjacent contro! areas, with the geostatistical design
used by Schlesinger et al. (1996) to see if the removal of kangaroo rats and
the associated invasion of grasses affected the distribution of soil nutrients.
As in other areas of desert scrub, extractable N, P and Cl were significantly
more concentrated under the canopy of shrubs in control plots (Table 1) and
autocorrelated at a range of values (51 to 262 cm) similar to the range of
shrub diameters. The removal of kangaroo rats and the invasion of grasses
had little effect on the distribution of soil N, but the concentrations of P and
Cl became random or autocorrelated over very large distances (>300 cm),
clearly not associated with shrubs. Thus, the removal of kangaroo rats and
the appearance of grasses acted to disperse these nutrients from a local patchy
distribution in surface soils.

In other experiments, in which shrubs have been removed by cutting,
herbicides or fire, the islands of fertility have shown variable rates of degra-
dation. Tiedemann and Klemmedson (1986) reported a significant loss of soil
N from former shrub islands, 13 years after the removal of mesquite, but
there were no significant changes in P or S over the same interval. At the
Jornada Experimental Range, Virginia (unpublished) also observed a degra-
dation of the nitrogen pool in shrub islands 15 years after spraying mesquite
with herbicides. Burke et al. (1987) found that 14 years after the removal of
sagebrush (Arremisia tridentata) from a semiarid rangeland in Wyoming, the
rate of nitrogen mineralization was similar among samples located beneath
the ‘skeletons’ of former shrubs and in areas of former shrub interspace.
Halvorson et al. (1997) reported that the high concentrations of total and
mineralizable nitrogen under former Artemisia had largely disappeared one
decade after buming of a site in southern Washington. In each of these cases,
a loss of the local biogeochemical cycle associated with shrubs has allowed
physical processes to disperse soil nutrients across the landscape.
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Table 1. Comparison of the concentration and spatial distribution of soil elements in
‘control’ and kangaroo-rat removal plots (12 — 2 cach) ncar Portal, Arizona.

Element Ratio of mean concentration Range of autocorrelation in
under vs. between shrubs spherical semivariogram {cm)
Control Removal Control Removal

Navail 198* 160 259 87
1.71% 2307 262 264

PO, 2.08* 1.28 150 >300
1.33* 2.01 108 >300

Cl 2.88” 1.27 237 >300
1.44* 1.69 51 >300

Na 0.79 1.42 >300 >300
1.52 0.85 >300 >300

Li 0.80* 0.92 =300 >300
0.95 0.82 65 201

* difference between under vs between shrub positions is significant (P < 0.05) using
a I-test.

Recovery of desert shrub vegetation on cleared areas is most rapid when the
original soil conditions, such as the islands of fertility, remain intact. Wallace
et al. (1980) found more than twice as much shrub biomass regenerated
on bare, undisturbed soils as on plowed, disked, or scraped soils after 20
years of plant succession in the Mojave Desert. When land managers wish to
reestablish shrub-dominated vegetation on soils that have been homogenized
by human activities, such as cultivation or construction, thcy must consider
creating heterogeneity in soils by artificial means (Boeken & Shachak 1994).
Otherwise, plant succession on these lands can be extremely slow (e.g.,
McAuliffe 1988; Carpenter et al. 1986; New York Times, April 21, 1992
p. B9).

Shrub islands and ecosystem function

The spatial heterogeneity of soil fertility associated with shrubs controls the
movement and transformations of water, nitrogen, and other nutrients in arid
ecosystems. Despite occasional observations of hydrophobic layers in the
soils under shrubs, including Larrea tridentata (Adams et al. 1970), infiltra-
tion rates are typically higher under desert shrubs, as a result of better soil
crumb structure and a lower impact energy of raindrops (Lyford & Qashu
1969; Bach et al. 1986; Rostagno 1989). When shrubs replace semiarid
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grassiands, the rate of erosion increases as the surface soil materials are
progressively lost from the barren shrub interspaces (Bull 1979; Abrahams et
al. 1994, 1995; Gutierrez & Hemnandez 1996). Wood et al. (1987) concluded
that total ground cover was the most important variable influencing infiltra-
tion and sediment production on desert rangelands in southern New Mexico.
When shrubs are widely spaced, the barren intershrub soils may be subject to
wind erosion that redistributes soil materials across the landscape (Snow &
McClelland 1990; Stockton & Gillette 1990).

Higher levels of microbial biomass are found under shrubs compared
to barren shrub interspaces (Gallardo & Schlesinger 1992; Kieft 1994,
Herman et al. 1995). Greater microbial activity is manifest in high rates
of nitrogen mineralization and nitrification under shrubs (Charley & West
1977; Mazzarino et al. 1991; Smith et al. 1994). These microbial processes
have the potential to produce gaseous by-products — NH3, NO, N>O and N;
— that are lost the atmosphere. In some nitrogen-rich desert soils, the emis-
sion of these gases is a dominant part of the biogeochemical cycle (West
& Skujins 1977; Westerman & Tucker 1979; Virginia et al. 1982), but in
many cases, the shrubs may act to conserve nitrogen by its immobilization
in the litter and microbial biomass of soil mounds (Peterjohn & Schlesinger
1991; Schlesinger & Peterjohn 1991; Gallardo & Schlesinger 1992; Zaady
et al. 1996). In areas of southemn New Mexico, where semiarid grasslands
have been invaded by shrubs, the proportional loss of soil organic matter
exceeds that for soil nitrogen, so that soil C/N ratios decrease and carbon
becomes limiting for microbial biomass as desertification proceeds (Gallardo
& Schlesinger 1992, 1995).

The redistribution of soil nutrients that accompanies shrub invasion of
grasslands is not so much associated with a loss of biotic activity as with
its reconfiguration on the landscape. At the Jornada Experimental Range, the
total ecosystem content of organic carbon differs little between grassland and
shrubland habitats; when shrubs invade grasslands, the organic carbon that is
lost from the soils is roughly balanced by the organic carbon that accumulates
in shrubs (Table 2). Huenneke et al. (in prep.) report similar levels of NPP in
grassland and shrubland communities, with much higher spatial variation in
the distribution of NPP and biomass in shrublands (Phinn et al. 1996). Lower
NPP is the expected and traditional outcome of arid-land degradation, but
changes in the spatial distribution of soil resources may be a more effective
index of desertification (Schlesinger et al. 1990, 1996; Pilmanis & Schlesinger
1997).
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Global feedbacks

The changes in soils that accompany the invasion of semiarid grasslands by
desert shrubs extend well beyond the local redistribution of plant nutrients.
Barren lands and barren soils between shrubs are subject to wind erosion,
contributing to aerosols in the atmosphere (Fryrear 1995). Arid lands are
a significant source of tropospheric dust, and human disturbances of arid-
land soils may have increased wind erosion by a factor of 50% globally
during the past century (Schiitz 1980; Tegen et al. 1996). Terrestrial dusts exert
negative radiative forcing — i.e., they cool the atmosphere — over the oceans.
Mineral aerosols appear to have variable forcing on the atmosphere over land
[see Ackerman and Chung (1992) versus Sokolik and Toon (1996)]. In any
case, an increasing flux of desert dust offers a potential feedback between
desertification and future global climate as predicted by general circulation
models (Tegen & Fung 19935).

The global transport of desert dust is implicated as a source of P and Fe
for the growth of marine phytoplankton (Talbot et al. 1986; Duce & Tindale
1991) and tropical rainforests (Swap et al. 1992). Alkaline soil dusts and
NH; volatilized from arid soils control the acidity of rainfall in the regions
downwind of deserts (Loye-Pilot et al. 1986; Young et al. 1988; Gillette et al.
1992; Schiesinger & Hartley 1992; Roda et al. 1993; Sequeira 1993). Changes
in the flux of desert dust between glacial and interglacial periods may have
alfected a large number of global biogeochemical propeities, including the
uptake of carbon dioxide by the oceans (Martin 1990; Coale et al. 1996) and
changes in the global water cycle (Yung et al. 1996). If the area of deserts
expands globally, as a result of lower mid-continental precipitation (Rind et
al. 1990), the flux of dust from barren desert soils is also likely to increase
during the next century (Reheis & Kihl 1995).

Losses of plant cover that accompany the transition between semiarid
grasslands and shrublands affect other aspects of the Earth’s climate system.
The albedo of harren snil exceeds that of vegetation, so increasing albedo
typically accompanies the loss of vegetation cover in desertified grasslands
(Wendler & Eaton 1983; Dirmeyer & Shukla 1996; Aguiar et al. 1996).
The loss of cover is also associated with an increasing flux of sensible vs.
latent heat from the Earth’s surface, since the plant transpiration of water is
lower in shrub deserts than in grasslands (Cable 1980; Aguiar et al. 1996).
Thus, despite their greater albedo, barren desert soils are warmer and air
temperatures are typically higher in shrub deserts than in grasslands (Courel
et al. 1984; Balling 1988; Bryant et al. 1990). Nasrallah and Balling (1994)
attribute nearly half of the recent climatic warming in the Sahel to the spread
of deserts in that region. The largest difference in soil temperature between
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grasslands and shrublands is seen during seasonal droughts, which minimize
the surface evaporation in both communities (Balling 1989).

Conclusions

In desert ecosystems dominated by shrubby vegetation, the distribution of
soil nutrients and the surface expression of other soil properties are strongly
affected by vegetation. Plant nutrients are concentrated in ‘islands of fertility’
beneath desert shrubs. The establishment of shrub vegetation stimulates the
processes leading to the formation of soil islands, allowing the persistence
and regeneration of shrubs and a positive feedback to further desertification
(Schlesinger et al. 1990). Many models of future global climate predict an
expansion of desert ecosystems during the transient phases of global warm-
ing (Rind et al. 1990; Chahine 1995). As the arca of semiarid grasslands
diminishes in favor of shrub deserts and barren soils, we can expect an
increasing flux of dust and a higher surface albedo from desert ecosystems.
Thus, characteristics of the soil surface in deserts have strong feedbacks to
the global climate system.
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