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Abstract 

One of the few integrating theories related to allocation is the hypothesis of optimization. While optimization theory 
has great heuristic appeal and has been used to describe a range of physiological and ecological phenomena, it has 
major limitations. Optimization is necessarily based on a definite time integral and an optimal control strategy must 
be specific to the same patterns exhibited by the driving variables over this same period of time. Optimization tends 
to employ the use of oversimplifications in order to facilitate analytical solutions to the optimal control strategy, 
i.e. the mechanism governing the response of plants, which is the critical issue of interest. It is difficult to define 
objective criteria that can account for the natural variability in plants and testing the quantitative predictions of 
optimality models is also difficult. Thus, we suggest that optimization theory is too limited for practical use in 
modelling whole plant allocation. In this paper, we introduce the use of coordination theory as a practical alternative. 
We develop a simple plant growth allocation model using both coordination and optimization approaches and show 
that coordination theory is easily applied, produces results that are quantitatively similar to optimization, and 
overcomes the inherent limitations of optimization theory. 

Introduction 

A major uncertainty in modelling the effects of ele- 
vated atmospheric [CO2] and climate change on plant 
function and growth is our lack of understanding of 
the mechanisms of whole-plant allocation (Reynolds 
et al., 1996). The allocation of carbon and inorganic 
nutrients, particularly nitrogen (N), is in response to a 
complex of competing demands, e.g. plant defenses, 
symbionts, storage, fluxes to the rhizosphere, and veg- 
etative vs. reproductive growth (see review by Friend 
et al., 1994). As a result, patterns of allocation are 
observed to be highly integrated, vary temporally, are 
plastic, may be determined at early stages of plant 
development, and are regulated by a complex network 
of competing "sources" and "sinks." 

The concept of balanced activity has been suc- 
cessfully used to model whole plant allocation (e.g. 
Charles-Edwards, 1976; Hilbert and Reynolds, 1991; 
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Johnson and Thornley, 1987; Luo et al., 1994; McMur- 
trie and Wolf, 1983; Reynolds and Thomley, 1982; 
Thornley, 1995). This concept is consistent with empir- 
ical evidence showing that plants maintain a balance 
between the rate of supply of carbon from leaves and 
the rate of supply of nutrients from roots (Chapin, 
1980; Davidson, 1969; Field and Mooney, 1986; 
Friend et al., 1994; Schulze et al., 1983). Many of these 
models are based on optimization principles, whereby 
a plant is viewed as allocating biomass in order to 
maximize its rate of growth (see Hilbert, 1990; Iwasa 
and Roughgarden, 1984; Makela, 1986; Schulze et al., 
1983). While optimization theory has great heuristic 
appeal and has been used to describe a range of physi- 
ological and ecological phenomena, it has major limi- 
tations. Optimization is necessarily based on a definite 
time integral (e.g. 24 hours or a total growing season) 
and the optimal control strategy must be specific to the 
same patterns exhibited by the environmental variables 
over this period of time. It is meaningless to argue 
that plants can "foresee" what the environment will 
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be like over a growing season (see Kastner-Maresch 
and Mooney, 1994, for discussion of local vs. glob- 
al optimization). In most cases, optimization theory 
must rely on major simplifications in order to facilitate 
analytical solutions to the optimal control strategy, i.e. 
the mechanism governing the response of the plant to 
its environment, which is the critical issue of interest. 
Lastly, it is extremely difficult to define objective crite- 
ria that can be used to test the quantitative predictions 
of optimality models and that can account for natural 
variability in populations (Orzack and Sober, 1994). 

In a previous paper (Chen et al., 1993), we intro- 
duced coordination theory as a practical alternative to 
optimization theory for explaining how plants allocate 
N within canopies in order to optimize total canopy 
photosynthesis. We hypothesized that the allocation 
is a balance between two processes, each of which 
is dependent on leaf N content and each of which 
potentially limits photosynthesis: 1) Wc, the Rubisco- 
limited rate of carboxylation, and 2) Wj, the electron 
transport-limited rate of carboxylation. Do plants allo- 
cate N differentially to leaves in different canopy lay- 
ers in such a way that Wc and Wj remain roughly 
balanced? Coordination theory predicts that the driv- 
ing force for the allocation of N within a canopy is the 
difference between the leaf N content required to bring 
Wc and Wj into balance. We demonstrated that daily 
carbon assimilation of a canopy with a N distribution 
resulting from an internal coordination of Wc and Wj 
was identical to results obtained using optimization 
theory. Due to its simplicity, we think coordination 
theory can be easily applied to study other problems. 

In this paper we present a simple plant growth allo- 
cation model based on coordination theory. Two ver- 
sions of the model - with and without the capacity to 
store carbon and N - are presented, along with steady- 
state and dynamic solutions. The model predicts allo- 
cation based on the imbalance principle and we com- 
pare the results to an equivalent allocation model based 
on optimal control theory. 

Model overview 

The total dry weight of the plant (W6) is given by: 

WG --'~ Wsh -1- Wr (1) 

where Wsh is the shoot and Wr is the root structural 
dry weights, respectively. In many allocation mod- 
els (e.g. Reynolds and Thornley, 1982; Johnson and 
Thornley, 1987), plant growth is considered analogous 

to an overall chemical reaction of two main substrates, 
carbon and nitrogen. The growth rate of the plant is 
proportional to C and N concentrations, i.e.: 

dW~ 
-- aCNWc (2) 

dt 

where C = Wc/Wc, N = WN/WG, c~ is a constant of 
proportionality, and Wc and WN are the dry weights of 
non-structural carbon and nitrogen, respectively. This 
approach emphasizes the importance of carbon and 
nitrogen storage since growth will cease if either sub- 
strate goes to zero. Here, we present two versions of 
our model, one where C and N are treated as "invento- 
ries," that is, they are treated as supplementary rather 
than essential terms, and another version where C and 
N are not explicitly included. 

We employ the following major assumptions: 
1. Since the model is integrated on a daily basis, car- 

bon assimilated and nitrogen taken up by the plant 
is readily available throughout the plant, ignoring 
the problem of transportation. 

2. Stored forms of non-structural carbon and nitrogen 
are equivalent to those currently acquired. Con- 
version between insoluble and soluble forms is 
ignored. 

3. The growth rates of the shoot and root are limited 
only by the supply of carbon or by the supply of 
nitrogen. Practically, both shoot and roots have a 
maximum growth rate that is determined by the 
size and activity of the meristems in the shoot and 
root. 

4. The fractions of carbon (fc) and nitrogen (fs) of 
the plant structure are constant. 

5. The carbon and nitrogen supply functions are pro- 
portional to the structural dry weights of the shoot 
and roots, respectively. Of course, as a plant grows, 
other factors (e.g. self-shading) will eventually 
affect carbon and nitrogen uptake. 

These assumptions allow us to keep the model pre- 
sented in this paper as simple as possible in order to 
demonstrate the nature of the coordination theory and 
to compare it with optimization theory. These assump- 
tions can be relaxed to make the model more realistic 
(discussed below). 

Version with no storage terms 

In this formulation of the model we ignore storage and 
focus on growth allocation based only on the variables, 
Wsh and Wr. The growth rate of the whole plant, G, is 
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assumed to be directly related to the supplies of carbon 
and nitrogen: 

dW6 m i n { ~ ,  SN 
G -  d t -  ~ ~£ } (3) 

in which Sc and SN are supply rates of carbon and 
nitrogen. The underlying assumption of Equation (3) is 
that for every unit increment of the structural biomass, 
WG, a fixed portion of carbon, fc, and a fixed portion 
of nitrogen, fN, are needed, and G will be limited by 
either of carbon or nitrogen supply whenever these 
two supply rates are not in some required proportion 
or balance. 

The supply of carbon is assumed to be proportion- 
al to the shoot structural dry weight, and the supply 
of nitrogen is assumed to be proportional to the root 
structural dry weight: 

Sc = acWsh (4) 

SN = O'NWr (5) 

where crc and aN are the specific shoot and root activ- 
ities, respectively. Then, Equation (3) becomes: 

• . ~cWsh ~N__W~ } dWG mm~ ~c ' (6) 
G -  dt - fN 

and G is the sum of the growth rate of the shoot, 
dWsh/dt, and the growth rate of the root, dWr/dt: 

G = dWsh + dWr (7) 
dt dt 

Allocation coefficients to the shoot (Ash) and to the root 
(Ar) are defined as: 

Ash -- dWsh/G (8a) 
dt 

where 

dWr (8b) 
A, = 

Ash + Ar = 1. (8c) 

Following Chen et al. (1993), we assume that the 
plant can respond to whatever process- carbon supply 
or nitrogen supply - is limiting growth by "coordinat- 
ing" these processes. In this paper, we are specifical- 
ly interested in the allocation of growth between the 
shoot and root as the means of coordination; hence, we 
assume that the plant can respond to an imbalance in the 
carbon or nitrogen supply (Equation 3) by modifying 
the allocation coefficients, Ash and At. In mathematical 

form, we define an imbalance, Im, between these two 
processes as: 

Sc SN 
Im = (9) fc fN 

To eliminate an imbalance, the supply rates of carbon 
and nitrogen must be modified to satisfy: 

ASc ASN 
- -  = - - I m  ( 1 0 )  

fc fN 

Changes of Sc and SN due to the growth of W~h 
and Wr can be expressed as: 

6Sc 
(AshzXWG) + ~--~-7(A~AWa) ASc = 6W~---~ r 

5Sc 
Ash O~C Ar}GAt (11) = .__-=-_  + 

5W~ 

ASN- 5W~hSSN (A,hAWG) + ~-(ArAWG) 

- 5SN As h 5SN Ar}GAt (I2) 

where At is the time step used in integration, which 
here we set At = 1 day. Thus, substitution of Equations 
(11) and (12) into Equation (10) gives: 

~ ~_~ 0sc Im 
(Swab f~ )'% f~ fc ) A , -  

(13) 
Instead of directly using the allocation coefficients Ash 
or Ar and Equation (13), we define an allocation param- 
eter, P, as: 

~sc ~ ~sN ~s~ 
fN )Ash 5~rrft'r fc ' ) ~ r  (14) 

P = ( 5"~h,, 5"~h - ( 5Wr 

and assume that P is responding to Im as: 

V = ~ ( - I m / G )  (lS) 

where n is a coordination parameter that specifies how 
rapidly the plant can adjust the allocation coefficients 
in response to the imbalance, n has a units of day -1. 
At one extreme, where t~ = 1, the plant can "correct" 
the imbalance completely in the next day; at another 
extreme, n = 0, the plant maintains a constant allo- 
cation to shoot and root, regardless of the imbalance 
between carbon and nitrogen supplies. Thus, a reason- 
able value of n should be between 0 and 1 and is likely 
to be species specific. Below, we conduct a theoretical 
analysis to estimate the magnitude of ~ and show that 
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while a large t~ slightly favours growth, it results in 
large fluctuations in allocation coefficients that are not 
consistent with experimental observations. 

It is not clear which physiological processes affect 
~, but t~ must remain fairly constant for a given species. 
If ~ changes dramatically on a daily basis, coordina- 
tion theory would have little practical use. We have 
to distinguish, however, the allocation parameter, P, 
from the time constant parameter, t~. While ~ is con- 
stant, P changes on a daily basis since P also depends 
on the magnitude of the imbalance, Im. According to 
Equation (9), the imbalance depends on carbon supply, 
Sc, and nitrogen supply, S N ,  which change on a daily 
basis. The functions determining Sc and SN are highly 
simplified (Equations 4 and 5); however, modifications 
to Equations (4) and (5) will only affect the magnitude 
of the imbalance, Im, not the value of n (Chen and 
Reynolds,. unpubl.), and the essential features of the 
coordination model presented here are not affected. 

After P is determined from Equation (15), Ash and 
Ar can be obtained from P as: 

~Sc 
fN _Lc__ + p 

6w, 6w~ (16a) Ash = ~ ~sN ~ 

6Ws~ 6 W ~  5Wr 5Wr 

8S C 8S N 
f¢ _ ft~ _ p  

~wsh 6w~h 
Ar = ~sc ~_~ ~ ,sc (16b) 

fc __ fN _1_ fN __ fc 
6W.~h ~W~h ~Wr 5W~ 

In this simple model, Sc and SN are defined by 
Equations (4) and (5). Hence, Equations (14), (16a) 
and (16b) become: 

P = CrTCAs h _ O- N 

lc f--N A~ (17) 

fN (18a) Ash -- ~c ~N + 

~_z_p 
__ fc (18b) Ar 

Steady state, balanced growth 

In the special case where the environmental conditions 
are constant and the plant eventually succeeds in coor- 
dinating the two supply rates of carbon and nitrogen 
(i.e. where Im= 0), then the growth rate will be: 

dWG acWsh CrNWr 
G . . . .  (19) 

dt fc fN 

This special case is identical to the one obtained by 
Charles-Edwards (1976), in which the plant achieves 
a balanced growth, with the specific growth rate,/t: 

1 
# - L_c + ~ (20) 

CrC ON" 

The allocation coefficients Ash and Ar and the root 
weight ratio, RWR, under balanced exponential growth 
are given by: 

&_ 
~rc (2la) Ash - ~ + 

o- C o- N 

fN/aN (21b) 
Ar = fc/~rc + fN/~N 

Wr fN/CrN ( 2 2 )  
RWR - Wsh + Wr - -  f c / a c  + fN/CrN 

Dynamic solutions 

In balanced growth, in a constant environment, the 
plant achieves a steady state as a function of the "coor- 
dination power" of the plant, which is specified by 
parameter ~. We illustrate this dynamic behavior using 
numerical examples. The following parameter values 
from Johnson and Thornley (1987) are used: 

fc = 0.45 kg carbon 

(kg structure)- 1 (23a) 

fN = 0.03 kg nitrogen 

(kg structure)-l (23b) 

crc = 0.10 kg carbon 

(kg shoot structure)- 1 day-  1 (23c) 

aN = 0.05 kg nitrogen 

(kg root structure) -1 day -1 (23d) 

with initial conditions: 

Wsh = 0.1 kg structure (23e) 

Wr = 0.1 kg structure (23f) 

The dynamic behaviours of the allocation coeffi- 
cient, Ash , the root weight ratio, RWR, and the specific 
growth rate of the plant, #, for t~ = 0.05 and 0.5 are 
shown in Figures 1A-1C, respectively. The initial val- 
ues of Wsh and Wr (Equations 23e and 23f) are chosen 
to represent a situation where carbon supply is limit- 
ing growth. This initial imbalance between carbon and 
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Figure 1. Dynamic solutions from the model with and without storage terms, illustrating the effects of the coordination coefficient ~ (Equation 
15). 

nitrogen supply might result from a sudden decrease 
in shoot size such as clipping or grazing, or from a 
sudden change in environmental conditions. For exam- 
ple, a plant which grows in a low nitrogen availability 
environment, where carbon and nitrogen supply is bal- 
anced, is transferred to a high nitrogen availability 
environment, where carbon supply becomes relative- 
ly too small. The plant responds to this imbalance by 
allocating all growth to the shoot (Figure 1A). The 
response is rapid with n = 0.5 compared to when n = 
0.05, although the two curves eventually approach the 
same steady state value, Ash = 0.882, specified by Equa- 
tion (21a). The root weight ratio (Figure 1B), and the 
specific growth rate of the plant structural dry weight 
(Figure 1C), approach steady state values of RWR = 
0.i 18, and/z = 0.196, respectively (see Equations 22 
and 20), but at different rates depending of the value 
of parameter n. 

Version with storage terms 

Although ignoring carbon and nitrogen storage does 
not prevent us from obtaining the essential features of 
growth allocation, it is an over-simplification. Next, 
we include storage terms for carbon and nitrogen 
substrates. The differential equations describing the 
growth of shoot and root are the same as in the model 
without storage, i.e.: 

dWsh 
-- AshG (24a) 

dt 

dW, 
= (1 - Ash)G (24b) 

dt 
but Equations 6 and 9 are now: 

G = min{ Sc + Wc SN + WN } (25) 
fc ' ~N 

Im = { Sc + Wc SN + WN } (26) 
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Figure 2. Dynamic solutions to the non-structural carbon and nitrogen (Wc and WN) with n set to 0.05 and 0.50. 

respectively. The dynamics of Wc and WN are given 
by: 

sN+w~ (27a) S c - f c G  i f ~  > 
dWc__ - W c  i f ~  < ~ ( 2 7 b )  

di 0 if so+we SN+WN (27C) 
fc = fN 

SN -- fNG if Sc+Wc < SN+WN (28a) fc 
dWN~ - - W N  f c  ~> - if ~ SN+WNfN (28b) 

0 if s f+-~cW _ s~+w~ (28c) 
- -  f N  

The remaining Equations (14, 15, 16a, 16b, 17, 18a, 
18b) describing the coordination remain the same. 
(Note that in Equations 25-28, Wc and WN should 
be written as Wc/Tc and WN]TN, respectively, where 
Tc and TN are time constants, in order to achieve the 
correct units. For simplicity, we assume that Tc and 
TN equal 1, which implies that all storage is used for 
growth at the next time step.) 

Dynamic solutions 

The parameter values and initial conditions are speci- 
fied by Equations (23a-23f) and Wc(0) = WN(0) = 0. 
The results are shown in Figures 1D-1F. As before, 
results are presented for n = 0.05 and n = 0.5. The 
incorporation of the carbon and nitrogen storage terms 
brings about some interesting phenomena (compare to 
Figures IA-1C). The steady state values (i.e. Ash = 
0.882, RWR = 0.118, and # = 0.196) are not altered 
by the inclusion of the storage terms, but they are 
reached later in the simulation and show greater vari- 
ability. These dynamics are more pronounced with 
= 0.5 than with n = 0.05 (Figures 1D-1F). This can 
be explained as follows. The initial shoot size is rela- 
tively small compared with the root size, and initially 

the growth is limited by the carbon supply. Nitrogen is 
in surplus and thus accumulates into the storage until 
(see Equation 28a): 

SN -- fN G = 0 (29a) 

Since growth is limited by carbon supply and We = 
0 initially, the growth rate, G = Sc/fc, and the above 
condition becomes: 

Sc/fc  = S s / f s  (29b) 

When there is no storage (i.e. Figures 1A-1C), this rep- 
resents a threshold from carbon- to nitrogen-limiting 
conditions. With storage, this threshold signifies that 
the non-structural nitrogen ceases to accumulate, while 
the growth is still limited by the carbon supply as long 
as: 

Sc/fc  < Ss / f s  + WN (30a) 

and the growth allocation will still favour the shoot. 
When the threshold 

Sc/fc  > SN/fN + WN (30b) 

is reached, growth is limited by nitrogen supply. The 
non-structural nitrogen decreases to zero, and the non- 
structural carbon starts to accumulate (from zero). The 
decreasing WN and increasing Wc around this thresh- 
old magnifies the sensitivity of the system to the growth 
allocation coefficient, Ash, as shown in Figure 1D. 

In Figure 2, we plot Wc and WN tO illustrate switch- 
es between carbon- and nitrogen-limiting conditions. 
With ~ = 0.05 there are only two switches between car- 
bon and nitrogen limitations, and with ~ = 0.5 there are 
six (Figure 2). Due to Equations (27b) and (28b), there 
is only 1 day lag between Wc = 0 and WN = 0 (Fig- 
ure 3). In this example, both C and N concentrations 
approach zero in the steady state (Figure 3). 
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As t~ increases from 0.05 to 0.5, fluctuations in 
allocation coefficients, root weight ratio, and specific 
growth rate increase substantially (see Figures 1D, 1E, 
1F), results that axe rarely observed experimentally. 
This suggests that the value of ~ should be relatively 
small, i.e., the time constant for adjusting allocation 
coefficients might be in the order of a few weeks. 

An equivalent model based on optimal control 
theory 

In this section we formulate an equivalent model based 
on optimization theory. Our objective function, J, is: 

J = w h(t = T) + w , ( t  = T) (31) 

where T is the length of the growing period. The control 
variable is Ash(t). We try to find an optimal trajectory 
of the control variable, )~sh *(t), that maximizes J (the 
total structural dry weight of the plant at the end of the 
growing period), under the constraints described by 
Equations (24, 25, 27a, 27b, 27c and 28a, 28b, 28c). 
The state variables Wsh, Wr, Wc, and WN, and the 
control variable Ash, are constrained by: 

W~h, W~, Wc, WN _> 0 (32a) 

0 ~ A~h ~ 1 (32b) 
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From the Hamiltonian, H: 

H = ZshAshG + Zr(l -- Ash)G + zcqac + ZNtI/N (33) 

where Zsh, Zr, ZC and zN are Lagrangian multipliers, 
and Ugc and UgN represent the functions on the right- 
sides of Equations (27a, 27b, 27c) and (28a, 28b, 28c), 
respectively. Rearranging Equation (33): 

H = [(Zsh -- Zr)Ash + zr]G + zcUgc + ZNWN (34) 

from which we can see that the optimal control trajec- 
tory Ash * (t) will contain a singular arc when Zsh - zr 
= 0. To find the analytical solution, we have to find 
this singular arc and solve the joining problem of the 
singular arc with the non-singular ones (see Chen and 
Wang, 1988). In the case of the system with two state 
variables and the non-linearity introduced by Equation 
(26), an analytical solution for the optimal control is 
extremely difficult to obtain. Thus, we must rely on 
a numerical method to obtain the optimal control. We 
tried various algorithms, e.g. the gradient, the modified 
conjugate gradient, parallel tangent, and others (Alek- 
seev et al., 1987; Rao, 1984) and eventually selected 
the simplest gradient method, although it converges 
rather slowly. 

The parameter values and the initial conditions are 
still specified by Equations (23a-23f). The growth allo- 
cation to shoot and root weight ratio are shown in 
Figure 4, which compares the optimization results to 
those obtained using coordination. The final structural 
dry weight of the plant obtained with optimization was 
226.9 kg, compared to 210.1 kg and 218.0 kg using 
coordination with t~ = 0.02 and n = 1, respectively. 

The dynamic solutions to non-structural carbon and 
nitrogen obtained from optimization are given in Fig- 
ure 5. Wc is nearly zero throughout the simulation 
and WN approaches zero at the end of the simulation. 
Since the objective is to maximize the structural dry 
weight of the plant at the end of the period, it makes 
sense to convert all of the non-structural carbon and 
nitrogen into structural biomass, The accumulation of 
nitrogen early in the simulation is a result of the initial 
conditions, which represent a large surplus in nitrogen 
supply. The problem is how to allocate growth between 
shoot and root to use up the WN just at the end of the 
period. In terms of Wc, there is no surplus in the begin- 
ning and it is economic to convert itas soon as possible 
to the structure, since the non-structural carbon makes 
no contribution to the carbon assimilation. 

In Figure 6, we show the structural dry weights of 
a plant at the end of the growth period obtained from 
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coordination using different values of n ranging from 
0.01 to 1 (a hundred-fold change) expressed as a per- 
centage of the results obtained from the optimization 
model• The curve lies in the range of 90%-95%. For 
comparison, results are presented where we held the 
growth allocation coefficient to the shoot, Ash, constant 
(from 0.01 to 1) throughout theentire growth period. 
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Discussion 

Our explanations for interpreting the results of the 
optimization model are necessarily heuristic since 
our grasp of mechanism is lost when we must rely 
on numerical methods. The mechanism can only be 
obtained with an analytical solution, which is a serious 
problem because very few optimization problems can 
be solved analytically. In our example, we can draw 
the optimal trajectory of the growth allocation coeffi- 
cient to the shoot, but we can say nothing about how 
the plant allocates growth between shoot and root in 
response to what kind of external and internal condi- 
tions. If any one of the parameters - or even the length 
of the growth period - changes, we solve the prob- 
lem from the beginning• When the environment is not 
constant, a change of any environmental condition at 
any time in the growth period will affect the optimal 
solutions. That is, for obtaining the optimal solutions 
the environmental conditions during the entire growth 
period must be explicitly defined beforehand. This not 
only imposes a constraint on our understanding of the 
plant response, it also introduces the unrealistic situa- 
tion where a plant, at the beginning of a growing period, 
must "know" beforehand the environmental conditions 
it will experience during the growth period. The latter 
constraint is necessary since the plant must determine 
at each time step how much growth should be allocated 
to the shoot in order to maximize the dry weight of the 
plant structure at the end of the period. Therefore, while 
optimization theory is theoretically beautiful and capa- 



ble of explaining some results related to plant growth, 
it has a number of major shortcomings as a tool for 
modelling allocation. 

As an alternative to optimization, we propose the 
use of coordination theory. We show here that a 
plant may respond to dynamic environmental condi- 
tions by correcting the imbalance between the carbon 
and nitrogen supplies. We can demonstrate that the 
results obtained from coordination theory are numer- 
ically very similar to those obtained based on opti- 
mization theory. We have intentionally kept the allo- 
cation model developed here as simple as possible - 
yet employing the essential features of growth alloca- 
tion between shoot and root - in order to illustrate the 
fundamental nature of coordination theory. Although 
it is very simple, this model provides a basic structure 
for further development. By relaxing some of the sim- 
plifying assumptions, more advanced versions of the 
model can be easily developed. For instance, assump- 
tion (5) is only valid when plants are very small; it 
permits plants to grow exponentially for an indefinite 
period. Carbon supply, Sc, depends on many pro- 
cesses, such as photosynthesis, respiration, radiation 
extinction in a canopy, etc. The simplified carbon sup- 
ply fnnction (Equation 4) may be replaced by a leaf 
photosynthesis model with stomatal Control, a respira- 
tion model that includes both growth and maintenance 
respiration, and a canopy model that describes light 
extinction and nitrogen distribution within a canopy. 
Assumption (4) can be relaxed by assuming that fN is 
not a constant, but an additional means of coordination 
in response to imbalance between carbon and nitro- 
gen supply. Assumption (3) can be relaxed to include 
equations that describe the relation between maximum 
growth rate and meristems. Assumption (2) can be 
relaxed by adding starch as an additional variable and 
including equations describing the relation between 
soluble and insoluble carbohydrates. These are exam- 
ples that will improve model performance and will 
expand our capability to address problems of alloca- 
tion that are not very well solved (Chen and Reynolds, 
unpubl.). 

We suggest that coordination theory has potential 
to be a valuable and practical tool to modelling plant 
growth allocation and should be further developed. 
Experimental work is needed to quantify the dynamics 
of the "coordination" coefficient, ~, which controls 
how fast a plant can respond to an imbalance. 
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