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 A SIMULATION EXPERIMENT TO QUANTIFY

 SPATIAL HETEROGENEITY IN CATEGORICAL MAPS'

 HABIN Li AND JAMES F. REYNOLDS
 Department of Botany, Duke University, Durham, North Carolina 27708 USA

 Abstract. Spatial heterogeneity (SH) is generally defined as the complexity and vari-
 ability of a system property (e.g., plant biomass, cover) in space. Despite its importance
 in both theoretical and applied ecology, a formal and rigorous definition of SH is lacking.
 Such a definition is needed to facilitate quantitative analyses. To this end, we suggest that
 SH must be defined in terms of its underlying components. For categorical maps, SH is
 the complexity in five components: (1) number of patch types, (2) proportion of each type,
 (3) spatial arrangement of patches, (4) patch shape, and (5) contrast between neighboring
 patches. To illustrate the use of these components to develop a quantitative definition of
 SH, we used statistical models to produce categorical maps with known underlying SH
 characteristics. These simulated maps were analyzed in a factorial experiment to examine
 the effectiveness and sensitivity of four indices (i.e., fractal, contagion, evenness, patchiness)
 to detect patterns in these underlying components of SH. Our results show that any defi-
 nition of SH is strongly dependent on the underlying variables and the methods used, that
 many indices depict different aspects of SH, that significant interactions exist among the
 five components of SH, and that some indices are strongly correlated. Quantification of
 spatial heterogeneity is essential to our understanding of the relationships between spatial
 heterogeneity and landscape functions and processes. However, all techniques to measure
 SH must be evaluated against systems with known characteristics of SH. Such a system is
 developed and used in this study.

 Key words: factorial experiment; landscape ecology; landscape index; simulation; spatial hetero-
 geneity.

 INTRODUCTION

 The demand for monitoring ecosystem changes at
 large scales (e.g., landscape, region, global) mandates
 that we be able to quantify the system structure of
 interest because we not only have to detect change, but
 also have to determine the magnitude and rate of change
 (O'Neill et al. 1988, Mooney 1991, Turner and Gard-
 ner 1991). Spatial heterogeneity is one such structural
 feature of ecological systems. Spatial heterogeneity can
 be defined generally as the complexity and variability
 of a system property in space; a system property can
 be anything, such as patch mosaics, plant biomass, or
 soil nutrients. As such, spatial heterogeneity is a uni-
 versal phenomenon, existing in ecological systems at
 all scales (Pielou 1977, Whittaker and Levin 1977,
 Levin 1978, Greig-Smith 1979, 1983, Turner 1987,
 Kolasa and Pickett 1991). Quantification of spatial het-
 erogeneity is a promising way of examining structure
 of ecological systems. Instead of looking solely into the
 means of system properties, one studies their varia-
 tions in space (e.g., O'Neill et al. 1991). The funda-
 mental premise is that spatial heterogeneity may have
 great effects on functions and processes of ecological
 systems (Risser et al. 1984, Forman and Godron 1986,
 Turner 1987, Kolasa and Pickett 1991, Turner and

 Gardner 1991) and that changes in spatial heteroge-
 neity may reflect changes in functions and processes.

 Despite the importance of spatial heterogeneity in

 both theoretical and applied ecology, a unified defi-
 nition of spatial heterogeneity as an ecological concept
 and a definite formulation of its measurement have
 been lacking (H. Li and J. F. Reynolds, unpublished
 manuscript). This lack of a unified definition may be
 due to the complexity of phenomena involved, as dis-
 cussed by Kolasa and Rollo (1991), who have shown

 that the concept can be defined in many different ways.
 Although much attention has recently been paid to
 spatial heterogeneity, its quantification also remains
 unresolved, perhaps due to the lack of an unambiguous
 definition. Quantification requires a precise definition;
 without quantification, the use of the concept is bound
 to cause confusion. Thus, what is urgently needed is a
 unified concept that can facilitate measurement of spa-
 tial heterogeneity. We argue that it is time to ask: What
 is meant by the term "spatial heterogeneity"? How can
 it be measured?

 Ecological research at large scales usually has to deal
 with maps (both categorical and numerical) and their
 quantitative analysis. For example, in landscape mod-
 eling, one often has to use maps as both input and
 output. Some maps may have already existed, such as

 vegetation type, soil type, and land-use type maps,
 while many others can be obtained from remote sens-

 1 Manuscript received 13 December 1993; revised 25 March
 1994; accepted 15 April 1994.
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 ing, such as digital elevation model and vegetation

 reflectance (e.g., Davis and Goetz 1990). We propose

 operational definitions for spatial heterogeneity in both

 categorical and numerical landscape maps. Spatial het-

 erogeneity in categorical landscape maps is defined as

 the complexity in both composition (which is nonspa-

 tial) and configuration (which is spatial) of patches.

 Composition implies (1) the number of patch types

 present and (2) the proportion of each type. Configu-

 ration includes (3) spatial arrangement of patches, (4)

 patch shape, and (5) contrast between neighboring

 patches. Spatial heterogeneity in numerical landscape

 maps is a continuum of degrees of variability in domain

 variation, autocorrelated variation, and random noise

 (Burrough 1987). Domain variation is long range, de-

 terministic, and structured, and is represented by (1)

 trends and (2) magnitude of change. Autocorrelated
 variation is medium range, random but spatially cor-

 related, and is represented by (3) range (scale) of au-

 tocorrelation, (4) intensity of autocorrelation, and (5)

 anisotropy. Random variation is short range, indepen-

 dent and not structured, and is represented by (6) ran-

 dom noise. In this paper we restrict our discussion to

 spatial heterogeneity in categorical maps.
 Many indices, developed in the context of analysis

 of spatial pattern and diversity, can potentially be used
 to characterize spatial heterogeneity in categorical maps

 (Pielou 1975, 1977, Romme 1982, Greig-Smith 1983,

 O'Neill et al. 1988, Li and Reynolds 1993). However,
 what an index really measures is equivocal, even though

 analytical aspects of some indices are quite clear (e.g.,

 information indices; see Pielou 1977). We argue that,

 before being applied, these techniques should be eval-

 uated against systems with known characteristics of
 spatial heterogeneity (e.g., Goodall and West 1979).
 We must know how well spatial heterogeneity is rep-

 resented by the indices.

 In this study we use simulated categorical maps in

 a factorial experiment to examine the usefulness of our
 operational definition of spatial heterogeneity and the
 effectiveness of some indices to measure spatial het-

 erogeneity. A statistical model based on our definition
 is developed to produce categorical maps with known

 underlying characteristics (i.e., components) of spatial
 heterogeneity. Then, the ability of some indices to de-
 tect patterns in these maps is examined by a factorial
 experiment, in which the factors are the components
 of spatial heterogeneity. We use simulated maps be-
 cause it is critical to our factorial experiment that we

 have good controls over heterogeneity characteristics
 in the maps. Simulated spatial data have often been
 used in ecology to evaluate and compare techniques of
 spatial pattern analysis. Most of them are for spatial
 point patterns or for numerical data analysis methods
 (e.g., Ripley 1978, Goodall and West 1979, Carpenter
 and Chaney 1983, Palmer 1988, Cullinan and Thomas
 1992), but there are a few exceptions (e.g., Li 1989,

 Turner et al. 1 989a, Gustafson and Parker 1992, Milne

 1992, Li and Reynolds 1993). We use a five-factor

 factorial design because it is the most efficient method

 to determine individual, as well as synergetic, effects
 in a multifactor situation (e.g., Hicks 1982). Only a

 few such higher order factorial experiments have been

 conducted in ecology with simulated data.
 The objective of this simulation experiment is to

 establish the relationships between underlying com-

 ponents and frequently used indices of spatial hetero-

 geneity (i.e., fractal dimension, contagion, evenness,

 and patchiness). Specific questions addressed in this

 study are: How do the indices respond to each com-

 ponent of spatial heterogeneity? Are the five compo-
 nents independent of one another, or do they signifi-

 cantly interact? Do the four indices significantly

 correlate with each other?

 METHODS

 1. Simulation model. -The simulation model is a
 map-generating algorithm that expresses spatial het-

 erogeneity (SH) as a function of its five components:

 SH = f(NPT, PET, SA, PS, NC, e)' (1)

 where NPT, PET, SA, PS, and NC are the five com-

 ponents defined in Table 1, and e is the random error.
 This model of spatial heterogeneity (Eq. 1) is built into
 a simulation program, Spatial Heterogeneity Analysis
 Program for Categorical maps (SHAPC). SHAPC is
 based on the landscape simulator LSPA, which has
 been described in detail elsewhere (Li 1989, Li and

 Reynolds 1993, Li et al. 1993). Like LSPA, SHAPC
 not only generates landscape maps, but also calculates

 indices of SH for these simulated maps. The difference

 is that LSPA is specifically designed to simulate de-

 velopment of forest-cutting patterns over time, where-

 as SHAPC is a more general simulator, has more con-

 trol over the parameters, and creates one landscape

 map at a time. Some examples of simulated landscape

 maps are given in Fig. 1.

 To generate a landscape map with controlled char-

 acteristics of SH, we ran the simulation model, setting
 each of the five components to a specific level (Table
 1; also see Li 1989, Li et al. 1993). The number of
 patch types (NPT) was simply controlled at one of the
 four levels. The proportion of each type (PET) was set
 to either even or uneven. An even level of PET means
 that each patch type occupies the same proportion of
 the landscape. For example, for a landscape with three
 patch types, the proportion could be either 0.33, 0.33,
 and 0.34 for the even PET, or 0.1, 0.3, and 0.6 for the
 uneven PET. The spatial arrangement (SA) and the
 patch shape (PS) were determined by submodels. The
 three submodels of SA were designed to represent three
 common patterns of spatial distribution (i.e., uniform,
 random, and clumped), whereas the three submodels
 of PS were used to represent an array of patch shapes
 (i.e., square, regular, and random). See Li (1989) and
 Li et al. (1993) for more details about these submodels.
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 The neighboring contrast (NC) was defined by a dis-

 similarity matrix and set to be either low, medium, or

 high. The exact settings of the uneven PET with dif-

 ferent numbers of patch types and the three dissimi-
 larity matrices of NC can be obtained from the authors.

 All the five components were controlled independently

 and simultaneously.

 Three things require further explanation. First, the

 contrast is a function of dissimilarity between neigh-

 boring patches, i.e., the higher the dissimilarity, the

 higher the contrast. NC is not a geometric feature in a

 map so that it was not used as a control parameter in
 the simulation process of generating maps. Instead, NC

 was incorporated in the process of map analysis. Each

 landscape map was analyzed by a patchiness index

 using three different dissimilarity matrices. The dis-

 similarity matrix is represented by Dj, an element in
 the patchiness index (Eq. 5). Thus, NC is represented

 only by the patchiness index. In this study, the elements

 in a dissimilarity matrix correspond to hypothetical

 differences in any two adjacent patch types, although

 objective methods can be used to define the dissimi-
 larity matrix in real landscapes (e.g., ordination tech-

 niques; Hoover and Parker 1991). The use of NC is

 better illustrated by the following example. Suppose

 that there is a landscape map with three patch types.

 Hypothetically, this map may represent two different

 landscapes. One may be a managed forest landscape
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 TABLE 1. The factors (i.e., components of spatial heterogeneity) and their levels used to generate landscape maps.

 Factor Acronym Code No. of levels Description of levels

 Number of patch types NPT A 4 3, 6, 9, 12
 Proportion of each type PET B 2 even, uneven
 Spatial arrangement SA C 3 random, uniform, clumped
 Patch shape PS D 3 square, regular, random
 Neighboring contrast NC E 3 low, medium, high

 with patches of 10-yr plantations, 30-yr plantations,

 and 50-yr natural forests. The other may be an agri-
 cultural landscape with patches of crop fields, residen-
 tial areas, and natural woodlots. One would assume
 that the contrast is lower in the first landscape than
 that in the second landscape, because dissimilarities
 among the three patch types in the second landscape
 are larger. Landscapes with the same configuration may
 differ in SH if the patches in them have different con-
 trast values.

 Second, the mean patch size (i.e., a simulation pa-
 rameter used to determine partially the size of each

 patch) exerts great effects on the indices (Li et al. 1993).
 However, we did not use it as a SH component because
 we believe that the mean patch size is in essence a scale
 factor, representing the grain (see Turner 1989). Scale
 is not an intrinsic attribute of a system property, but
 a constraint imposed by the observer (Allen and Hoek-
 stra 1991). Scale is usually fixed in any given map.
 Nevertheless, we included the variation caused by
 changes in the mean patch size as part of background
 variation in such a way that we generated one-third of
 the replicates with a mean patch size of 4 pixels, an-
 other one-third with a mean patch size of 16 pixels,
 and the rest with an array of mean patch sizes, ranging
 from 4 to 16 pixels.

 Third, SH of configuration may have additional
 components such as anisotropy (i.e., variation in dif-

 ferent directions), connectivity of patches of the same
 type, and patch size distribution (e.g., Wiens et al. 1993).
 Anisotropy and connectivity were not examined here
 because they cannot be assessed by the indices eval-
 uated in this study. The patch size distribution was
 fixed in this study to follow a uniform distribution;
 patch sizes ranged from one pixel to twice as many
 pixels as the mean patch size for each patch type.

 2. Indices to quantify spatial heterogeneity. -In this
 paper, we evaluated four indices: fractal dimension,
 contagion, evenness, and patchiness. Of the many in-
 dices built in SHAPC, we chose these four because: (1)
 they are commonly used in landscape ecology and re-
 source management (e.g., Romme 1982, O'Neill et al.

 1988, Li 1989, Turner 1989, Hoover and Parker 1991,
 Father et al. 1992, Li et al. 1993), (2) they seem to

 represent different SH components, and (3) they are
 different types of measures of SH.

 a) Fractal dimension (Burrough 1986, O'Neill et al.
 1988)

 Ak = cPkjD. (2)

 D is the fractal dimension of patch shape in a landscape,
 c is a constant, and Ak and Pk are the area and the
 perimeter (i.e., edge) of patch k, respectively. D is es-

 timated by a regression of log(Ak) on log(Pk) of all in-
 dividual patches. The fractal dimension measures ir-
 regularity of patch shape in a landscape.

 b) Contagion (O'Neill et al. 1988, Li and Reynolds
 1993)

 n n

 RC = 1 + Pij ln(Pij)/[2 ln(n)]. (3)
 i=1 j=1

 RC is the relative contagion index, n is the total number

 of patch types in a landscape mosaic, Pj is the prob-
 ability that two randomly chosen adjacent pixels be-
 long to patch type i and j, and is defined by Eq. 6 in
 Li and Reynolds (1993). The contagion measures the

 extent to which patches are aggregated, i.e., spatial ar-
 rangement (O'Neill et al. 1988). The contagion index

 is a derivative of the information index, and should

 also respond to the number of patch types and their
 proportions in a landscape.

 c) Evenness (Romme 1982)

 E =100 In( If)/n(n). (4)

 E is Romme's relative evenness index, n is the total
 number of patch types, and Pi is the probability that
 a randomly chosen pixel belongs to type i. The even-
 ness responds to the number of patch types and their
 proportions in a landscape.

 d) Patchiness (Romme 1982)

 n n

 RPI = 100 z 2 EijDij/Nb. (5)
 i=1 j=1

 RPI is Romme's relative patchiness index, n the total

 number of patch types in a landscape mosaic, Eii the
 number of edges between patch types i and j, DUj the
 dissimilarity value for patch types i and j, and Nb the
 total number of edges of pixels (i.e., each pixel has four
 edges). The patchiness index measures the contrast of
 neighboring patch types in a landscape mosaic (Romme
 1982, Li 1989, Li et al. 1993). In addition, the patch-
 iness index may indirectly reflect the spatial arrange-
 ment.
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 TABLE 2. Correlation coefficients between the indices and means and standard deviations of the indices. All correlation
 coefficients are significant. The means and standard deviations are calculated using all the 2160 simulated maps.

 Index Fractal Contagion Evenness Patchiness Mean SD

 Fractal 1 1.538 0.197
 Contagion -0.124 1 0.176 0.092
 Evenness -0.093 -0.826 1 0.828 0.150
 Patchiness 0.239 -0.620 0.252 1 0.403 0.202

 3. Experimental design and analysis. -To evaluate
 the four indices of SH, we used a factorial experimental

 design (e.g., Sokal and Rohlf 1981, Hicks 1982). The

 factors of the factorial experiment were the five com-

 ponents of SH in Eq. 1 (i.e., NPT, PET, SA, PS, and

 NC); the numbers of their levels were 4, 2, 3, 3, and

 3, respectively (Table 1). NPT is quantitative and the

 values of its levels are equally spaced. NPT was used

 as a covariate because we wanted to remove its effects

 from those of the other factors (Sokal and Rohlf 1981).

 The other four components were qualitative variables

 and were considered as fixed factors. The experimental

 units were the landscape maps with dimensions of 256
 x 256 pixels, generated by the simulation model de-

 scribed above (i.e., SHAPC). The dependent variables

 TABLE 3. ANOVA results of the factorial experiment. The
 bold values indicate nonsignificance. See Table 1 for defi-
 nitions of the component codes.

 Significance probability of F test
 (P value)

 Conta- Even- Patchi-
 Source Fractal gion ness ness

 A (NPT) 0.0001 0.0001 0.0001 0.0001
 B (PET) 0.5603 0.0001 0.0001 0.0001
 C (SA) 0.0512 0.0001 0.7118 0.0001
 D (PS) 0.0001 0.0001 0.5145 0.0001

 E (NC) 0.0001
 A x B 0.0048 0.0001 0.0001 0.0001
 A x C 0.0044 0.0006 0.0001 0.0001
 A x D 0.0001 0.0001 0.0001 0.0058
 B x C 0.0004 0.2105 0.1129 0.0001
 B x D 0.0001 0.0086 0.0022 0.0001
 C x D 0.0001 0.0001 0.7941 0.0001
 A x E - ... 0.0001
 B x E 0.0001
 C x E -- 0.1354
 D x E - -- 0.0001
 A x B x C 0.0400 0.3187 0.0001 0.0526
 A x B x D 0.0001 0.0001 0.0001 0.0031
 A x C x D 0.0001 0.6508 0.0001 0.0631
 B x C x D 0.0021 0.1083 0.0051 0.0001
 A x B xE ... ... 0.0001
 A x C xE ... ... 0.1720
 A x D xE ... ... 0.4037
 B x C xE ... ... 0.2689
 B x D xE - 0.2272

 C x D xE ... ... 0.0040
 A x B x C x D 0.0011 0.3295 0.0001 0.0031
 A x B xC x E ... ... 0.2684
 A x B xD x E ... ... 0.5412
 A x C x D x E ... 0.4670
 B x C x D x E ... ... 0.7408
 A x B x C x D x E ... ... ... 0.9775

 of the experiment were the four indices (Eqs. 2-5) that

 were calculated from the maps. A treatment is any

 combination (i.e., simulation setting) of the levels of

 all the factors involved. For the indices of fractal di-

 mension, contagion, and evenness, the total number

 of treatments was 72 in this factorial design (i.e., a

 complete set of combinations of the first four factors

 in Table 1). Therefore, a total of 2160 maps were cre-

 ated since 30 replications were made for each treat-

 ment. For the patchiness index, the total number of

 treatments was 216 because it could also express the

 fifth factor, i.e., contrast (Table 1). As mentioned above,
 however, this contrast factor did not increase the num-

 ber of maps generated since it is not a geometric control

 used in the map-generating process. No randomization
 was necessary since the factorial experiments were car-

 ried out on a computer so that prior conditions did

 not exist.

 The results of the factorial experiment were analyzed

 by SAS (SAS 1987). We used correlation analysis

 (CORR) to calculate correlation coefficients between

 the four indices, analysis of variance (ANOVA) to ex-

 amine interactions among the five factors and deter-

 mine the effects of different levels of each factor on
 those indices, and the Tukey's studentized range test

 to establish the trends of SH. A confidence level of 0.95

 was used in all situations when significance tests were

 made.

 RESULTS

 All the correlation coefficients between the indices

 were significant (Table 2). The patchiness index used

 in Table 2 was calculated with the dissimilarity matrix

 of the low contrast level. The patchiness calculated

 with the medium and high dissimilarity had similar

 values and trends.

 The ANOVA results for the five-factor factorial ex-

 periment were represented by the P values of the F

 tests in Table 3. The number of patch types in a land-

 scape had significant effects on all four indices (P <
 0.001). However, the proportion of each patch type did

 not affect the fractal dimension, the spatial arrange-

 ment of patches had no effects on the fractal dimension

 and the evenness, and the patch shape did not affect

 the evenness. The neighboring contrast had significant

 effects on the patchiness. Interactions among the five
 SH components existed for all of the four indices.

 The trends of how each index responded to different
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 TABLE 4. Effects of heterogeneity components on indices.
 The trends in the second column show the levels of each
 factor in a decreasing order for each index. The orders are
 determined by the Tukey's studentized range tests. A dash
 that separates two levels indicates a significant difference
 between them, and an equal sign indicates a nonsignificant
 difference.

 Index Trends (Tukey's studentized range test)

 High.s )Low

 Number of patch types

 Fractal 3 = 6 - 9 = 12
 Contagion 12- 9 - 6 - 3
 Evenness 3- 12-9-6
 Patchiness 3 - 6 - 9= 12

 Proportion

 Fractal uneven - even
 Contagion uneven - even
 Evenness even - uneven
 Patchiness even - uneven

 Spatial distribution

 Fractal random = clumped - uniform
 Contagion random - uniform - clumped
 Evenness uniform - random - clumped
 Patchiness uniform - clumped - random

 Patch shape

 Fractal random - regular - square
 Contagion square - random - regular
 Evenness random - regular - square
 Patchiness square - regular - random

 Neighboring contrast

 Patchiness high - mixed - low

 levels of each SH component were determined by the

 Tukey's studentized range test (Table 4). These ob-

 served trends were compared to the speculated trends

 (Table 5). No two indices responded consistently to all

 the components of SH. Fig. 2 gives some examples of
 responses of indices to SH components.

 DISCUSSION

 1. Correlation among the four indices. -Correlation

 between indices is important information for evalua-

 tion of indices because two indices are redundant if

 they are highly correlated. For example, Shannon's in-

 formation index (e.g., Pielou 1977), the dominance

 index (O'Neill et al. 1988), and Romme's evenness

 index (Eq. 4) are highly correlated; in fact, Shannon's

 information index and the dominance index have a

 strictly linear, inverse relationship with a correlation

 coefficient of -1, given the same number of patch types

 present in landscapes. Our results show that all four

 indices are correlated to some extent (Table 2). The

 contagion and the evenness are highly correlated; thus,

 they should not be used together. However, the cor-

 relation between the fractal dimension and the other

 indices is relatively weak. This suggests that more in-

 formation may be revealed when the fractal dimension
 is used with the other indices, and may also indicate

 that the fractal dimension may reflect different char-

 acteristics of spatial heterogeneity. Correlation patterns

 between indices have been reported previously (e.g.,

 O'Neill et al. 1988, Li 1989), but these earlier studies

 are based either on a limited number of real landscape

 maps or on partially controlled simulations. The cor-
 relation patterns reported here should be more general

 because they are obtained under a large range of con-

 trolled conditions.

 2. Interactions among thefive components. - Our re-
 sults show that significant interactions exist among the

 five components of spatial heterogeneity (Table 3).

 There are three technical implications for the existence

 of interactions among the components. First, the ex-

 istence of interactions among the components makes

 it difficult to interpret results from this high-order fac-

 torial experiment. Thus, the discussions on effects of
 heterogeneity components on the indices should be

 taken with caution because they are based primarily

 on the main effects of the factorial experiment. Second,

 any experiment with fewer components may only be

 of limited value because effects of one component on
 an index may vary with changes in another component

 when interactions exist (Hicks 1982). For example, as

 depicted in Fig. 2 by the crossing of the fractal curves,
 interpretations of the effects of patch shape on the frac-

 tal dimension are complicated by the presence of the
 significant interaction between patch shape and the

 number of patch types. Third, there is also one mod-

 eling consequence. If the interactions among the com-
 ponents did not exist, then a simple additive model of
 the components could be used to describe the overall

 TABLE 5. Comparison between the speculated and the observed trends of spatial heterogeneity with changes of levels of the
 components. The speculated trends are from the literature (e.g., Pielou 1977, Romme 1982, Greig-Smith 1983, Ludwig
 and Reynolds 1988, and O'Neill et al. 1988). The observed trends are based on the Tukey's studentized range tests in
 Table 4.

 Agreement of results to speculations*

 Component Speculated trends Fractal Contagion Evenness Patchiness

 No. of patch types Large > Small 0 A M 0
 Proportion Even > Uneven 0 0 A A
 Spatial arrangement Clumped > Random > Uniform A M 0 M
 Patch shape Random > Regular > Square A M A 0
 Neighboring contrast High > Mixed > Low -... ... A

 * "A" stands for agreement of an index with the speculation, "O" for a trend opposite to the speculation, "M" for no
 relationship to the speculated trend, and ellipses for not applicable.
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 FIG. 2. Examples of responses of the four indices to the five components of spatial heterogeneity. The number of patch
 types is used in all figures on the x axis. The other four components are displayed in the four columns: (A) the proportion
 of each type, (B) the spatial arrangement of patches, (C) the patch shape, and (D) the neighboring contrast. Each is examined
 when the other three are controlled at specific levels. The control levels of the proportion, the spatial arrangement, the patch
 shape, and the neighboring contrast are: even, random, random, and medium, respectively. The mean patch size is four for
 all figures. There is just one curve in each of the three neighboring contrast panels for the fractal dimension, contagion, and
 the evenness because these indices cannot measure the neighboring contrast.

 spatial heterogeneity (SH), such as

 SH = VARNPT + VARPET + VARSA
 + VARpS + VARNC- (6)

 VARK is the variation caused by changes in the com-

 ponent K (i.e., NPT, PET, SA, PS, or NC). The exis-

 tence of interactions among the components prevents

 us from using such a model because these components

 are not independent. Eq. 6 can be used only if the

 covariance terms for the correlated components are
 added to the model.

 3. Responses of indices to components. -Why do the
 four indices respond differently to the five components
 (Table 3)? The fractal dimension does not respond to

 the heterogeneity component of spatial arrangement of

 patches (Table 3). Our result is not conclusive because

 of the existence of higher order interactions and be-

 cause of the marginal P value (P = 0.0512). However,

 one can at least infer from its mathematical formula

 (Eq. 2) that the fractal dimension does not directly

 measure spatial arrangement of patches because it uses

 information only of patch size and perimeter (i.e., patch

 shape). Thus, the fractal dimension primarily reflects

 the heterogeneity component of the patch shape. The

 evenness index reflects only the nonspatial components

 of spatial heterogeneity (the number of patch types and

 their proportions), but not the spatial components (i.e.,

 the spatial arrangement of patches, the patch shape,

 and the neighboring contrast) (Table 3, Fig. 2). This is

 expected because there is clearly no spatial element in

 the mathematical formula of the evenness index (Eq.

 4). Thus, it is unrealistic to expect that it should rep-

 resent spatial pattern. The contagion and the patchi-

 ness indices do not discriminate but respond to all

 heterogeneity components. They respond to the spatial

 components because these two indices have, in their
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 mathematical formulae (Eqs. 3 and 5), spatial elements
 that incorporate the first-order neighbor information.
 For the contagion, it is the probability of adjacent pix-
 els (Pa) and, for the patchiness, it is the neighboring
 contrast (i.e., Di, the dissimilarity matrix). Concep-
 tually, the contagion is inversely related to the patch-
 iness, as indicated by their relatively high, negative

 correlation (Table 2). Even though the patchiness index
 is difficult to calculate because of its requirement of a
 dissimilarity matrix, it does provide a unique repre-
 sentation of the neighboring contrast in landscapes.

 The message should be clear: if a technique does not

 consider the spatial information in a data set, it cannot
 measure spatial patterns even though the data set may
 have spatial information in it. A simple example is the
 misconception of Shannon's information index (e.g.,
 Pielou 1977) and Romme's evenness index (Eq. 4;
 Romme 1982). These two indices do not have spatial

 elements in their mathematical formulae and, there-
 fore, can only measure the nonspatial components of
 heterogeneity (e.g., composition). For example, Hoo-

 ver and Parker (1991) correctly identified the nonspa-

 tial nature of Shannon's information index, but mis-
 conceived the nature of Romme's evenness index and
 mistook it for a "spatially-explicit measure" of land-
 scape diversity. Our results signal a warning that any
 method to quantify spatial heterogeneity must be ex-
 amined theoretically and tested under controlled con-
 ditions before it can be properly used in practice.

 The five components have been recognized as factors

 that contribute to spatial heterogeneity (e.g., Pielou
 1977, Romme 1982, Ludwig and Reynolds 1988,
 O'Neill et al. 1 988, Wiens et al. 1 993). Each component
 may be linked to functional responses of species to
 spatial heterogeneity: more patch types may indicate
 higher resource diversity; the proportion may deter-
 mine the dominance (or lack) of critical resources; spa-
 tial distribution of resources may affect species dis-
 persal and foraging efficiency; irregular patch shape
 signifies great edge effects; and changes in the neigh-
 boring contrast may modify the magnitude of edge
 effects and the capability of species to disperse. Specific
 responses of indices to the levels of a component are
 needed to provide guidelines for practical use of these
 indices (e.g., Table 4). An examination of the observed
 trends of how each index responds to different levels
 of each heterogeneity component shows that the four
 indices do not consistently follow the speculated trends
 of spatial heterogeneity (Tables 4 and 5). For each com-
 ponent, some indices agree with the-speculated trends,
 but others do not. The conflicting trends shown by the
 indices are due to their mathematical formulae and
 should be expected. Thus, spatial heterogeneity as rep-
 resented by these indices must be interpreted with cau-
 tion.

 4. Scale factor. - Spatial heterogeneity is a scale-de-
 pendent concept (Forman and Godron 1986, Meen-
 temeyer and Box 1987, Allen and Hoekstra 1991, Ko-

 lasa and Rollo 1991, Milne 1992). A change in scale

 of observation can lead to either increase or decrease

 in spatial heterogeneity. To quantify spatial heteroge-

 neity we should consider three aspects of scale: grain,

 extent, and resealing (e.g., Turner 1989, Turner et al.
 1989b, Allen and Hoekstra 1991; H. Li and J. F. Reyn-
 olds, unpublished manuscript). Grain (e.g., the pixel
 size in a map) and extent (e.g., the map dimensions)
 come into play in the process of data collection. They

 are the observational aspects of scale and are dependent

 on the sampling scheme that in turn is determined by

 the nature of the phenomenon and the research objec-
 tive. Rescaling (e.g., data transformations, reduction,
 aggregation, and resampling) is the scale superimposed

 on the data in the analytical process. Rescaling depends

 on the method used. Rescaling modifies the observa-

 tional aspects of scale (i.e., grain and extent). The ob-
 served data (thus, grain and extent) and the analytical

 methods (thus, resealing) determine what kind of het-

 erogeneity may be measured and how much hetero-

 geneity may be revealed.

 In this study we explored the issue of scale effects,

 using different mean patch sizes and map dimensions
 to examine the effects of grain and extent on the sim-
 ulation results (e.g., Turner et al. 1989b). The effects

 of the mean patch size (which represents the grain) were
 studied by running the same analyses with landscape
 maps that were generated by just one of the three mean

 patch sizes. The ANOVA results changed compared to

 Table 3; some nonsignificant main effects became sig-

 nificant. Li et al. (1993) also observe the effects of the

 mean patch size on landscape patterns. The map di-
 mensions (which represents the extent) used in our

 preliminary study were 50 x 50 pixels. In the final

 analysis we changed the map dimensions to 256 x 256
 pixels to reduce "the effects of a finite map size" (B.

 T. Milne, personal communication). A comparison be-
 tween the results of the two simulations indicated that

 the map dimensions also affected the ANOVA results

 as shown in Table 3. With the map dimensions of 50
 x 50 pixels, the main effects of the spatial arrangement

 and the patch shape on the evenness and the proportion
 on the fractal dimension became significant (P values
 were 0.012, 0.001, and 0.008), but the main effect of

 the spatial arrangement on the fractal dimension was
 no longer marginal but clearly nonsignificant (P =

 0.563). However, changes in scale (i.e., the mean patch
 size or the map dimension) do not affect the results of
 the correlation pattern among the indices (Table 2) and
 the trends of responses of indices to heterogeneity com-
 ponents (Table 4).

 Concluding remarks

 Why do we need to quantify spatial heterogeneity?

 The answers to this question lie in the ecological merits

 of quantifying spatial heterogeneity. First, the concept
 of spatial heterogeneity without quantification is vague,
 to say the least; as such, its use in literature is often
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 confusing. Without sound quantification, it is difficult

 to test hypotheses related to heterogeneity because hy-

 pothesis testing requires unambiguous formulation of
 the hypothesis itself and, often, quantitative indicators.
 In the process of quantification, we may develop a

 unified definition of the concept because quantifying

 heterogeneity requires a precise, unambiguous defini-

 tion. Second, quantifying spatial heterogeneity is the

 first step to arrive at a predictive theory on the spread

 of disturbance in landscapes (Risser 1987). A higher

 spatial heterogeneity usually means higher depen-
 dence; this in turn may be translated into lower un-

 certainty and higher accuracy in prediction (e.g., Wiens

 et al. 1993). A quantitative understanding of spatial

 heterogeneity can help determine its roles in the func-

 tions and processes of landscapes, including the spread

 of disturbances. Third, quantification of spatial het-

 erogeneity may provide a common ground for com-

 parative studies. To make plausible comparisons ecol-

 ogists must be able to determine differences in spatial

 heterogeneity of landscapes. Given the potential effects

 of spatial heterogeneity on landscape functions, our
 ability to do so is crucial to establish relationships be-

 tween landscape heterogeneity and functions. Finally,
 quantitative analysis of spatial heterogeneity is not only
 a means to summarize spatial data (e.g., maps) into

 comprehensive forms, but also a necessity to detect
 and quantify changes in structure of ecological systems.

 Map data can be difficult to understand beyond a visual

 representation of landscapes because of the extensive

 information involved. It is helpful to extract essential

 information from maps and use it to determine the

 magnitude and rate of vital ecological changes in a

 timely fashion. In addition, it is the structure of eco-
 logical systems that is much affected (at least initially)

 by human activities and that is most accessible to mon-

 itoring.

 Future research should concentrate on three areas.

 First, we should evaluate the other methods that have

 been used to quantify spatial heterogeneity in categor-
 ical maps. Second, we must develop new, effective in-

 dices, especially the ones that measure the spatial ar-
 rangement of patches, anisotropy, and connectivity.

 An ideal situation may be to design a group of indices

 each of which measures exactly one component of spa-

 tial heterogeneity. Third, similarly to what we have
 done for the indices of categorical maps, the methods

 to quantify spatial heterogeneity in numerical maps
 also need to be examined. The relationships between
 the landscape structure and the information revealed
 by many of these methods are still unclear even though
 these methods have been rigorously treated in spatial
 statistics. Our ultimate goal should be to establish re-
 lationships between the measurable features of land-

 scape structure and the functions and processes of land-
 scapes (e.g., Risser et al. 1984, O'Neill et al. 1988,
 Turner 1989, Wiens et al. 1993). This challenge still
 remains.
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