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High resolution airborne digital video image data, biomass measurements and
spatial statistics were used to map above-ground biomass for the five major
semi-arid plant communities in the Jornada Long Term Ecological Research
(LTER) site (southern New Mexico). The two principal objectives were to
determine: (1) spatial characteristics of arid shrub versus semi-arid grassland
vegetation; and (2) a suitable image spatial resolution and ground sampling
interval to map above-ground biomass spatial distribution for these vegetation
types. The spatial characteristics of each plant community were established by
analyzing digital images at varying pixel sizes using semi-variograms. As pixel
size increased from 0·5 m to 16 m, little information on vegetation pattern and
abundance was lost in grassland and playa grassland sites. In comparison, the
pattern and abundance of vegetation became indistinct in shrubland sites once
pixel size exceeded mean shrub diameter. This work illustrates the utility of
variograms from remotely sensed data for two applications: (1) determining a
suitable scale to examine an ecosystem’s spatial structure; and (2) providing
information on the spatial pattern of vegetation as an indicator of ecosystem
condition in the context of a model for desertification.
 1996 Academic Press Limited
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1. Introduction

In order to accurately map the spatial distribution of above-ground biomass using
remotely sensed imagery and ground sampling techniques, vegetation structures and
their scale of spatial variability should be taken into account (Woodcock and Strahler,
1987; Curran, 1988; Fortin et al., 1989). Vegetation structure is used here in reference
to the horizontal and vertical arrangement of plant species and biomass into distinct
patches. Incorporating information on vegetation structure into the design of a biomass
mapping project ensures that: (1) an appropriate image spatial resolution (pixel size)
is used to represent features of interest at a required scale; and (2) the number and
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spacing of ground sample points provides an accurate, unbiased measurement of
the spatial distribution of biomass in the landscape that was sampled (Curran and
Williamson, 1986; Atkinson, 1991).

Prior to mapping, a relationship must be established between remotely sensed data
and the biophysical variable of interest at the appropriate scale, e.g. spectral reflectance
and above ground biomass. Image data can then be converted to a measure of the
biophysical variable calibrated from field data. In this paper, field biomass measurements
have been made in conjunction with image acquisition overflights and we assume that
a positive relationship exists between the Normalised Difference Vegetation Index
(NDVI) and above-ground live biomass. This relationship is expected to be similar to
one already established in this environment between NDVI and vegetation cover
(Duncan et al., 1993; Franklin et al., 1993).

One of the principal remote sensing objectives in the Jornada Long Term Ecological
Research (LTER) project has been to examine the effect different sensors with different
spatial resolutions have on the ability to determine the type, patterns and abundance
of vegetation in a disturbed semi-arid environment (Duncan et al., 1993). This work
focused on evaluating the utility of remotely sensed data to estimate the spatial
distribution of above-ground biomass from the scale of individual plants (0·5 m pixels)
to the previously used scales of satellite data (30 m pixels). The results obtained provide
a link between the information on the spatial distribution of biomass determined from
field based sampling and remotely sensed imagery from 0·5–30 m spatial resolution.

Information on vegetation pattern and abundance can be used to define ecosystem
spatial structure. This definition would be particularly useful for models of desertification
and shrubland invasion in the Jornada Basin that explain changes in ecosystem
spatial structure (e.g. Grover and Musick, 1990; Schlesinger et al., 1990). Each model
incorporates mechanisms accounting for changes from previously uniform distribution
of soil water and nutrients in grasslands to more heterogeneous clustered patches where
shrubs develop. Similar types of ecosystem structural changes are expected in marginal
semi-arid grassland areas as a result of global climate change. Techniques are required
to monitor these changes at ecosystem scales, providing quantitative data down to the
scale of individual vegetation and soil patches to parameterize ecosystem models
(Roughgarden et al., 1991; Ustin et al., 1993). Both remotely sensed and field data can
be used in combination to address this problem.

The principal objectives of this study were to utilize airborne digital video imagery,
field based above-ground biomass measurements and spatial statistics to determine: (1)
the spatial variability of vegetation and, hence, landscape structure within the five semi-
arid plant communities of the Jornada LTER site; and (2) a suitable pixel size and
ground sampling interval to map the spatial distribution of above-ground biomass
within each plant community. We were also interested in evaluating the utility of low
cost, high spatial resolution (<1·0 m2) airborne video for applications that would link
field measurements to studies of landscape scale biophysical patterns based on satellite
imagery with spatial resolution >400 m2.

1.1.  

The Jornada LTER project site is located in the northern portion of the Chihuahuan
desert and was established to investigate desertification of grasslands in south-western
New Mexico (Schlesinger et al., 1990). Anthropogenic and climatic changes influenced
the replacement of native grassland plant communities with three dispersed shrub
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T 1. Jornada LTER ADAR imagery data set, October 1991

Size of ground resolution
Plant community Sample site images∗∗ (pixel width)

Mesquite dunes Mesquite Well, 0·5 m
Mesquite Rabbit, 0·5 m
Mesquite North 0·5 m

Tarbush flats Tarbush Taylor, 0·5 m
Tarbush East, 0·5 m
Tarbush West 0·5 m

Creosote bajadas Creosote Gravel, 1·16 m∗
Creosote Caliche, 1·16 m
Creosote Sand 1·16 m

Playa grasslands College Playa, 0·5 m
Small Playa, 0·5 m
Playa Tabosa 0·5 m

Black grama grasslands Summerford Grassland∗, 1·16 m
Basin Grassland∗∗∗, 0·5 m
IBPE Grassland 0·5 m

∗These sites were flown at a higher altitude (1·16 m pixels).
∗∗Names correspond to Jornada LTER permanent sample site names.
∗∗∗A remnant grassland but with different species composition.

communities (USDA, 1980; Gibbens and Beck, 1988). Remnant grassland species occur
in black grama (Bouteloua eriopoda) grassland areas, while other grassland species
occur in playas (low lying areas that are periodically flooded). Shrubland areas occur
within specific geomorphic units: tarbush (Florensia cernua) shrubs in flat, clay sites;
mesquite (Prosopis glandulosa) shrubs on dunes; and creosote (Larrea tridentata) shrubs
on bajadas (alluvial fans). To monitor primary productivity and other ecosystem
characteristics of vegetation in each of these plant communities, three 70 m×70 m sites
were identified in each plant community for detailed studies by LTER scientists. In
total, there were 15 sample sites in the Jornada LTER site (Table 1), i.e. three in each
of the five plant communities.

1.2. 

Above-ground plant biomass characteristics are often estimated from remotely sensed
imagery by combining pixel brightness values from two or more image bands to produce
spectral vegetation indices (SVIs). Preferably, pixel brightness values used to compute
SVIs have been calibrated and adjusted for illumination conditions to represent spectral
reflectance. Spectral vegetation indices are more highly correlated with biomass than
individual band reflectance (Jensen, 1983; Asrar et al., 1989). The most commonly used
index, the NDVI, was developed because of the positive correlation of near infrared
(NIR) reflectance and negative correlation of red reflectance with the amount of green
vegetation matter (Rouse et al., 1974). The NDVI is calculated from:

NDVI=
NIR−red
NIR+red

(1)

where: NIR=near infrared pixel brightness value
Red=red pixel brightness value
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The relationship between NDVI and above ground biomass was established mainly in
rangeland and cultivated areas (Rouse et al., 1974; Asrar et al., 1989). NDVI image
applications for biomass mapping and temporal change assessment are reviewed by
Tucker (1979), Jensen (1983, 1986), Asrar et al. (1989) and Duncan et al. (1993). The
application of NDVI in semi-arid areas has been scrutinized more closely due to the
differences in plant structures and physiology of these areas relative to those where the
index was originally developed. Due to the discontinuous nature of green vegetation
in semi-arid areas, NDVI has been found to represent cover and canopy area more
directly, which in turn may be related to biomass (Graetz et al., 1986; Satterwhite and
Henley, 1987; Franklin and Hiernaux, 1991; Duncan et al., 1993).

Previous research investigating vegetation characteristics within the Jornada LTER
has been based on satellite imagery with spatial resolution elements ranging from 20 m
to 80 m (e.g. Warren and Hutchinson, 1983; Musick, 1984; Duncan et al., 1993;
Franklin et al., 1993). These authors identified soil background along with vegetation
physiognomy and phenology as major controls on the spectral reflectance properties
of Jornada vegetation. Duncan et al. (1993) found a significant correlation between
spectral vegetation indices and projected crown-cover (%) in shrub-dominated areas of
the Jornada LTER.

In a preliminary study, NDVI images obtained from the Airborne Data Acquisition
and Registration (ADAR) system 5000 described below, were used to map spatial
patterns in vegetation cover for a single sample site from each of the five major plant
communities. These high resolution multi-spectral data have been used for vegetation
monitoring and forestry applications (e.g. Benkelmann et al., 1992a, 1992b; Van
Mouwerik, 1993). Other airborne video image acquisition systems used in rangeland
assessment are described in Everitt and Nixon (1985), Everitt et al. (1986) and Hutchinson
et al. (1990). Due to the ADAR pixel and frame sizes used, continuous data were
provided to examine spatial patterns of biomass within the field sites where field data
only provided a discontinuous grid sample.

In comparison to biomass distribution maps produced from spatially interpolated
field data in the 70 m×70 m sites, the image-based maps were significantly different for
most sample sites. This was especially evident in shrub dominated sites where a
continuous distribution of biomass was evident in the interpolated field data maps,
while NDVI images indicated a landscape with numerous discrete shrubs separated by
bare ground. Hence, a more detailed assessment of each plant community’s spatial
characteristics was warranted to identify suitable image and ground sampling scales
for mapping biomass distribution.

The semi-variogram, referred to herein as the variogram, is one of the more
frequently used spatial statistical techniques now being applied in remote sensing and
ecological research (Davis et al., 1991; Rossi et al., 1992; Simmons et al., 1992). For a
remotely sensed image, the variogram provides a graphical representation portraying
the average variance between pixel values as a function of the distance between pixels
(Curran, 1988). More detailed explanations of the assumptions and mathematics
involved in calculating variograms are presented in Craig and Labovitz (1981), Cressie
(1991), and in the context of remotely sensed imagery by Jupp et al. (1988).

Dominant scales of spatial variability in an image usually correspond to the size of
scene elements (Woodcock et al., 1988a, 1988b). Hence, one of the principal variogram
applications in remote sensing research involves determining the size of dominant
objects and patterns within the image such as plant canopies or vegetation stands (e.g.
Woodcock and Strahler, 1987; Woodcock et al., 1988a, 1988b; Cohen et al., 1990;
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Atkinson, 1993). In an ecological context, these dimensions may be linked to components
of ecosystem spatial structure and their controlling processes at a specific scale (Yoder
et al., 1987; Cohen et al., 1990; Simmons et al., 1992). A second application involves
defining appropriate ground sampling intervals based on the spatial variability of scene
objects (e.g. Curran and Williamson, 1986; Curran, 1988; Atkinson, 1991; Simmons et
al., 1992).

2. Methods

To achieve the research objectives, the following four problems were assessed. First,
the vegetation structural characteristics (individual plant horizontal extent, spacing and
pattern) in each of the five Jornada plant communities were determined, based on
analysis of their appearance in airborne scanner images and corresponding variogram
form. Next, variograms from each plant community’s images at increasing pixel sizes
were examined to establish the image resolutions at which vegetation structures remained
undistorted. Third, biomass distribution maps produced by kriging (interpolating) field-
based biomass samples were compared to images of different pixel sizes. Finally,
variograms were interpreted for images representing each plant community type,
providing a quantitative measure of landscape structure. This information was used to
determine appropriate pixel size and ground sampling intervals for mapping above-
ground biomass spatial distribution.

2.1.    

For each of the 15 sample sites, a non-destructive sampling scheme was used to record
vegetation species and dimensions in a grid with 1 m2 quadrats at 10 m intervals along
seven adjacent, 70 m long, north–south transects (49 samples per site). These data were
regressed with biomass measurements made from destructively sampled plots of the
same species outside each sample site to provide species specific estimates of standing
biomass in g/m2. Each sample site’s biomass and distribution of ground cover was
represented by 49 samples in a 7×7 grid over a 70 m×70 m square.

The ground-based biomass estimates were made in September 1991 for each of the
15 sample sites approximately 1 month before the ADAR 5000 image data acquisition.
The ground based and image samples were considered to represent the same vegetation
conditions. Both sampling periods are from the same season and, because much of the
vegetation is perennial between September and October, image changes were not
expected.

Interpolation of the field sampled biomass data to produce a continuous surface
was performed using the kriging option in the SURFER and GEO-EAS software
packages (Englund and Sparks, 1991; Golden Software, 1992). Model variogram
parameters of range and form, provided from the ADAR images for each sample site,
were used in the kriging. Assumptions concerning the distributional properties of data
to be interpolated and the use of variograms are explained in the analytic procedures
section. Variograms were also computed from field-based biomass data using GEO-
EAS software. Differences between the rasterized, field-based biomass maps and the
pattern on corresponding NDVI images are identified and explained in relation to the
sampling strategies used.
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2.2.     

ADAR 5000 multi-spectral digital image data were obtained for each of the three
sample sites in each of the five Jornada plant communities during October 1991 at a
pixel resolution of 0·5 m or 1·16 m (Table 1). All three Creosote sites and the Summerford
Grassland sites were flown at a higher altitude, yielding a minimum pixel size of
1·16 m. Each ADAR image frame contained 760×435 pixel brightness values for blue
(426–494 nm), green (521–599 nm), red (620–694 nm) and near-infrared (813–1001 nm)
spectral bandwidths.

ADAR system 5000 data were collected using four charge-coupled device (CCD)
cameras whose video signal was digitally captured onboard a light aircraft (Benkelmann
et al., 1990). The corner points of each site were marked on the ground when the
images were taken, allowing their location to be identified and corresponding pixel
data to be extracted. Because this was one of the first acquisitions of ADAR data the
processed data was not spatially registered between image bands. Manual band-to-
band registration was required for each image frame once downloaded. In most cases,
the mis-registration was minimal. However, some frames were unable to be accurately
registered (e.g. Figure 1(b), IBPE grassland and basin grassland, Figure 2, mesquite
well and mesquite rabbit).

Each sample site’s original 0·5 m (1·16 m for Creosote sites and Summerford
Grassland) resolution image was regridded by bilinear interpolated averaging to pixel
sizes of 1·0 m, 2·0 m, 4·0 m, 8·0 m and 16·0 m (2·32 m, 4·64 m, 9·28 m, 18·56 m and
37·12 m for Creosote and Summerford Grassland sites). This was done to examine the
effect that different image spatial resolutions have on the spatial pattern of above
ground biomass as indicated by NDVI variations. NDVI images for each site were
then calculated at each different pixel resolution using digital numbers in Equation (1).

2.3.  

We utilized the following vegetation spatial characteristics to describe landscape structure
in each plant community from NDVI imagery and their variograms: surface cover
(continuous or discontinuous) patterns and horizontal plant structure dimensions.
Surface cover referred to the presence of live and dead biomass in the sample site and
its spatial form or connectedness. Pattern was the arrangement of patches or individual
plants. Horizontal plant structural (arrangements of plant species and biomass) di-
mensions for individual plants were estimated from variogram range values for each
site.

Variograms were calculated for images at each pixel size and sample site using an
Image Processing Workbench (IPW) program (Frew, 1990; R. Dubayah, pers. comm.).
A random sample of points at each lag distance was first generated by this program,
then the pixel pairs at each lag were used to calculate semi-variance. The variogram
was the appropriate measure to use as the data were assumed to meet the intrinsic
hypothesis for a regionalized variable. This hypothesis requires weak second order
stationarity in the data, that is, variance in the image data should only be a function
of the distance between pixels. Conditions of weak stationarity, along with variogram
and also kriging applications are invalidated when the local mean or variance changes
over an image or sample site (Jupp et al., 1988; Atkinson et al., 1992). Several authors
consider variograms to only provide a partial indication of dominant spatial patterns
and structure (Turner et al., 1991; Rossi et al., 1992).
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Figure 1a. Jornada LTER: Playa study sites. Pixel size=0·5 m. Bright areas=high NDVI, dark area=low
NDVI.

Figure 1b. Jornada LTER: Grassland study sites. Pixel size=0·5 m.



Biomass distribution and remote sensing146

Figure 2. Jornada LTER: Mesquite dune study sites. Pixel size=0·5 m.

Imagery and variograms for each sample site were interpreted over the range of
different pixel sizes. Quantitative verification of observed changes in images was provided
by interpreting the changes in corresponding variogram form. The simple scene structure
in the Jornada plant communities, with either shrubs or grass on a bare soil background,
enabled significant features and patterns at each pixel resolution to be identified. In
addition, the resolution at which ground features were no longer spatially and spectrally
discrete in the image was able to be defined from changes in variogram form. Several
components of the variogram were used to quantify object dimensions and patterns,
assuming a simple scene with one object and one background type:

(1) Range is related to the size of dominant objects in the scene;
(2) Height of the variogram sill is proportional to the density of objects or covered

background; and
(3) Shape or form of a variogram is a function of the pattern of objects in a scene and

variance distribution of scene objects.

We found the “range” of an image’s variogram to be particularly diagnostic, as it
represents the distance of pixel separation beyond which image features are dissimilar
and below which they are similar. For example, in an image with pixels less than 2·5 m,
composed of shrubs approximately 5·0 m in diameter, spaced 5·0 m apart on bare soil,
variogram ranges would also be approximately 5·0 m.
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Figure 3. NDVI image variograms.

3. Results and discussion

3.1.    

Differences in the spatial scales and patterns of vegetation structures between the
grassland, playa grassland and shrubland sites (described in Table 2) were evident in
the ADAR imagery (Figures 1 and 2). Quantitative definitions of structure were
provided by the form of their variograms.

According to the Jornada ecosystem desertification model (Schlesinger et al., 1990)
and shrubland invasion model (Grover and Musick, 1990), remnant grasslands are
characterized by a uniform distribution of soil resources and therefore the spatial
distribution of biomass should be uniform. This was observed in the apparent landscape
structure exhibited by NDVI images for the Summerford and Basin grassland sites as
well as the College and Small playa sites. Within these sites a uniform distribution of
soil resources (water and nutrients) may be hypothesized to be supporting a continuous
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Figure 3.—continued

surface cover. In the playa sites the extent of grass cover may also be a function of
geomorphic controls on soil characteristics and nutrients. This may occur possibly at
the scale indicated by variogram ranges for these sites, 15–25 m in Table 2. The playa
grasslands with different grass species exhibited a more continuous cover of high NDVI
values within playa boundaries. In contrast, grassland sites exhibited high frequency
variation in NDVI values, producing a speckled, highly variable image. This may
indicate varying proportions of cover produced by live and dead biomass.

The Playa Tabosa and IBPE grassland sites exhibited more of a transitional
variogram form, compared to the linear, unbounded forms of those described above
(Figure 3). Variogram range values indicated clustering of NDVI values at different
scales in each site, 4–8 m in Playa Tabosa and 15–20 m in IBPE grassland. In the case
of Playa Tabosa this may represent a transition to more high frequency spatial variation
in landscape structure as in the other grasslands. For the IBPE site, the clumping
evident in the imagery and variogram may be due to geomorphic and edaphic controls
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Figure 4. Mesquite North ADAR NDVI images. Bright areas=high NDVI, dark areas=low NDVI.

on soil resource distribution affecting plant distribution and growth. These effects were
not present at other grassland sites.

Shrubland sites (tarbush flats, mesquite dunes, creosote bajadas) exhibited a dis-
continuous surface coverage with a repetitive pattern of shrubs at constant spacings
(Figure 2) and show the classic “transitional” variogram form [Figure 3(a)]. Well defined
shrubs of similar size, such as mesquite, produce a transitional variogram with distinct
range and sill. The distinctive range and sill indicate the distance within which NDVI
values are highly correlated, approximating average shrub dimensions, shrub spacing
intervals and coppice dunes formed around shrubs (Table 2). For example, mesquite
shrubs [Figure 2 and Figure 3(a)] have a typical diameter of 2·5–10 m, with similar
spacing. Creosote shrubs in the Caliche site are small (1·0 m in diameter) with 1·0–2·0 m
spacing.

Within shrubland sites, observed differences in variogram form are due to the
variability in shrub size and spacing. As the variability of shrub shape and inter-shrub
spacing increases, the transitional variogram becomes more rounded, e.g. Tarbush east
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T 3. Pixel sizes for realistic interpretation of the spatial pattern of biomass from NDVI
images

Pixel size for accurate Pixel size beyond which NDVI
discrimination of NDVI patterns patterns are undistinguishable

Sample site image (m) (m)

College Playa 0·5 2·0
Small Playa 0·5 1·0
Playa Tabo 1·0 2·0
IBPE Grassland 1·0 2·0
Summerford Grassland 1·2 4·6
Basin Grassland 1·0 2·0
Mesquite Well 0·5 1·0
Mesquite Rabbit 1·0 2·0
Mesquite North 0·5 8·0
Tarbush Taylor 1·0 2·0
Tarbush East 0·5 2·0
Tarbush West 0·5 2·0
Creosote Gravel 1·2 2·3
Creosote Sand 1·2 4·6
Creosote Caliche 1·2 2·3

and taylor, Creosote gravel and caliche (Woodcock et al., 1988b). Extreme variability
and mixture of shrub types in a scene may explain their almost linear variograms (e.g.
Creosote sand and Tarbush west). This may suggest the presence of a more even
distribution of soil nutrients in some areas.

Vegetation spatial characteristics in each plant community were clearly represented
in high resolution ADAR NDVI images: (1) grassland plant communities (black grama
grasslands and others) exhibiting a continuous surface cover and high frequency internal
variations; (2) playa grassland communities with low frequency spatial variation in a
continuous NDVI cover within playa extents; and (3) shrubland plant communities
exhibiting a discontinuous shrub cover with regular dimensions and spacing. These
observations support the earlier hypothesis included in the Jornada desertification
model of Schlesinger et al. (1990) that Jornada grasslands exhibit a more homogeneous
spatial distribution of biomass than disturbed shrub areas.

The effects of apparent desertification on a local scale landscape structure are evident
from comparisons of the shrubland sites’ (Mesquite, Tarbush, Creosote) imagery and
variograms to those of the playas and grasslands. Grassland and playa grasslands with
uniform soil resources and continuous patterns of NDVI were typified by linear,
unbounded variograms. The more arid shrublands were characterized by discontinuous,
clumped NDVI patterns with transitional variogram form. Presumably, variogram
range values less than 10 m are indicative of shrub diameter and inter-shrub spacing.
Further field checking to measure the spatial scales of biomass distribution is required
to validate these assertions and to determine the associated scales of variability of soil
nutrients in the grassland and shrubland environments.

These findings indicate the utility of variograms from high resolution imagery as
an indicator of changes in landscape structure. Information from the variogram may
be used to define the transitional stage of a landscape in the context of the Jornada
desertification model (Schlesinger et al., 1990), or the shrub invasion model (Grover
and Musick, 1990).
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Figure 5. Small playa ADAR NDVI images. Bright areas=high NDVI, dark areas=low NDVI.

3.2.     

Increasing pixel size by image resampling caused small scale features and detail (e.g.
small shrubs, internal NDVI variation in shrubs) to be progressively lost. In contrast,
larger, less frequently occurring features (e.g. large shrubs, geomorphological units)
were retained. For images of shrubland sites (e.g. Figure 4), shrub forms and NDVI
variation within a shrub were enhanced at the highest pixel resolutions. Beyond 1·0 m
pixel sizes, variations within the crown became less evident. Continuing beyond the
2·0–4·0 m pixel size, shrub forms became unrecognizable. Variations in NDVI values
due to spatial differences in vegetation cover, biomass and/or vigor conditions were
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Figure 6. Basin Grassland ADAR NDVI images. Bright areas=high NDVI, dark areas=low NDVI.

evident at larger pixel sizes in the more continuously covered grassland and playa sites
(Table 3). Features larger than individual shrubs in the shrubland sites were evident in
these images representing bare and vegetated areas, and soil or geomorphological units
were evident in the ADAR NDVI imagery up to 8 m pixel sizes (e.g. Figure 5).

Observed changes in each site’s variogram characteristics at increasing pixel sizes
indicated a decrease in NDVI variability. The variograms most representative of changes
observed are shown in Figure 7. For sites containing shrubs, the form of the variogram
was preserved at each pixel size until a rapid change occurred beyond the scale where
features became uninterpretable (e.g. 4·0 m pixels in Figure 7). Smoothing or loss of
detailedfeatures, reducing the range of NDVI detail in the image was indicated by the
lowering of the sill (maximum variance) as regional variance decreased. In contrast,
the variogram form for most grassland and playa grassland sites remained linear [e.g.
Figure 3(b)] at all pixel sizes as overall landscape structure was retained (Figure
6). These results indicate that in grassland and playa grassland plant communities,
information on the larger scale spatial distribution of vegetation (e.g. patches) was
preserved as image resolution was increased. In shrublands, information was lost once
the pixel size exceeded the average size of the shrubs. These results are consistent with
principles established by Woodcock and Strahler (1987) and Woodcock et al. (1988a,
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Figure 7. Mesquite North NDVI variograms.

1988b), who examined the effect of increasing pixel size on the spatial structure of
simulated and real images and the form of variograms.

3.3.   NDVI     

Maps of the spatial distribution of biomass produced by a kriging interpolation of the
field sampled measurements could not be accurately registered with the corresponding
NDVI imagery for each site. Therefore, comparing variogram form and parameters
for the kriged above-ground biomass data and NDVI imagery provided an alternative,
quantitative means to assess suitability of the sampling design used. Details on
the variograms calculated for one site of each vegetation community type are listed in
Table 2.

For the shrubland sites (Mesquite, Creosote, Tarbush), all variograms from biomass
field samples exhibited a pure “nugget” effect [Figure 8(b)]. A flat variogram with very
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Figure 7.—continued.

limited slope indicated that the majority of the spatial autocorrelation (e.g. in biomass)
occurred at a spatial scale less than that of the 10 m interval used. The variograms for
the NDVI imagery at 0·5 m pixel resolution for shrubland sites suggested that NDVI
values were highly autocorrelated within distances of 5·0–16·0 m, indicative of either
shrub or inter-shrub dimensions. In comparison, the variograms for the playa grasslands
and grassland biomass samples [Figures 8(d), 8(e)] both exhibited positive linear forms.
Similar variograms were produced for those site’s NDVI imagery at 0·5 m pixel
resolution. This coincidence of form suggests that the 10 m field sampling interval was
capturing the same landscape structure as that detected using a 0·5 m sampling interval.

The Mesquite North shrubland environment has a distinctive spatial structure,
characterized by shrubs 5–7·5 m in diameter, with 5–10 m spaces of bare soil between
them. As portrayed on the interpolated data, the majority of field sample points for
biomass appeared to coincide with spacing between the shrubs. The SURFER program
assumes a linear variogram with a positive slope for its kriging interpolation. As a
result the typical extent of autocorrelation for features with high NDVI values (e.g.
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Figure 7.—continued.

shrubs) is not taken into account and a linear decrease in NDVI is assumed. This
produces an image without small-scale features at the characteristic autocorrelation
length corresponding to shrubs.

To apply the appropriate variogram model for kriging the biomass data, the range
and form of the NDVI image variogram for the Mesquite North sample site [Figure
3(a)] were used to specify input parameters. The resulting interpolation of biomass
spatial distribution still did not produce a pattern similar to the site’s NDVI image
(Figure 2). No discrete shrub-like patches of high NDVI were evident, nor did the
general distribution of high NDVI values coincide with the actual shrub distribution.
Even though the model variogram for kriging had been adjusted to the spatial structures
evident in the 0·5 m pixel NDVI image, a lack of sample points coinciding with shrubs
biased the interpolation.

A similar procedure, using NDVI image variogram parameters for kriging, was
applied to biomass data from each of the other plant community types, Small playa
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(a) Mesquite North map.

Figure 8. Rasterized biomass maps and variograms, September 1991 data. Bright areas=high biomass. Dark
areas=low biomass.

and Basin grassland. Kriged maps of biomass spatial distribution were produced for
each site. The output maps appeared identical to those in Figures 8(c) and 8(e). This
similarity results from each of these site’s NDVI image characteristic linear variogram
form. This type of variogram model was used in the kriging routine by the SURFER
program to produce Figures 8(c) and 8(e).

3.4.       

Although the 10 m ground sampling interval adequately represented the biomass
distribution in the grassland, playa grasslands and more continuously covered shrubland
sites, it did not realistically represent the spatial pattern of plant abundance in the
Mesquite North site. An optimum sampling interval should provide non-biased data
to serve the sampling purpose, taking into account the spatial structure of the population
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Figure 8(b) Mesquite North variogram.

being sampled and the type of application to which it will be applied. The pixel size
beyond which vegetative features required for estimating biomass distribution, such as
individual shrubs and grassland patches, became unresolvable, was used as the primary
criterion. In the case of Jornada shrub communities, the pixel resolution should be
smaller than the average diameter of the smallest shrubs.

Based on the summary of observed pixel size and image feature interactions in
Table 3, the most realistic representation of biomass distribution at the scale of field
sites in the Jornada LTER would be achieved using a 1·0 m pixel size. At this resolution
individual shrub forms and high frequency, small-scale NDVI patterns are still clearly
discernible for all sites.

The aim of a ground sampling strategy is to obtain an accurate representation of
biomass distribution in a given plant community. Specific considerations in grassland
and playa grassland sites were continuous surface coverage in 15–20 m patches, no
discrete shrubs and high frequency NDVI variation. In shrubland sites, shrub dimensions
and spacing were the main considerations and these varied between each plant com-
munity (Table 2). The strategy that we selected utilized the regular, systematic sampling
approach used in the biomass sampling (by L. Huenneke), except that a 5·0 m interval
between sample measurements was chosen. The 5·0 m interval should be small enough
to ensure that sample points do not coincide with shrub or inter-shrub patterns in the
shrubland sites and to identify feature boundaries in grassland areas.

The systematic sampling strategy with the 5·0 m interval was applied to NDVI
images of grassland sites (Basin Grassland), playa grassland sites (Small Playa) and
shrubland sites (Mesquite North, Tarbush East, Creosote Sand). Sample sets of NDVI
values were then interpolated in GEO-EAS and SURFER using the same parameters
used to krige the 1991 biomass data with parameters from NDVI images for these
sites.

For the grassland and playa grassland sites, the rasterized NDVI maps from the
5·0 m sampling interval represented the main variations in vegetation distribution
indicated on the 0·5 m NDVI image. However, very high frequency, small-scale NDVI
variations in the grassland and playa sites (e.g. Summerford and Basin grassland, Playa
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Figure 8(c) Small Playa map.

Tabosa) were not represented due to the size of the sampling interval and the interpolation
process. Comparison of the rasterized NDVI maps produced from the 5·0 m sampling
interval with the rasterized field-based biomass samples, based on 10 m intervals,
indicated a correspondence of large-scale features between maps in both grasslands
and playas.

Similar effects were observed in the shrubland sites, especially Mesquite North. The
5·0 m sampling interval identified the outline of individual shrubs and their internal
variability. The use of a 5·0 m sampling interval in shrubland sites appears to represent
a significant improvement on the previous results obtained from using a 10 m sampling
interval. The extent of the difference between the actual biomass distribution [e.g.
Figure 4(a)] and 10 m sampled biomass distribution [e.g. Figure 8(a)] indicates the
necessity for a more intensive sampling scheme.
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4. Conclusion

This research highlights the need to understand the spatial characteristics (size, patterning
and scale of variability) of the environment being investigated prior to acquiring and
processing data for mapping. More specifically, the spatial characteristics of any
environment should be considered where remotely sensed data or field-based techniques
will be used to map the spatial distribution of above-ground biomass. Applying
exploratory spatial statistical techniques, such as the variogram, to remotely sensed
imagery enables the presence and scale of the relevant spatial characteristics to be
identified and analyzed (Simmons et al., 1992; Dutilleul, 1993). Our results illustrate
the utility of high spatial resolution imagery for providing a means to determine the
effect that the spatial scale of sampling from pixel and field sampling intervals has on
the measurement of the spatial distribution of above-ground biomass. An assessment
may also be made using this approach of the difference in information content between
field-sampling scale measurements and lower resolution satellite data.

In this sense, the variogram has been used as an exploratory tool for structural
analysis of landscape or ecosystem structure. Similar variogram forms may be produced
from images of landscapes with different spatial structures, hence, additional spatial
statistics should be used to provide information on landscape spatial structure (Rossi
et al., 1992). In the case of the simple scene model applicable to the shrub and grass
communities in the Jornada basin, the variogram appears sufficient. For the Jornada
model of desertification (Schlesinger et al., 1990), the variogram serves as a potential
ecological indicator for changes in landscape structure from the semi-arid grasslands
with uniform ground cover to the more arid and spatially heterogeneous shrublands.
The combined application of high-resolution remotely sensed data and the variogram
may also be applicable in ecosystem and regional scale models outside semi-arid areas,
where landscape structure is linked to biogeochemical cycles and their spatial variation.
Extension of remotely sensed data in this direction using variograms furthers initial
works of Curran (1988), Atkinson (1991) and Simmons et al. (1992), by using the
variogram as a tool to link remotely sensed data to the spatial dimensions of ecosystem
structures and processes.
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Figure 8(e) Basin Grassland map.

Assessing the spatial characteristics of ADAR images acquired for portions of the
Jornada LTER site using variograms and visual analysis indicated three characteristic
patterns of spatial variability: (1) grassland plant communities (black grama grasslands)
exhibiting a continuous surface cover and high frequency internal variations; (2) playa
grassland communities exhibiting a continuous surface cover with low frequency internal
variations; and (3) shrubland plant communities (mesquite dunes, tarbush flats, creosote
bajadas) exhibiting a discontinuous shrub cover with regular dimensions and spacing.
The optimal pixel resolution (1·0 m) and ground sampling interval (5·0 m) for rep-
resenting spatial distribution of above ground biomass were specified to account for
the spatial structure of vegetation in each plant community.

Continued research is necessary in this area to better utilize remotely sensed data
and spatial statistics other than variograms for addressing specific questions on ecosystem
spatial structure and dynamics. Further interpretative assessment and field validation
of variogram parameters in relation to vegetation and soil patch structure is essential.
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Such work will enable more functional links to be established between the spatial and
spectral-radiometric characteristics of imagery and ecological characteristics of the
environment being investigated.
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