CSIRO PUBLISHING

AUSTRALIAN JOURNAL OF Plant Physiology

Volume 24, 1997 © CSIRO Australia 1997

An international journal of plant function

www.publish.csiro.au/journals/ajpp

All enquiries and manuscripts should be directed to *Australian Journal of Plant Physiology* **CSIRO** PUBLISHING PO Box 1139 (150 Oxford St) Collingwood Telephone: 61 3 9662 7620 Vic. 3066 Facsimile: 61 3 9662 7611 Australia Email: laurie.martinelli@publish.csiro.au

Published by **CSIRO** PUBLISHING for CSIRO Australia and the Australian Academy of Science

Academy of Science

Growth and Root NO₃⁻ and PO₄³⁻ Uptake Capacity of Three Desert Species in Response to Atmospheric CO₂ Enrichment

H. BassiriRad^{AD}, J. F. Reynolds^B, R. A. Virginia^C and M. H. Brunelle^B

^ADepartment of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
^BDepartment of Botany, Duke University, Durham, NC 27708-0339, USA.
^CEnvironmental Studies Program, Dartmouth College, Hanover, NH 03775, USA.
^DCorresponding author; email, hormoz@uic.edu

Abstract. In a phytotron experiment, we examined growth and rates of NO_3^- and PO_4^{3-} uptake in seedlings of two desert C_3 shrubs (*Larrea tridentata* and *Prosopis glandulosa*) and a desert C_4 perennial grass (*Bouteloua eriopoda*) grown under CO_2 partial pressures of 35 or 70 Pa. Plants were grown in soil but uptake studies were conducted on roots of intact seedlings placed in nutrient solutions containing both NO_3^- and PO_4^{3-} . Elevated CO_2 increased total biomass by 69 and 55% in *Larrea* and *Prosopis* seedlings and by 25% in *Bouteloua*. NO_3^- and PO_4^{3-} uptake rates were more than doubled in *Bouteloua* at high compared to ambient CO_2 . In contrast, CO_2 enrichment inhibited root NO_3^- and PO_4^{3-} and uptake in *Prosopis* were insensitive to CO_2 treatment. Elevated CO_2 enhanced the proportion of biomass allocated to the fine roots in *Bouteloua* but markedly reduced this fraction in *Larrea* and *Prosopis*. Foliar N concentration of both shrubs decreased in response to elevated CO_2 , but was unaffected in *Bouteloua*. We suggest that compensatory changes in root size and activity are critical in determining interspecies variation in plant nutrient relations under high CO_2 .

Keywords: Bouteloua eriopoda, Larrea tridentata, Prosopis glandulosa, elevated CO₂, root nutrient absorption capacity

Introduction

Short-term exposure to CO_2 enrichment often stimulates growth and photosynthetic C fixation. In most natural ecosystems, however, long-term growth and photosynthetic responses may be confined by the limited availability of mineral nutrients, particularly N and P (Bazzaz 1990; Conroy 1992; Sinclair 1992; McKee and Woodward 1994). Therefore, factors that may affect availability and uptake of nutrients are critical in determining plant and ecosystem responses to high CO_2 .

Numerous factors, e.g. microbial activities, soil solution concentration, mass flow and diffusion may limit nutrient availability at the root surface, but compensatory adjustments in root size and/or active uptake capacity may ameliorate such limitations (Nye and Tinker 1977; Chapin 1980; Barber 1984). Yet it is presently unknown if root growth and physiological properties can positively adjust to meet increased plant N and P demand under high CO_2 . According to whole-plant models of C and nutrient balance, resources of abundant availability should be allocated for the acquisition of the most limiting resources (Chapin 1980; Clarkson 1985; Johnson 1985; Robinson 1986; Ågren and Ingstad 1987). Considering that elevated CO_2 often improves the whole plant and root carbon status (Norby *et al.* 1987; Tschaplinski *et al.* 1993; BassiriRad *et al.* 1996), one may expect a greater allocation of C for root growth and/or active nutrient uptake in response to CO_2 enrichment.

Although studies addressing compensatory root growth often indicate a favorable root vs shoot growth in response to high CO_2 , these shifts are often subtle and obscured by experimental artifacts (Stulen and den Hertog 1993; Norby 1994; Rogers et al. 1994). Furthermore, a mere increase in root biomass allocation is a poor index of nutrient acquisition, particularly in woody roots where a large proportion of biomass is invested in tap roots or other highly suberised roots that are not involved in active nutrient uptake. There is even less information available about the direct effects of CO₂ on active root nutrient absorption (BassiriRad et al. 1996). A common short-term response of C3 species to CO2 enrichment includes enhanced growth accompanied by a reduction in foliar nutrient concentration, particularly that of N (Hocking and Meyer 1991; Conroy 1992; Baxter et al. 1994; Rogers et al. 1996). These observations have been interpreted to indicate that high CO₂ reduces the rate of root nutrient uptake relative to C gain (O'Neill et al. 1987; Conroy 1992; Bowes 1993). However,

10.1071/PP96109 0310-7841/97/030353

an accelerated decline in tissue nutrient concentration, in addition to uptake and transport capacity of the root, can be influenced by a suite of other processes such as changes in nutrient use efficiency and remobilisation, dilution due to growth and accumulation of starch, changes in root to shoot ratio, and developmental stages of growth. A mechanistic understanding of how elevated CO_2 may affect plant nutrient status and long-term growth responses must include direct measurements of root nutrient absorption capacity.

Elevated CO_2 may also affect root nutrient uptake capacity among species to a different extent, thus altering competitive interactions which have significant implications for ecosystem response to CO_2 . In this study we examined changes in the rates of root NO_3^- and PO_4^- uptake (per gram dry mass of fine roots) and growth responses of two C_3 perennial woody shrubs, *Larrea tridentata* and *Prosopis glandulosa*, and a C_4 perennial grass, *Bouteloua eriopoda* to the doubling of the atmospheric CO_2 concentration. Specifically, we aimed to address:

Does elevated CO_2 elicit compensatory changes in root N and P uptake capacity?

Are these compensatory responses differentially expressed among species?

Do these interspecies differences in root responses determine the direction and the magnitude of changes in tissue nutrient status under high CO_2 ?

Although these are dominant species of many hot deserts of south-western USA and play a major role in how arid ecosystems may respond to climate change (Schlesinger *et al.* 1990; Reynolds *et al.* 1996), their potential responses to high CO₂ have yet to be examined.

Materials and Methods

Plant Materials and Growth Conditions

This experiment was conducted at the Duke University Phytotron. Seeds of all three species were collected from NSF LTER field site at the Jornada Experimental Range near Las Cruces, New Mexico. After germination, uniformly sized seedlings were transferred into 4 L pots containing fine sand, i.e. one seedling per pot for Larrea and Prosopis and five seedlings per pot for Bouteloua. There were 5-10 replicate pots per treatment. These species differ in their growth rates; therefore, to conduct the uptake experiment on relatively comparably sized seedlings, we staggered the planting dates as follows; Larrea on 18 March 1993, Prosopis on 22 May 1993 and Bouteloua on 29 May 1993. Seedlings were subsequently grown in an environmentally regulated walk-in growth chamber that was maintained at a day/night air temperature of 30/20°C, PAR of 1000 µmol m⁻² s⁻¹ with a 16 h photoperiod, atmospheric partial pressure of 35 Pa and an average relative humidity of 70%. Each pot was irrigated to free drainage on alternate days with either water or a 1/4 strength modified Hoagland solution. The solution pH was adjusted to 7 and concentrations (ppm) of the macronutrients were: NO₃-N (23), K (60), P (16), Ca (51), S (33), and Mg (12). On 27 April 1993 we began the CO2 treatment by transferring the seedlings into two similar size chambers that were set at a CO_2 partial pressure of 35 or 70 Pa. All other environmental conditions were maintained as described earlier.

Uptake Studies

Two and a half months after the CO_2 treatments began, rates of NO_3^- and PO_4^{3-} uptake of intact root systems were determined using depletion of these ions from well-aerated hydroponic solutions. Individual seedlings were removed from pots and the adhering soil was gently rinsed from the roots before they were transplanted into 2 L tightly sealed plastic containers filled with the nutrient solution (as above). Because the fine sand did not strongly adhere to the root surfaces, we had very little loss of fine roots during the transplant procedure. After the transplant, seedlings were grown in this solution for an additional week under their previous growth conditions to overcome transplanting shock. During this equilibration period, the nutrient solution was renewed every other day.

On the day of the actual uptake study, all seedlings were supplied with a new solution about 2 h into the photoperiod and the changes in NO_3^- and PO_4^{3-} were analysed on 10 mL solution samples taken at the beginning and at the end of a 4 h uptake period. Composition of the uptake solution was identical to that used above but at only half the concentration. Concentrations of the ions in the sample solution were measured using a TRACCS 800 Continuous Flow Analytical System (Bran+Luebbe Analyzing Technologies, Inc., Technical Industrial Systems Corp., Elmsford, NY). Water loss by transpiration was measured by weighing individual containers during the uptake period and the amount lost was replaced with distilled water before the final sample was taken. Net uptake rate was calculated from changes in solution concentration of each ion per g dry wt of roots per hour. Only the dry mass of the fine roots (see below) was used in calculating the uptake rate. Uptake measurements and growth during the equilibration period were conducted under the corresponding treatment conditions.

Biomass, N and P Analysis

Following the uptake study, all seedlings were separated into root and shoot for dry mass determination. In shrubs, roots were further subdivided between fine active roots (white and light brown roots < 2 mm in diameter) and coarse roots (dark-colored roots > 2 mm in diameter). Because coarse roots were highly suberised and likely to be inactive for nutrient uptake, only fine root biomass was used to calculate nutrient uptake rate in Larrea and Prosopis. In contrast, roots of Bouteloua were uniform in size (< 2 mm in diameter) and appearance (predominantly white) and, at least in our study, were not differentiated into fine and coarse roots. Hence, in Bouteloua, the whole root system was considered active in nutrient uptake. All plant parts were dried to a constant mass at 60°C. Total N and P concentrations were measured on dried foliar and fine root tissues. Subsamples (approximately 20 mg) were digested using a sulfuric acid-hydrogen peroxide flux (Lowther 1980) and the digests were analysed for total N and P as described earlier. Prosopis is a legume and is capable of a significant N uptake through N₂ fixation in the field, but seedlings used here were uninfected and non-nodulated. Therefore, tissue N concentration reported here is exclusively a function of root N uptake.

Statistics

Differences between the CO_2 treatments were analysed using one-way ANOVA. Data were tested for normal distribution and were log- or square-root transformed when necessary. The Scheffebox test (Sokal and Rohlf 1981) was used for mean separation of the dependent variables for each species and to test the homogeneity of the variances.

Results

Growth

40

30

20

10

 $\begin{array}{c} 0\\ 30 \end{array}$

20

10

 $\begin{array}{c} 0\\ 20 \end{array}$

15

10

5

0

Larrea

FR

Dry biomass (g

Seventy five days after the initiation of CO_2 treatments, whole plant dry mass was significantly enhanced in response to CO_2 enrichment in all three species (Fig. 1). Increased total biomass was, however, more pronounced in *Larrea* and *Prosopis* than in *Bouteloua*, i.e. increased biomass in response to elevated CO_2 was 25% in *Bouteloua*, but 69 and

Total

Fig. 1. Total biomass production and partitioning in three desert species in response to ambient and double the ambient CO_2 concentration. Abbreviations FR, CR, ST and LF refer to fine roots, coarse roots, stem and leaf. Roots < 2 mm in diameter were designated as fine and those > 2 mm were designated as coarse. Under high CO_2 , the fraction of total biomass allocated to fine roots increased by 20% in *Bouteloua* (P< 0.05), but decreased by 30 and 25% (P < 0.01) in *Larrea* and *Prosopis*, respectively. Values are means ± 1 s.e. (n = 6) and the statistical differences are denoted by: *, P < 0.05, **, P < 0.01 and ***, P < 0.001.

CR

ST

LF

55% in *Larrea* and *Prosopis*, respectively. Both below- and above-ground components were significantly enhanced in *Bouteloua*, but the below-ground biomass (fine and coarse roots) was not significantly affected by the CO₂ treatments in the C₃ shrubs (Fig. 1). Consequently, the fraction of total biomass allocated to shrub fine roots significantly ($P \le 0.001$) decreased in response to elevated CO₂, but this fraction was significantly ($P \le 0.01$) increased in *Bouteloua*. The pattern of the above-ground biomass allocation at high CO₂ varied considerably between the two shrubs, with *Larrea* showing significant increases in both autotrophic (leaf) and heterotrophic (stem) tissues whereas increased above-ground biomass in *Prosopis* was principally invested in the stem tissues (Fig. 1).

Nutrient Uptake

Rates of root NO_3^- and PO_4^{3-} uptake were markedly different among species at ambient CO_2 , with *Prosopis* showing the lowest uptake capacity for either nutrients (Fig. 2). Elevated CO_2 differentially affected root nutrient uptake capacity among all species. Nitrate and phosphate uptake rates were more than doubled in *Bouteloua* at high compared to ambient CO_2 (Fig. 2). In contrast, CO_2 enrichment

Fig. 2. Rates of NO₃⁻ and PO₄³⁻ uptake by roots of *Bouteloua*, *Prosopis* and *Larrea* grown at ambient or double the ambient CO₂ concentration. Values are means ± 1 s.e. (n = 6) and the statistical differences are denoted by: *, P < 0.05, **, P < 0.01 and ***, P < 0.001.

inhibited root NO_3^- uptake capacity by about 55% and had little effect on root PO_4^{3-} uptake rate in *Larrea*. Uptake rates of both NO_3^- and PO_4^{3-} did not significantly respond to changes in growth CO_2 concentrations in *Prosopis*. The direction and magnitude of uptake responses, expressed on a per-plant basis, were similar to those observed in uptake rates expressed on a root dry weight basis (Fig. 2).

Tissue N and P Concentrations

Doubling of the atmospheric CO_2 did not significantly alter leaf or fine root N concentration in *Bouteloua* (Table 1). In contrast, leaf N concentration was significantly lower in *Larrea* and *Prosopis* seedlings grown at high CO_2 . Elevated CO_2 also led to a significant decrease in leaf P concentration in *Larrea*, but foliar P concentration in *Prosopis* was not significantly affected in response to CO_2 (Table 1). Fine root concentration of N was not significantly different between the CO_2 treatments in all three species. However, fine root concentration of P was differentially affected in response to CO_2 enrichment, i.e. *Bouteloua* and *Prosopis* exhibited a significantly lower P concentration in the fine roots, but that concentration in *Larrea* was not significantly altered in response to high CO_2 .

Discussion

Elevated CO_2 had a more pronounced effect on productivity of the C_3 species, *Larrea* and *Prosopis*, than *Bouteloua*. The greater biomass responses of the shrub species relative to the grass at high CO_2 may be due to differences in C_3 vs C_4 pathways. That the elevated CO_2 should have a greater impact on biomass accumulation of C_3 than C_4 species is consistent with predicted theoretical responses of these two photosynthetic pathways (Björkman and Pearcy 1983) and with numerous empirical observations (Wong 1979; Bazzaz and Carlson 1984; Patterson *et al.* 1984; Wray and Strain 1987; Dippery *et al.* 1995). Changes in biomass partitioning in response to CO_2 was species dependent. While elevated CO_2 led to significant increases in root and shoot fraction in *Bouteloua*, the C_3 shrubs allocated a larger proportion of total biomass to the aboveground tissues (Fig. 1). The proportion of biomass allocated to the fine roots, which is the fraction most important for nutrient absorption, increased by 17% in *Bouteloua*, but decreased by at least 30% in both *Larrea* and *Prosopis* at elevated CO_2 (Fig. 1).

In addition to its positive adjustment in root size, Bouteloua was also the only species that exhibited an enhanced root absorption capacity for both NO₃⁻ and PO₄³⁻ at high CO₂ (Fig. 2). Such species-dependent root responses may, at least in part, explain why tissue N and P concentration was maintained in the C₄ grass but not in its C₃ shrub counterparts (Table 1). The dichotomy of responses observed in nutrient relations of species studies here is consistent with the literature i.e. although elevated CO₂ commonly results in lower tissue N concentration, this effect is not universal (Vessey *et al.* 1990; Conroy 1992; Baxter *et al.* 1994; Rogers *et al.* 1996).

Of course, some of this controversy can be attributed to non-uniform growth conditions between experiments, but other factors are also involved. For example, excessive starch accumulation in some species may lead to nutrient dilution (Kuehny *et al.* 1991; Thomas and Strain 1991). Coleman *et al.* (1993, 1994) recently reported no differences in tissue N concentration of *Abutilon* and *Amaranthus* at high *vs* ambient CO_2 if plants of similar size rather than similar age were compared. He therefore argued that reduced tissue N concentration in response to CO_2 enrichment is caused by a size-dependent ontogenic drift. Future research designed to evaluate mechanisms by which plant nutrient status and growth respond to CO_2 must address all of the above factors. We suggest that CO_2 enrichment can have a pronounced effect on root nutrient

Table 1. Total N and P concentrations in leaves and fine roots of three desert species as affected by growth CO_2 partial pressures

Values are means ± 1 s.e. (n = 6) and within-species means followed by different letters are significantly different at P < 0.05

Species		Concentration (mg g ⁻¹)			
	Growth CO ₂ (Pa)	Leaves		Fine Roots	
		N	Р	N	Р
Bouteloua	35 70	$\begin{array}{c} 18.9\pm1.2\\ 22.4\pm0.7\end{array}$	$\begin{array}{c} 2.7\pm0.1a\\ 3.3\pm0.1b\end{array}$	$\begin{array}{c} 16.9 \pm 0.7 \\ 15.4 \pm 0.5 \end{array}$	$\begin{array}{c} 3.1 \pm 0.2b \\ 2.2 \pm 0.2a \end{array}$
Prosopis	35 70	$\begin{array}{l} 41.1 \pm 1.1b \\ 26.4 \pm 0.3a \end{array}$	$\begin{array}{c} 2.0\pm0.3\\ 2.1\pm0.1\end{array}$	$\begin{array}{c} 34.1 \pm 0.7 \\ 33.9 \pm 0.7 \end{array}$	$13.7 \pm 1.4b$ $6.5 \pm 1.0a$
Larrea	35 70	$\begin{array}{c} 23.8\pm1.9b\\ 16.9\pm1.1a\end{array}$	$\begin{array}{c} 5.1 \pm 0.5b \\ 3.5 \pm 0.3a \end{array}$	$\begin{array}{c} 31.1 \pm 0.6 \\ 30.0 \pm 1.0 \end{array}$	$\begin{array}{c} 4.4\pm0.2\\ 3.9\pm0.4\end{array}$

absorption capacity with significant implication for plant nutrient relations under high CO_2 , and must therefore be an integral part of models designed to predict plant and ecosystem responses to high CO_2 . Under field conditions, factors that influence fluxes of nutrients to the root surface are also critical in determining plant nutrient status in response to CO_2 .

It is unclear why Bouteloua exhibited an elevated root uptake capacity for N and P in response to CO₂, whereas these rates were either unaffected in the C₃ species or inhibited, as was the case in root NO_3^- uptake rate in *Larrea*. Because uptake of both of these ions are energy-requiring processes, it may be useful to evaluate whether the supply of carbon substrate for respiration to the root is differentially affected in C₃ and C₄ species at high CO₂. In field-grown loblolly pine, we showed a strong correlation between enhanced root NO₃ uptake kinetics and fine root carbohydrate status (BassiriRad et al. 1996). Uptake of both NO_3^- and PO_4^{3-} by roots of higher plants are also regulated by a negative feedback control (Lefebvre and Glass 1982; Siddiqi et al. 1990), i.e. increased root internal concentration of N and P can inhibit further uptake. Alternatively, root absorption capacity has been shown to be inversely related to nutrient status of the shoot (Chapin 1980).

In this study neither shoot demand, as defined by leaf N and P concentration, nor the root concentration of these ions could account for the observed responses in specific root uptake rates. For example, the higher root NO_3^- and PO_4^{3-} absorption rates exhibited in *Bouteloua* at high compared to ambient CO₂ were accompanied by no significant changes in leaf and root N and P concentration (Fig. 2 and Table 1). Furthermore, in *Larrea*, the decrease in leaf and fine root N concentration in response to CO₂ enrichment was associated with a marked inhibition of root NO_3^- uptake capacity (Fig. 2 and Table 1).

In summary, we found that, even though growth of Bouteloua in response to high CO₂ was not stimulated to the same extent as it was for the co-occurring shrubs, Bouteloua showed a greater capacity to acquire nutrient resources than its C₃ counterparts. The differential effects of CO₂ on nutrient procurement among these species corresponded largely to changes in their active nutrient uptake in response to high CO_2 . These results must be interpreted with caution, but the primary indication is that compensatory adjustments in root size and activity may be critical in determining plant nutrient status in a changing global climate. We are currently exploring the mechanisms by which CO₂ may alter active root nutrient uptake. Interspecies differences in nutrient acquisition rate in response to increased atmospheric CO₂ may also have significant implications for competitive interactions among species and ecosystem-level patterns of C and N cycling, although such conclusions will remain hypothetical for now.

These species occupy sites that are not markedly different in nutrient availability but, during the last 100 years, overgrazing and recurring drought has lead to increasing replacement of *Bouteloua* by *Prosopis* and *Larrea*. Management plans targeting grazing practices have been somewhat succesful in curbing and/or reversing shrub encroachment. However, changes in global and regional climate will remain an important factor determining species composition in these ecosystems. We speculate that longterm CO₂ exposure may favor *Bouteloua* as opposed to the C₃ shrubs due to its greater capacity for nutrient acquisition. Further studies are, however, needed to evaluate the relative performance of these species in response to CO₂ enrichment by including factors such as competition, water and N limitation.

Acknowledgments

Our special thanks to Elizabeth Thomas and Jane Raikes for their assistance in analysing solution concentrations of NO_3^- and PO_4^{3-} . We also thank Hugo Rogers, James Coleman, John Lussenhop and two anonymous reviewers for their valuable comments. Statistical advice from David Tremmel is also appreciated. This study was funded by the United States Department of Energy (DOE) Program on Environmental Research, contract DE-FG03-95ER-62126, the National Science Foundation (NSF) grant number DEB9006621 and is a contribution to NSF Jornada Long term Ecological Research Program under grant DEB 94-11971.

References

- Ågren, G. I., and Ingstad, T. (1987). Root: shoot ratio as a balance between nitrogen productivity and photosynthesis. *Plant, Cell* and Environment 10, 579–586.
- Barber, S. A. (1984). 'Soil Nutrient Bioavailability. A Mechanistic Approach.' pp. 55–89. (John Wiley & Sons: New York.)
- BassiriRad, H., Thomas, R. B., Reynolds, J. F., and Strain, B. R. (1996). Differential responses of root uptake kinetics of NH_4^+ and NO_3^- to enriched atmospheric CO_2 in field-grown loblolly pine. *Plant, Cell and Environment* **19**, 367–371.
- Baxter, R., Gantley, M., Ashenden, T. W., and Farrar, J. F. (1994). Effects of elevated carbon dioxide on three grass species from montane pasture. II. Nutrient uptake, allocation and efficiency of use. *Journal of Experimental Botany* **278**, 1267–1278.
- Bazzaz, F. A., and Carlson, R. W. (1984). The response of plants to elevated CO₂. I. Competition among an assemblage of annuals at two levels of soil moisture. *Oecologia* 62, 196–198.
- Bazzaz, F. A. (1990). The response of natural ecosystems to the rising global CO₂ levels. Annual Review of Ecology and Systematics 21, 167–196.
- Björkman, O., and Pearcy, R. W. (1983). Physiological effects. In 'CO₂ and Plants: the Response of Plants to Rising Levels of Atmospheric Carbon Dioxide'. (Ed E. R. Lemon.) pp. 65–106. (Westview Press: Boulder.)

- **Bowes, G.** (1993). Facing the inevitable: plants and increasing atmospheric CO₂. *Annual Review of Plant Physiology and Plant Molecular Biology* **44**, 309–332.
- Chapin, F. S. III (1980). The mineral nutrition of wild plants. Annual Review of Ecology and Systematics 11, 233–260.
- Clarkson, D. T. (1985). Factors affecting mineral nutrient acquisition by plants. *Annual Review of Plant Physiology* 36, 77–115.
- Coleman, J. S., McConnaughay, K. D. M., and Bazzaz, F. A. (1993). Elevated CO₂ and plant nitrogen-use: is reduced tissue nitrogen concentration size-dependent? *Oecologia* 93, 195–200.
- Coleman, J. S., McConnaughay, K. D. M., and Ackerly, D. D. (1994). Interpreting phenotypic variation in plants. *TREE* 9(5), 187–191.
- Conroy, J. P. (1992). Influence of elevated atmospheric CO₂ concentrations on plant nutrition. *Australian Journal of Botany* 40, 445–456.
- **Dippery, J. K., Tissue, D. T., Thomas, R. B., and Strain, B. R.** (1995). Effects of low and elevated CO_2 on C_3 and C_4 annuals. I. Growth and biomass allocation. *Oecologia* **101**, 13–20.
- Hocking, P. J., and Meyer, C. P. (1991). Effects of CO₂ enrichment and nitrogen stress on growth and partitioning of dry matter and nitrogen in wheat and maize. *Australian Journal* of *Plant Physiology* 18, 339–356.
- Johnson, I. R. (1985). A model of partitioning of growth between the shoots and the roots of vegetative plants. *Annals of Botany* 55, 421–431.
- Kuehny, J. S., Peet, M. M., Nelson, P. V., and Willits, D. H. (1991). Nutrient dilution by starch in CO₂-enriched *Chrysanthemum. Journal of Experimental Botany* 42, 711–716.
- Lefebvre, D. D., and Glass, A. D. M. (1982). Regulation of phosphate influx in barley roots: effects of phosphate deprivation and reduction of influx with provision of orthophosphate. *Physiologia Plantarum* 54, 199–206.
- Lowther, J. R. (1980). Use of a single sulfuric acid-hydrogen peroxide digest for the analysis of *Pinus radiata* needles. *Communications in Soil Science and Plant Analysis* 11, 175–188.
- McKee, I. F., and Woodward, F. I. (1994). CO₂ enrichment response of wheat: interaction with temperature, nitrate and phosphate. *New Phytologist* **127**, 447–453.
- Norby, R. J. (1994). Issues and perspectives for investigating root responses to elevated atmospheric carbon dioxide. *Plant and Soil* 165, 9–20.
- Norby, R. J., O'Neill, E. G., Hood, W. G., and Luxmoore, R. G. (1987). Carbon allocation, root exudation and mycorrhizal colonization of *Pinus echinata* seedlings grown under CO₂ enrichment. *Tree Physiology* **3**, 203–210.
- Nye, P. H., and Tinker P. B. (1977). 'Solute Movement in the Soil–Root System.' (Blackwell Scientific Publishers: Oxford.)
- **O'Neill, E. G., Luxmoore, R. J., and Norby, R. J.** (1987). Elevated atmospheric CO₂ effects on seedling growth, nutrient uptake, and rhizosphere bacterial population of *Liriodendron tulipifera* L. *Plant and Soil* **104**, 3–11.

- Patterson, D. T., Flint, E. P., and Beyers, J. L. (1984). Effects of CO₂ enrichment on competition between a C₄ weed and a C₃ crop. Weed Science 32, 101–105.
- **Reynolds, J. F., Virginia, R. A., and Schlesinger, W. H.** (1996). Defining functional types for models of desertification. In 'Functional Types'. (Eds T. M. Smith, H. H. Shugart and F. I. Woodward.) pp. 194–214. (Cambridge University Press: Cambridge.)
- Robinson, D. (1986). Compensatory changes in the partitioning of dry matter in relation to nitrogen uptake and optimal variation in growth. *Annals of Botany* 58, 841–848.
- Rogers, G. S., Milham, P. J., Gillings, M., and Conroy, J. P. (1996). Interaction between rising CO₂ concentration and nitrogen supply in cotton. I. Growth and leaf nitrogen concentration. *Australian Journal of Plant Physiology* 23, 119–125.
- Rogers, H. H., Runion, G. B., and Krupa, S. V. (1994). Plant responses to atmospheric CO₂ enrichment with emphasis on roots and the rhizosphere. *Environmental Pollution* 83, 155–189.
- Schlesinger, W. H., Reynolds, J. F., Cunningham, G. L., Huenneke, L. F., Jarrell, W. M., Virginia, R. A., and Whitford, W. G. (1990). Biological feedbacks in global desertification. *Science* 247, 1043–1048.
- Siddiqi, M. Y., Glass, A. D. M., Ruth, T. J., and Rufty, T. W. (1990). Studies of the uptake of nitrate in barley. I. Kinetics of ¹³NO₃⁻ influx. *Plant Physiology* **93**, 1426–1432.
- Sinclair, T. R. (1992). Mineral nutrition and plant growth response to climate change. *Journal of Experimental Botany* 43, 1141–1146.
- Sokal, R. R., and Rohlf, F. J. (1981). 'Biometry.' (W. H. Freeman: San Francisco.)
- Stulen, I., and den Hertog, J. (1993). Root growth and functioning under atmospheric CO₂ enrichment. Vegetatio 104/105, 99–115.
- Thomas, R. B., and Strain B. R. (1991). Root restriction as a factor in photosynthetic acclimation of cotton seedlings grown in elevated carbon dioxide. *Plant Physiology* 96, 627–634.
- **Tschaplinski, T. J., Norby, R. J., and Wullschleger, D. S.** (1993). Responses of loblolly pine seedlings to elevated CO₂ and fluctuating water supply. *Tree Physiology* **13**, 283–296.
- Vessey, J. K., Henry, L. C., and Raper Jr., C. D. (1990). Nitrogen nutrition and temporal effects of carbon dioxide on soybean growth. *Crop Science* 30, 287–294.
- **Wong, S. C.** (1979). Elevated atmospheric partial pressure of CO_2 and plant growth. I. Interactions of nitrogen nutrition and photosynthetic capacity in C_3 and C_4 plants. *Oecologia* 44, 68–74.
- Wray, S. M., and Strain, B. R. (1987). Competition in old-field perennials under CO₂ enrichment. *Ecology* 68, 1116–1120.

Manuscript received 3 October 1996, accepted 21 January 1997