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 On definition and quantification of heterogeneity

 H. Li and J. F. Reynolds, Dept of Botany, Duke Univ., Durham, NC 27708, USA

 General guidelines on the quantitative representation of het-
 erogeneity in ecology are still lacking. Without a precise
 definition and sound quantification of heterogeneity, state-
 ments involving the concept will continue to be confusing,
 and comparative studies and hypothesis testing will be in-
 effective. To solve this problem we propose an operational
 definition of ecological heterogeneity that facilitates quanti-
 fication based on the data types of concern. We use two
 examples to demonstrate how our definition and quantifica-
 tion of spatial heterogeneity can be applied in practice.

 Dutilleul and Legendre's (1993) discussion of the defini-
 tion and quantification of spatial heterogeneity is timely.
 Heterogeneity has become a buzzword in the ecological
 literature in recent years - a result of a broad recognition
 by the ecological community that heterogeneity is an
 important characteristic of ecological systems and affects

 a wide range of theoretical and practical issues (Kolasa
 and Rollo 1991, Dutilleul and Legendre 1993). While
 major progress toward an ecological theory of hetero-
 geneity is being made (Risser et al. 1984, Addicott et al.
 1987, Turner 1987, 1989, Kotliar and Wiens 1990, Shor-
 rocks and Swingland 1990, Grace 1991, Kolasa and Pick-
 ett 1991, Turner and Gardner 1991, Allen and Hoekstra
 1992, Milne 1992, Dutilleul and Legendre 1993, Wiens et
 al. 1993), the concept is frequently misused because het-
 erogeneity presently means different things to different
 ecologists (Kolasa and Rollo 1991, Dutilleul and Leg-
 endre 1993). There is also the danger that quantification
 of heterogeneity is done without a clear notion of what is
 exactly being quantified (Li and Reynolds 1994). Given
 the many aspects of heterogeneity that have been identi-
 fied (Kolasa and Rollo 1991, Dutilleul and Legendre
 1993), a researcher must explicitly answer the question:
 heterogeneity of what? This has not been the common
 practice.

 To overcome these serious problems, we need a quanti-

 tative, operational definition of heterogeneity (e.g.,
 Loehle 1988, Palmer and White 1994). In this paper we

 extend the discussion of the definition and quantification
 of ecological heterogeneity advocated by Dutilleul and
 Legendre (1993) and Kolasa and Rollo (1991). We pro-
 pose an operational definition of ecological heteroge-
 neity, suggest an approach for quantifying heterogeneity
 that is consistent with this definition, and provide two
 examples that illustrate how our scheme can be applied in
 practice.

 Operational definition

 We define heterogeneity based on two components: the
 system property of interest and its complexity or var-
 iability (Fig. 1). A system property can be anything that is

 of ecological interest, e.g., plant biomass, soil nutrients,
 temperature, and so on. Complexity refers to qualitative
 or categorical descriptors of this property, while var-
 iability refers to quantitative or numerical descriptors of
 the property. Heterogeneity is thus defined as the com-
 plexity and/or variability of a system property in space
 and/or time.

 Two related issues merit discussion. First, our oper-
 ational definition emphasizes the structural characteris-
 tics that can be observed and analyzed. This is termed
 structural heterogeneity, that is, the complexity or var-
 iability of a system property measured without reference
 to any functional effects (e.g., Kolasa and Rollo 1991).
 Hence,functional heterogeneity is the complexity or var-
 iability of a system property that can be shown to affect
 ecological processes, e.g., population density, nesting or
 foraging behavior, growth rate, etc.

 Second, heterogeneity is a function of scale (e.g., Ko-
 lasa and Rollo 1991, Allen and Hoekstra 1992, Dutilleul

 and Legendre 1993) (Fig. 1). From an observational
 viewpoint, grain and extent are the primary scaling fac-
 tors that affect complexity or variability and, hence, het-
 erogeneity. Grain is the finest resolution of data (e.g.,
 pixel size for lattice data, minimum time step for time
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 Fig. 1. A landscape example of quantification of spatial heterogeneity. See the text for discussions.

 series data), and extent is the area or duration encom-

 passed by a study. The observational scale (i.e., grain or
 extent) is dependent on the sampling scheme used, which

 in turn is determined by the nature of the phenomenon

 (i.e., the "organism's grain and extent" as suggested by

 Kotliar and Wiens 1990) and the research objective. The

 observed data determine what kind of heterogeneity may

 be measured. From a data analysis viewpoint, resealing

 of data, including data transformations, data reduction,
 data aggregation, and resampling (e.g., Allen and Hoeks-

 Table 1. Data types and methods for quantifying heterogeneity.

 Data type Description Method Reference

 Non-spatial No reference to sampling Variance Sokal and Rohlf 1981
 Interquartile range (IQ) Sokal and Rohlf 1981
 Diversity indices Pielou 1975

 Spatial Sampling location as a
 variable

 Point pattern Variables or individuals of Parameter k of negative binomial Pielou 1977
 species distributed at discrete Nearest neighbor index Pielou 1977
 locations Block-size variance statistic Greig-Smith 1983

 Geostatistical Continuous variables Variogram Cressie 1991
 sampled regularly or Correlogram Rossi et al. 1992
 irregularly in space Fractal dimension Burrough 1983

 Quantitative Numerical maps Variogram Cressie 1991
 lattice Correlogram Rossi et al. 1992

 Autocorrelation indices Cliff and Ord 1981

 Qualitative Categorical maps Diversity indices Pielou 1975
 lattice Fractal dimension O'Neill et al. 1988

 Patchiness index Romme 1982
 Contagion index Li and Reynolds 1993
 Joint-count statistic Cliff and Ord 1981
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 Quantification of heterogeneity

 Quantitative heterogeneity may be viewed as a contin-

 uum of variability and complexity - from low to high -
 with homogeneity being the low end (i.e., the minimum).

 Thus, two basic strategies can be used to quantify hetero-

 geneity: (1) directly, by measuring complexity and var-
 iability and (2) indirectly, by measuring departure from

 homogeneity. For example, heterogeneity in categorical

 maps can be defined as complexity in number of patch

 types, proportion, patch shape, and contrast between

 neighboring patches, and different methods can be used

 to quantify these aspects of heterogeneity. Moreover,
 heterogeneity in numerical maps can be measured as

 degree of departure from randomness when homogeneity
 is defined as the randomness of the distribution of a
 system property.

 Our definition emphasizes what Allen and Hoekstra

 (1992) and Dutilleul and Legendre (1993) imply - that
 quantification of spatial heterogeneity should be based

 upon data types. In Table I we present spatial and non-
 spatial data types and list examples of methods that can

 be used to quantify their heterogeneity (also see Turner et
 al. 1991). Our focus here is on spatial heterogeneity. Each

 data type has its own characteristic variability and com-
 plexity. For point pattern data, spatial heterogeneity can

 be measured by its variability in density and nearest

 neighbor distance. For categorical maps, spatial hetero-

 geneity can be measured by its complexity in composi-
 tion and configuration of patches (Fig. 1). Composition
 includes the number and proportions of patch types,

 while configuration includes spatial arrangement of

 patches, patch shape, contrast between neighboring
 patches, connectivity among patches of the same type,
 and anisotropy (i.e., variation in different directions). For
 numerical maps, spatial heterogeneity can be measured

 by its variability in trend, autocorrelation, and aniso-
 tropy (Fig. 1). Trend includes the magnitude of the mean
 or variance and the deterministic changes of the mean in
 space (e.g., those defined by trend surface analysis). Au-
 tocorrelation includes the degree of autocorrelation, the
 intensity of autocorrelation (i.e., the rate of change in
 autocorrelation), and the range of autocorrelation (i.e., the
 scale beyond which autocorrelation does not exist). Ani-
 sotropy is the variation of trend and autocorrelation in

 different directions. Geostatistical data can be treated

 similarly to numerical maps. These quantifiable compo-
 nents are specific enough to make quantification of heter-

 ogeneity straightforward, and, at the same time, general
 enough to be applied to the analysis of any data types
 given in Table 1.

 Examples

 We present two examples to demonstrate how our oper-
 ational definition and quantification scheme can be ap-
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 Fig. 3. Heterogeneity in numerical data. The two transects of
 1000 points are generated based on the heterogeneity compo-
 nents of numerical data (see Fig. 1 and Table 3). Each transect
 contains 1000 points; only a quarter of each transect is displayed
 here for clear presentation. The transects can be regarded as soil
 nitrogen content in landscapes.

 plied to study spatial heterogeneity in practice. We use
 two data types commonly used in landscape ecology:
 categorical maps and numerical transects.

 The two maps of landscape mosaics of cover types
 (Fig. 2) were generated by SHAPC, which has been
 described elsewhere (Li and Reynolds 1994). SHAPC
 generates categorical landscape maps based on complex-
 ity in number of patch types, proportion of each type,
 patch distribution, patch shape, patch size distribution,
 and several other parameters. The two transects of soil

 nitrogen content (Fig. 3) were generated by SHAPN,
 which is a model of the autoregressive-moving-average
 (ARMA) type (e.g., Bras and Rodriguez-Iturbe 1985).
 ARMA is often used in time series analysis. SHAPN
 generates transects (or numerical maps) based on var-
 iability in magnitude, trend surface, degree of autocorre-
 lation, and anisotropy. The parameters used in the sim-
 ulation are given in Tables 2 and 3. Simulated data were
 used because the results could be compared with certainty
 (i.e., heterogeneity of these maps and transects were
 fixed).

 Spatial heterogeneity of the maps and the transects
 were analyzed by methods commonly used in landscape
 ecology. For the categorical maps, the indices of even-
 ness, contagion, fractal dimension, and patchiness were
 calculated. They represent the number and proportions of
 patch types, spatial arrangement of patches, patch shape,
 and contrast between neighboring patches (Pielou 1975,
 Romme 1982, O'Neill et al. 1988, Li and Reynolds 1993,
 1994). We have discussed these four indices and their
 effectiveness (Li and Reynolds 1994). For the numerical

 transects, we calculated the coefficient of variation (CV),
 Moran's I index, the fractal dimension, and the relative

 heterogeneity (SH%). CV is a common statistic for non-
 spatial data (e.g., Sokal and Rohlf 1981) and was used to
 represent the zero-order heterogeneity (i.e., magnitude of
 variance). Moran's I was calculated for adjacent points

 along transects (see Cliff and Ord 1981, Legendre and
 Fortin 1989) and was used to represent the first-order
 spatial heterogeneity (i.e., degree of autocorrelation). To
 calculate the fractal dimension and SH%, semivario-
 grams of the numerical transects were constructed (see

 Cressie 1991, Rossi et al. 1992). The fractal dimension is
 a negative function of the slope of logarithm-transformed

 semivariograms (Burrough 1983). Slope expresses the
 rate of change in semivariance with the lag distance, and
 high slope values indicate high degrees of heterogeneity.

 Thus, the fractal dimension is a measure of spatial homo-
 geneity; it attains its highest value of 2 with a random
 (i.e., homogeneous) landscape. This fractal dimension is
 called stochastic fractal and differs from the fractal of
 patch shape used in the analysis of the categorical maps
 (Carr and Benzer 1991). SH% was calculated from the
 nugget variance and sill (i.e., two of the semivariogram
 parameters). SH% is defined by: SH%=(sill-nugget)/sill.
 In semivariogram analysis, sill represents the maximum

 (total) variation, and nugget represents the random var-

 iation (i.e., homogeneity). Subtraction of the random var-
 iation from the total variation results in the autocorrelated

 variation (i.e., heterogeneity). Thus, SH% represents the
 proportion of the autocorrelated spatial heterogeneity in
 the total variation.

 The two maps and the two transects were contrasted
 for their differences in spatial heterogeneity. For the cate-
 gorical data, map A shows higher values in evenness and
 fractal dimension, while map B shows higher values in

 contagion and patchiness (Table 2). These results are
 expected given the parameter settings used in simulation
 (Table 2). The results indicate that map A represents a

 landscape that is more diverse and has more irregularly
 shaped patches, and that map B represents a landscape
 that has larger patches and higher contrast. Whether map
 A or B is "more" heterogeneous depends on the aspect of
 spatial heterogeneity of interest. This does not imply a
 conflict because each heterogeneity component charac-
 terizes a distinct aspect of spatial heterogeneity. How-
 ever, this result does support our argument that one must
 explicitly define the component of heterogeneity of in-
 terest. More detailed discussion of this subject can be
 found in Li and Reynolds (1994).

 Table 2. The simulation parameters and the heterogeneity mea-
 sures for the categorical maps in Fig. 2.

 Map A Map B

 Map characteristics (Simulation)
 No. of patch types 6 6
 Proportion Even Uneven
 Spatial arrangement Aggregated Random
 Patch shape Random Regular

 Heterogeneity measures
 Evenness 1.000 0.819
 Contagion 0.152 0.196
 Fractal dimension 1.640 1.603
 Patchiness 0.296 0.550
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 Table 3. The simulation parameters and the heterogeneity mea-
 sures for the numerical transects in Fig. 3.

 Transect A Transect B

 Transect characteristics (Simulation)
 Mean 0.10 0.10
 Standard deviation (% of Mean) 0.05 (50%) 0.10 (100%)
 Autocorrelation 0.8 0.5

 Heterogeneity measures
 CV 0.483 0.812
 Moran's I 0.798 0.450
 Fractal dimension 1.715 1.817
 SH% 80.74% 62.88%

 For the numerical data, transect A shows higher values

 in Moran's I and SH% and a lower value in fractal

 dimension, while transect B shows a higher value for CV

 (Table 3). These results are also expected because of the

 parameters used in simulation (Table 3). The results in-
 dicate that transect A is "more" heterogeneous in most

 aspects (e.g., higher autocorrelation, higher intensity, and

 higher relative heterogeneity), except for the zero-order,
 non-spatial heterogeneity.

 These two examples illustrate that the operational defi-
 nition and the quantification scheme of heterogeneity we

 propose are easy to apply in practice. When the specific
 components of heterogeneity are identified (e.g., Fig. 1),
 quantification is straightforward, which enables us to
 unambiguously characterize and compare heterogeneity
 and its effects on ecological systems.
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