
E L S E V I E R  Ecological Modelling 94 (1997) 7-16 

|WLO61[U, 
II199W 6 

Modularity and genericness in plant and ecosystem models 

James F. Reynolds ~'*, Basil Acock ~ 

~Department of Botany, Phytotron Building, Box 90340, Duke University, Durham, NC 27708-0340, USA 
~'USDA, A RS, Remote Sensing and Modeling Laboratory, Building 007, Room 008. BA RC-14/, 10300, Baltimore A venue, Beltsville, 

MD 20705-2350. USA 

Abstract 

In this paper, we present definitions of modularity and genericness that are based on sets of criteria and rules for 
model design and which encompass the goal of developing an efficient and flexible structure for plant and ecosystem 
models. Model structure should be based on modules that (1) relate directly to real world components or processes; 
(2) have input and output variables that are measurable values; and (3) communicate solely via these input and output 
variables. Such a model structure has the advantage that it can be incrementally improved by simply replacing one 
module with another that has the same input and output variables. The underlying mechanism in the replacement 
module can be different, which facilitates the incorporation of the latest experimental research results and allows 
modelers to readily test alternative hypotheses about mechanisms. Thus, modularity and genericness open models to 
contributions from many authors, facilitate the comparison of alternative hypotheses, and extend the life and utility 
of simulation models. © 1997 Elsevier Science B.V. All rights reserved 
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"New ideas become accepted when the old gener- 
ation dies and a new generation arises that is 
familiar with them."  (Max Planck) 

* Corresponding author. Tel.: + 1 919 6607404; fax: + I 
919 6607425. 

I. Introduction 

During the past 20 years, dozens o f  agricultural 
and ecological simulation mode l s - - rep resen t ing  a 
wide range o f  empiricism and mechanism-- -have  
been developed (Joyce and Kickert, 1987; 
Reynolds and Acock,  1985; Reynolds et al., 1996; 
Reynolds and Leadley, 1992; Whisler et al., 1986). 
With few exceptions, these models have the fol- 
lowing characteristics: (1) they were developed by 
an individual or  a small g roup  o f  scientists; (2) 
each has a unique structure (variables considered, 
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logic, etc.); (3) their documentation consists of a 
brief description published in the scientific litera- 
ture; (4) they are not readily transportable to 
other platforms or laboratories for reuse by oth- 
ers; and (5) they are maintained only by their 
developers (if at all). As a result, these models 
have limited application, rarely outlive their de- 
velopers, represent considerable duplication of ef- 
fort, and are difficult to critique. 

Both the agricultural and ecological sciences 
have placed a high priority on the use of simula- 
tion models to predict the potential effects of 
climate change and elevated atmospheric CO2 
concentration on plants and ecosystems (see 
Houghton et al., 1990; IGBP, 1990; IPCC, 1991; 
Melillo et ai., 1990), and to develop decision aids 
for farmers, land managers and policy-makers. 
How can we choose from among the many mod- 
els that are being produced? Increasingly, 'compe- 
titions' are being staged between models 
developed by different laboratories and research 
groups to compare predictions of a few key vari- 
ables, such as crop yield or productivity (e.g. 
LIDET, 1995; Ryan et al., in press; Vangrinsven 
et al., 1995; VEMAP, 1995). In the long run, the 
value of comparing models will rest on our ability 
to elucidate the underlying causes of different 
predictions: e.g. variations in model structure, 
definitions of functional relationships, the logic 
employed, and the consequences of specific as- 
sumptions. This presents a major challenge. How 
do we evaluate and interpret the performance of 
models beyond the level of predictions per se? Do 
we compare the mathematical representations of 
key processes? Since most large simulation models 
contain a mixture of empirical and mechanistic 
formulations, should we attempt to quantify this 
mixture? Should we evaluate the sensitivity of 
different models to the use of alternative solution 
algorithms and to different assumptions? How do 
we judge the representations of key interactions? 
Should we identify the best single model or select 
the best parts from many models and build a 
general model based on the collective wisdom of 
the community? 

We argue that plant and ecosystem models 
should be developed with an efficient and flexible 
structure, which can only be accomplished by 

dividing the system into biologically meaningful 
units or modules. We believe that doing so will 
address many of the problems listed above. We 
present definitions of modularity and genericness 
that are based on sets of criteria and rules for 
good model design. The essence of these is that 
the structure should be designed with modules 
that: (1) relate directly to real world components 
or processes; (2) have input and output variables 
that are measurable values; and (3) communicate 
solely via these input and output variables. Such a 
model can be incrementally improved by replac- 
ing one module with another module that has the 
same input and output variables but different 
underlying mechanisms. 

In the following text we have tried to distin- 
guish between model design and implementation. 
When we discuss models and modeling, we are 
referring to their design and the design process. 
Many plant modelers consider modeling as writ- 
ing code, possibly because there has been a ten- 
dency to omit the design stage in the past. As a 
result, plant modelers have not developed a lan- 
guage for discussing model design, and many are 
not familiar with the language used by profes- 
sional computer programmers. To explain some 
of the criteria and rules of modular design used by 
computer programmers, we have resorted to using 
parallel examples from software implementation. 

2. Modularity defined 

The dictionary definition of modular is: "con- 
structed with standardized units or dimensions for 
flexibility and variety in use" (Webster, 1983). 
This raises the obvious question: "What stan- 
dards?" Many plant modelers now recognize 
modularity as a 'good thing to have' and it is 
commonplace to see claims of modularity in the 
literature, although these modelers may only 
mean that their computer code (implementation) 
is divided into subroutines termed 'modules'. 
However, professional computer programmers 
have spent considerable effort on defining the 
desirable features of good software design. To 
them, the term 'modularity' has acquired a special 
meaning, connoting properties such as the separa- 
tion and independence of the modules. 
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2.1, Modular design criteria 

Meyer (1990) identified five criteria for good 
modular design: (I) decomposability, (2) compos- 
ability, (3) understandability, (4) continuity, and 

(5) protection (Fig. !). These design criteria en- 
hance modularity and address many of the prob- 
lems found in the models being used today (see 
Reynolds et al., 1989). They are independent of 
the design process used to produce the model, and 
the computer language used to implement it. 
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Fig. 1. Schematic representation of Meyer's (Meyer, 1990) 
criteria of  good modular design. From top to bottom: (1) 
decomposability, problem can be decomposed into smaller 
independent subproblems (modules); (2) composability, exist- 
ing modules can be recombined to model new systems: (3) 
understandability, individual modules arc separately under- 
standable; (4) continuity, small changes in specification 
changes only one or a few modules; (5) protection, effects of  a 
run-time error confined to one or a few modules. 

2.1.1. Decomposability 
The decomposability criterion states that a 

good modular design should decompose the prob- 
lem into smaller, independent subproblems (mod- 
ules), each of which can then be solved separately. 
The critical feature is that the subproblems should 
be independent enough that different modelers 
can work on them separately. This is a matter of 
degree. In fact, it is always possible to have 
different modelers work on various subproblems, 
if the interactions between the subproblems are 
sufficiently well defined. In a good design the 
interactions between the modules should be read- 
ily apparent. Decomposability is, to some extent, 
a function of the problem being solved. A system 
consisting of discrete, sequential, independent 
processes is easier to decompose than a system of 
continuous, simultaneous, interacting processes. 
Plants and ecosystems are of the latter type 
(Acock and Reddy, 1997). 

2,1,2, Composability 
The advantage of decomposing a problem into 

subproblems is that the modules created to solve 
the subproblems may be reused. Modular com- 
posability requires that it should be possible to 
recombine existing modules to model new sys- 
tems. The key factor is how easy it is to use the 
modules in other models. For example, math li- 
brary modules are very easy to reuse in solving a 
range of problems, hence they have high compos- 
ability. 

2.1.3. Understandability 
The criterion of understandability states that 

modules should be separately understandable. It 
should be possible for a reader to understand the 
function of a module without referring to other 
modules. The main issues here are the time and 
the amount of information outside the module 
required to understand it. If the correct function- 
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ing of  a set of  modules depends on their being 
activated in a certain order, they will not be 
separately understandable. Understandability and 
decomposability are closely linked. 

2.1.4. Continuity 
The continuity criterion states that a small 

change in the problem specification should lead to 
modifications in one or (at most) a few other 
modules. These changes should not require 
changes in the basic structure of  a model. 

2.1.5. Protection 
The protection criterion is satisfied when the 

effects of  a run-time error are confined to the 
module in which it occurs or, at worst, to a few 
other modules. This criterion does not address 
error avoidance or correction but rather the mini- 
mizing of error propagation. For example, an 
error in a photosynthesis module that causes a 
negative photosynthesis rate at noon should not 
then go on to reduce plant dry weight in a growth 
module. Meyer's example of good modular pro- 
tection is to have each module validate input data 
at its source. A module that validates its own 
input data protects itself from input data errors. 

2.2. Modular design rules 

Modular design criteria are, by themselves, 
merely goals; to accomplish these goals we need a 
set of  guidelines. To this end, Meyer (1990) pro- 
posed five design rules: (1) use linguistic modular 
units, (2) use few interfaces, (3) use small inter- 
faces, (4) use explicit interfaces, and (5) use infor- 
mation hiding. Each rule supports one or more of 
the modular design criteria. 

2.2.1. Linguistic modular units 
Modules should correspond to the syntactic 

units in the language used to design the model. 
For plant modelers unaccustomed to talking 
about design language, this rule has little mean- 
ing. However, the idea is easily understood when 
applied to model implementation. Subroutines are 
syntactic units in FORTRAN. In implementation 
languages, this rule means that the modules 
should be separately compilable. They should not 

be a loose collection of  procedures and variables 
within a syntactic unit, e.g. lines X - Y  in subrou- 
tine Z. This rule follows from the criteria of  
decomposability, composability, understandabil- 
ity, and protection. Separating, combining and 
understanding modules is easier if the modules are 
well-defined; similarly, limiting the scope of errors 
to a module is difficult if it is not clearly delim- 
ited. This rule removes any hope that modularity 
can be achieved without the support of an appro- 
priate implementation language (see examples in 
Acock and Reddy, 1997; Lemmon and Chuk, 
1997; Sequeira et al., 1997). 

2.2.2. Few interfaces 
All five criteria require the rule of  few inter- 

faces--every module should communicate with as 
few others as possible. In Meyer's terminology, 
interfaces are communication channels. Increasing 
the number of channels between modules in- 
creases the likelihood that a change or error in 
one module will affect another module. Increasing 
the number of  channels between modules also 
makes it harder to understand how each module 
operates. 

2.2.3. Small interfaces 
Communication between any two modules 

should involve a minimal exchange of  informa- 
tion. As more information is exchanged, the 
chance of errors increases. 

2.2.4. Explicit interfaces 
Communication between modules is con- 

strained even more by the explicit interfaces rule: 
If modules A and B communicate, this must be 
obvious from the text of A or B, or both. Hidden 
communication between modules violates all of  
the modular design criteria. For example, under- 
standing a module can be very difficult if data are 
changed by some 'invisible' means, which happens 
when global variables are used. Anyone who has 
attempted to read and understand a large FOR- 
TRAN-77 program has faced this problem. 

2.2.5. Information hiding 
All information about a module should be pri- 

vate unless specifically declared public. We have 
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already stated that interfaces between modules 
should be small and explicit. This rule states that 
everything else should be hidden from other mod- 
ules. 

However, a definition of genericness in biological 
modeling has not previously been proposed. 

3.1. Generic design criteria 

3. Genericness defined 

The dictionary definition of generic is: "relating 
to or characteristic of a whole group or class" 
(Webster, 1983). We believe that the design of 
plant and ecosystem models should be generic-- 
they should be generally applicable to a range of 
plants or ecosystems (Acock and Reynolds, 1989, 
1990; Reynolds et al., 1986, 1989, 1993; Tenhunen 
et al., 1989). Innis et al. (1980) suggested that by 
recognizing certain 'classes' of processes, model- 
ing efforts would be greatly reduced and re- 
searchers would begin to see the unique and 
different as exceptions, rather than the rule itself. 
A similar observation was made earlier by For- 
rester (1970) who, working with economic models, 
wrote: "...one should start not by building a 
model of a particular situation, but by modeling 
the general class of systems under study. This may 
seem surprising, but the general model is simpler 
and initially more informative than a model of a 
special case". 

Computer programmers have adopted a nar- 
rower definition of genericness than the dictionary 
definition. Meyer (1990) considers a module to be 
generic if it can simulate several functionally 
equivalent systems just by using different values 
of the parameters. This definition is widely ac- 
cepted by programmers and they apply it to mod- 
ules and whole models. Biological modelers use 
the use term 'generic' loosely; sometimes in the 
sense of Meyer's definition, and sometimes in the 
sense of the dictionary definition. We think 
Meyer's definition is too narrow and restrictive, 

The principal appeal of a generic design is 
economy--in terms of both modeling effort and 
understanding. Economy of effort is obtained 
when a generic design provides an alternative to 
developing ad hoc models for each plant or 
ecosystem of interest, and economy of under- 
standing results from having to learn only one 
model structure. Few would disagree with this. 

We propose four generic design criteria for a 
good generic design: (i) transferability; (2) addi- 
tivity; (3) separability; and (4) testability. 

3.1.1. Tramferability 
A good generic design must be suitable for 

application to any member of the target group of 
ecosystems or plants of interest by the use of 
different model parameters or different modules. 

3.1.2. Additivity 
A good generic design must be able to simulate 

functionally similar, yet different systems, by the 
addition (or subtraction) of modules. For exam- 
ple, a generic design developed for non-legumes 
should be able to simulate legumes by adding 
modules for nodule growth and nitrogen fixation. 

3.1.3. Separability 
Individual modules should be readily recog- 

nized by experts in the field as separate parts or 
processes of the system under study. A model 
design is not truly generic if it contains modules 
whose purposes are not readily apparent. Mod- 
ules that combine several functions not normally 
considered together may be more difficult to 
parameterize for a new system. The generic sepa- 
rability criterion is complementary to the modular 
decomposability and understandability design 
criteria. 

3.1.4. Testability 
The parameterization and validation of each 

module should be independent of all other mod- 
ules. A model composed of such modules is more 
likely to simulate a new system successfully. 

3.2. Generic design rules 

3.2.1. Common components 
The transferability and additivity criteria are 

served by the rule of common components. The 
principal modules should represent components 
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common to as many systems as possible in the 
group of systems under study. In developing mod- 
els to simulate a range of plants, for instance, the 
principal modules should correspond to compo- 
nents or functions common to all the plants under 
study. 

3.2.2. Disciplinary separation. Scientists are 
trained and organized into various disciplines, 
and most of them work entirely within a single 
discipline. To make modules accessible to them, 
the modules must be separated along disciplinary 
lines (e.g. plant physiology, soil physics, biogeo- 
chemistry, etc.). Disciplinary separation will facili- 
tate the interaction of specialists by allowing them 
to critique and contribute to the development of 
the modules from their discipline without requir- 
ing them to understand all parts of a larger 
model. Experimental scientists can update mod- 
ules that correspond to their discipline as new 
knowledge becomes available. This leads to grad- 
ual improvement of the modules, simpler mainte- 
nance, and a greater likelihood that the model will 
outlive its original creator. The combining of 
modules across disciplinary lines is realized 
through the composability design criterion. 

3.2.3. Input~output measurability. The input and 
output variables of a module should, as far as 
possible, be measurable properties of the system. 
This supports the testability criterion. It facilitates 
the parameterization and validation of modules, 
and the testing of alternative hypotheses via 
changes in formulation of the module structure 
and function. 

4. Achieving genericness 

We suggest several ways to achieve genericness 
in models: 

Case I: A single model is developed that is 
intended to simulate functionally- and struc- 
turally-equivalent systems solely through the use 
of different parametcr values. There are two ex- 
amples of this: (1) where the model is intended to 
represent widely different types of systems (e.g., 
saltmarshes, forests, deserts, croplands, etc.); and 

(2) where the model is intended to represent dif- 
ferent case studies of a single system type, e.g., 
shortgrass prairie, alpine grassland, desert grass- 
land, etc. In the former, the details of the system 
must be grouped together into relatively simple 
(but general) formulations, e.g. describing 
biomass accumulation as a function of total light 
intercepted over the growing season rather than 
as a function of instantaneous leaf photosynthe- 
sis. In the latter, more of the details uniquely 
associated with the system of interest may be 
included in the model. 

Case 2: Essential components and/or processes 
of the system are defined as modules. For a model 
of plant growth these might include modules for 
photosynthesis, carbon allocation, nutrient up- 
take, etc.; for a model of ecosystem dynamics 
these might include modules for nutrient cycling, 
productivity, decomposition, etc. In keeping with 
the modular composability criteria described 
above, these modules can serve as building blocks 
for creating full models. However, the user must 
devise appropriate interfaces between the mod- 
ules-following the modular design rules de- 
scribed above. 

Case 3: Essential components and/or processes 
of a system are defined as modules, but unlike 
Case 2, the interfaces between them are also 
defined. These modules can be used to create full 
models because the interfaces have already been 
defined. The generic plant growth model (GePSi) 
developed by Chen and Reynolds (1997) is an 
example. GePSi encapsulates functions and prop- 
erties common to most plants, has been parame- 
terized and tested for predicting growth of 
loblolly pine under elevated CO2 (Chen and 
Reynolds, unpubl.) and has been applied to study 
an annual grassland under elevated CO2 (Luo et 
al., 1997). The latter required some reparameteri- 
zation (as in Case 1) and modifications in the 
details of carbon storage and dynamics modules 
(Case 2). The model structure described by Acock 
and Reddy (1997) is another example. This model 
structure was developed for a suite of crop models 
with the intention that, as each crop model is 
developed, some modules will be reused without 
alteration, some will be reparameterized, and 
some will be completely rewritten, although they 
will retain the same interfaces. 
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The genericness achieved in Case 1 fits Meyer's 
definition, but the genericness in Cases 2 and 3 is 
closer to the dictionary definition. We propose 
another way to achieve genericness that builds on 
all of the above: 

Case 4: Develop a generic, modular structure 
(GMS) as in Case 3 above, but one that repre- 
sents a consensus of the scientific community. The 
G MS - - wh ic h  would be based on the criteria of 
modularity and genericness--should include ex- 
plicit specifications of  the modules, input and 
output variables, all of  the linkages and feed- 
backs, etc. Any GMS based on consensus would 
have to be revised regularly as new knowledge 
and ideas became available. Is this a feasible goal? 
We offer some opinions below. 

5. Where will this lead? 

We see two possible outcomes of applying the 
modular and generic design criteria and rules 
enumerated above: (i)  a collection of essential 
plant and ecosystem modules with the function(s) 
of each defined (see Case 2 above); and (2) a 
single GMS for plant and ecosystem models, with 
both module functions and interactions defined, 
agreed, and implemented (Case 4). These are actu- 
ally successive steps along the same path, but 
either one could be the end point. 

A collection of  modules will give maximum 
freedom to modelers because they can chose the 
input and output variables, as well as the al- 
gorithms to perform the functions. This freedom 
will not result in complete anarchy because the 
functions being modeled will place some con- 
straints on the input and output variables. How- 
ever, it could result in modules that cannot be 
used together to construct a model. For example, 
if a photosynthesis module requires leaf area in- 
dex and leaf age as input, it must be used with 
other modules that supply those variables as out- 
put. The disadvantage here is that it might not be 
possible to compare various hypotheses if they are 
encoded in modules with different input and out- 
put variables. Also, obtaining agreement on the 
list of modules is not a trivial undertaking. 

A GMS model that defines module functions 
and interfaces would facilitate the testing of alter- 
native hypotheses because the input and output 
variables for each module would be defined, mak- 
ing the modules 'plug-compatible'. Ultimately, we 
think obtaining agreement on a single structure is 
virtually impossible. 'Generic' and 'modular'  are 
issues that everyone agrees are 'good things', yet 
there is no agreement on the precise form they 
should take. Hence, everyone develops their own 
model. Given that achieving a consensus GMS is 
an idealistic goal, we envision that steps towards 
this objective will be accomplished in an incre- 
mental fashion. For example, based on our expe- 
rience, it might be relatively straightforward for 
crop modelers working on a single species like 
cotton to develop a consensus GMS for that 
species. Initially, this could build on the design 
and implementation schemes for cotton presented 
in this volume by Sequeira et al. (1997) and 
Lemmon and Chuk (1997). The demonstrated 
success of such a GMS for cotton modeling 
throughout the world would be an incentive to 
adapt it to other species (or the development of a 
GMS for other species), which could eventually 
lead to a consensus GMS for crop plants. A GMS 
is more likely to be adopted if it is developed by 
one or more modeling groups and made available 
for other scientists (the next generation?) to assess 
its strengths and weaknesses. 

6. Summary 

Many ecologists have commented on the prob- 
lems with current models, noting in particular 
that they tend to be complex and difficult to 
understand, maintain, debug, and modify 
(Reynolds et al., 1989). The authors of the models 
readily admit to some of these difficulties. Poten- 
tial users are obliged to accept the models as they 
stand. This has led to the current trend of  staging 
modeling 'competitions' or comparisons, as noted 
in Section 1. The problem is that we do not have 
a method for continuously advancing and im- 
proving our models. The reason for this can best 
be understood by contrasting the different ways in 
which modelers and experimenters operate. 



14 J.F. Reynolds, B. ,4cock / Ecological Modelling 94 (1997) 7- /6  

Ideally, experimenters design each experiment 
to test a specific hypothesis based on earlier re- 
sults and hypotheses. The experiment is repro- 
ducible and the results are published along with 
the experimenters' interpretations and hypotheses. 
This procedure continuously advances our collec- 
tive understanding. On the other hand, modelers 
rarely build on the work of others; instead, we 
tend to prefer to build from the ground-up, which 
is primarily because existing models are not de- 
signed for incremental improvement. 

A well-defined modular generic structure for 
plants that is accepted by many modelers could be 
populated with modules by scientists with the 
relevant expertise. Such a model would belong to 
the scientific community rather than an individ- 
ual, in much the same way as our understanding 
of plant processes is acquired and held collec- 
tively. Alternative hypotheses could be tested by 
replacing modules, and the model would advance 
as our collective understanding advances. Models 
for various plants or ecosystems might have dif- 
ferent modules, but modules like those for soil 
and weather processes could be common to many 
models. There would be several modules for some 
processes, such as photosynthesis and carbon allo- 
cation. At various times there might be several 
versions of a module representing conflicting hy- 
potheses where experimental data do not permit a 
final choice. It should be possible to develop new 
models by assembling existing modules. For ex- 
ample, a new model might consist of modules for 
C3 photosynthesis, a storage root, nitrogen fixa- 
tion, etc., as appropriate. The whole modeling 
enterprise would become much more intelligible 
to both modelers and nonmodelers. 

Models for different purposes require different 
levels of detail and comprehensiveness. A plant 
growth model is different from a community dy- 
namics model, which is different from an ecosys- 
tem biogeochemistry model. At first it might 
appear that such models necessarily require differ- 
ent structures. However, with careful choice of 
modules even this might be avoided. If the mod- 
ules in our structure are arranged in a hierarchy 
of increasing detail (e.g. Acock and Reddy, 1997; 
McMurtrie and Wang, 1993) we could choose 
modules with the level of detail appropriate to a 

particular application. At the simplest level, the 
structure might consist of modules for plant, soil 
and atmosphere, with the plant module contain- 
ing a simple logistical curve describing growth in 
biomass. At a higher level of detail the plant 
module would call other modules dealing with 
photosynthesis, transpiration, etc. However, both 
models could use the same soil and weather mod- 
ules. Adopting such a hierarchical structure would 
also tend to increase code reuse. 

We recognize that implementing and accom- 
plishing these goals will not be easy. Producing a 
module that can be used by others--that is, one 
that is easier to use and understand than it is to 
recreate--is a major challenge. Meeting the mod- 
ular and generic design criteria we have proposed 
will not always be easy. Implementation always 
introduces new twists and problems. Computer 
programmers have learned that many years of 
development (and experience) are needed to pro- 
duce reusable modules (Johnson and Foote, 
1988). It is one thing to agree that a module 
should be understandable; it is another to know 
how to design one that is. In this volume, there 
are several examples of models that have utilized 
the object-oriented paradigm to implement gener- 
icness and modularity. This reflects a major shift 
towards the use of object-oriented programming 
in both agricultural and ecological modeling (e.g. 
Baveco and Lingman, 1992; Bossel, 1991; Folse et 
al., 1989; Kolstrom, 1991; Larkin et al., 1988; 
Sekine et al., 1991; Sequeira et al., 1991, 1997). As 
this trend in agriculture and ecology continues, we 
strongly recommend close cooperation with soft- 
ware engineers. Because of the close link between 
efficient programming and efficient science, we 
believe that this will facilitate the adoption of the 
high standards of modularity and genericness that 
we advocate. 
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