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The Application of a Geometric Optical Canopy
Reflectance Model to Semiarid Shrub Vegetation

Janet Franklin and Debra L. Turner

Abstract—The Li-Strahler [7] canopy model was tested, using
SPOT HRYV XS imagery, for semiarid shrub vegetation, based
on 26 small (1-ha) sites in five classes of shrub vegetation, two
dominated by tarbush (Flourensia cernua), one by creosote bush
(Larrea tridentata), and two by mesquite (Prosopis glandulosa).
The model was driven by reflectance values derived from June
and September imagery. While predictions of crown size and
density for individual sites had a large average error of 35%, the
predictions of shrub size and density were reasonably accurate
when grouped by shrub class. The aggregated predictions for
a number of stands within a class were accurate to within
one or two standard errors of the observed average value.
Accuracy was highest but predictions were biased for some
classes (size was underestimated) when the nonrandom shrub
pattern was characterized for the class based on the average
coefficient of determination of density. Results based on June data
were not better than September because the hypothesized lower
background “noise” (e.g., less green herbaceous cover that could
be confused with shrub cover in the simple reflectance model)
was not observed in the June data. This could have been due to
the poor radiometric quality of the June image.

Keywords—Remote sensing, digital image, Li-Strahler canopy
reflectance model, semiarid shrub vegetation.

I. INTRODUCTION

Simple, invertible models of the multispectral response
of partially vegetated land surfaces are needed in order to
use satellite imagery for monitoring semiarid vegetation over
large areas. Models of vegetation canopy reflectance based
on radiative transfer theory (reviewed in [1]) may not be
invertible using existing satellite imagery of natural, sparse
vegetation. Spectral vegetation indices, while they have proven
useful [2]-[4], do not go far enough toward isolating the
vegetation signal from the background in semiarid vegeta-
tion with complex spatial and phenological patterns [S], [6].
In semiarid vegetation formations the vegetation component
does not always dominate spatially averaged remotely sensed
measurements.

A series of reflectance models, developed by A. H. Strahler
and others, treats woody vegetation canopies as an assemblage
of discrete three-dimensional objects, illuminated at an angle
and casting shadows on a contrasting background [7]-[12]. By
modeling a plant canopy as a collection of regular geometric
shapes, optical principles and parallel-ray geometry can be
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used to predict the bidirectional reflectance of a shrubland,
woodland, or forest [11]. Most relevant to the present study,
these models have been developed for the purpose of inverting
them using multispectral digital imagery. Vegetation parame-
ters (plant size and density) can be estimated from remotely
sensed reflectance measurements using the variance in the
spectral response of a vegetation stand as seen in a digital
image [7]. When the sensor field of view is one or two orders
of magnitude larger than the average plant size, as is the case
for the principal Earth resources satellites (Landsat and SPOT)
and many vegetation formations, the pattern of plant, shadow,
and background is a major source of spatial variance in the
image [13], [14].

The objective of this study was to estimate average plant
size and density from SPOT High Resolution Visible (HRV)
multispectral (XS) imagery for test sites in Chihuahuan desert
shrub communities using the Li-Strahler [7] model. Estimates
of woody vegetation structure for large areas are needed in
order to model primary production and biogeochemical cycling
[15], and land surface—climate interactions (e.g., characterize
surface albedo, roughness, and evapotranspiration [16]).

While the geometric-optical models have been tested in
woodland and savanna using Landsat Multispectral Scanner
(MSS), Thematic Mapper (TM), and TM Simulator data [7],
[10], [17]-[19], and similar approaches have been applied
in woodlands using MSS and aircraft data [20]-[22], they
have never been applied to shrub vegetation. Related spectral
mixture models have been tested in desert shrub and grassland
[23] including some that incorporate geometric modeling of
plant shadows [24], but in those studies only plant cover was
estimated (not size and density).

Further, the Li-Strahler model has not previously been
inverted using SPOT imagery. SPOT HRV XS data have
greater spatial resolution (20 m x 20 m pixels) but fewer
spectral bands (three) than TM. Given the spatial resolution,
the assumption that the pixel is much larger than the average
plant canopy, but small enough that the number and size
of plants varies among pixels, is likely to be true for shrub
canopies. Fewer spectral bands may decrease the spectral
separability of the components in the model. However, because
SPOT is a pointable sensor, there is a three-fold greater
chance of acquiring a near-nadir image of a study area in
a specific time period than from Landsat. SPOT may be
used increasingly for regional studies. Therefore, part of the
objective of this study was to examine the effect of SPOT
XS spatial resolution and spectral “dimensionality” on the
estimation of vegetation parameters from the model.
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Shrub shape and illumination geometry for a spheroid.

Fig. 1.

II. THE CANOPY REFLECTANCE MODEL

The Li-Strahler model has been described elsewhere [7],
[11], [17] and will be reviewed briefly. A vegetation stand
consists of opaque objects (trees or shrubs) that cast shadows
onto a spectrally contrasting background (e.g., soil, herbaceous
understory, snow). A stand will be defined as an area of
vegetation that is relatively homogeneous with respect to
composition and structure (average cover or density of plants),
i.e., falling within one vegetation class [25]. Pixel reflectance
is modeled as the area-weighted sum of the reflectances of
four components: illuminated crown, illuminated background,
shaded crown, and shaded background. The size and density
of plant crowns determine the areal proportions of these com-
ponents within a pixel. Pixel-to-pixel variance in reflectance
occurs because the number of plants and their size varies.
Knowledge of the plant shape and illumination geometry
can be used to separate canopy from shadow cover, and the
variance in pixel reflectance can be used to decompose canopy
cover into average plant size and density for the stand. This
depends on the following assumptions:

1) A plant can be described as having a simple geometric
form that is invariant with size. In this study, shrubs were
modeled as spheroids and their shape characterized by
the ratio of the vertical (b) to horizontal (r) radius (Fig.
1).

2) The spatial pattern of plants is either random at the scale
of sensor resolution, i.e., density counts in pixels can
be characterized as a Poisson distribution and Cy, the
coefficient of determination (ratio of variance to mean)
of counts of plants in pixels set to 1, or if pattern is not
random Cy can be estimated from field data.

3) The plant size distribution, expressed as the coefficient
of variation (ratio of standard deviation to mean) of
squared crown radius, C'g2, has been estimated for the
study area, or follows some known distribution function.

4) Plant canopies and background are assumed to be Lam-
bertian reflectors. The four components have distinct
multispectral reflectance characteristics or “signatures”
(or the canopy and shaded components have a composite
signature which is distinct from that of the background),
and the signatures are known or can be estimated.

The reflectance (s) of pixel i in band j is:

sij = (AgiGy) + (AciCy) + (4. Z5) + (A Ty) (1)

where G;, C;, Z;, and T} are the signatures for an area
of sunlit background and crown, and shaded background and
crown, respectively, and Ag, A., A, and A; are equal to the
areal proportion (projected cover) of each component within
the pixel. (The subscripts i, j will be dropped for convenience).
By defining Xo as the average signature of a plant and its
associated shadow (a weighted average of C, T, and Z), (1)
can be simplified to a two-component mixture model:

s=A,G+ (1 - Ay)Xo @)

In this study as in previous ones, [7], [18], the two-component
model was used. Field reflectance measurements indicated that
this was reasonable for the study area, at least in the absorptive
(green and red) SPOT wavebands (Fig. 2(a) and [26]). The
variables describing the stand are:

A Area of a pixel.

n Number of plants in a pixel.

N Average density per unit area of plants in a stand.

Average squared crown radius per pixel (proportional to crown

area).
Average R,,? for all pixels in a stand.
m Product of the density and the average squared crown radius

divided by the pixel area (nR),?/4); proportional to the

nonoverlapping plant cover in the pixel, mn.
A Mean of m for all pixels in the stand; can be approximated by

NR,? divided by the stand area.

A geometric factor T', a function of plant shape (the ratio of
r to b) and solar zenith angle, is used to adjust crown area to
include shadow, such that the area of a pixel covered by a plant
and its shadow is mI" (equal to A, + A; + A;). The amount
of nonoverlapping plant cover in a pixel can be determined
by rearranging (1):
~ G-s
TG -Xo)

Once m is found for each pixel in the stand, the variance of
m can be determined. We used the following approximations:

m

3

G-8S
M= I‘i(G—XO)' G))]
and
_ V)
V(7TL) - F(G _ XO)2 (5)

where S is the average and V(S) is the variance of pixel
reflectance for the stand.

The model can be inverted to predict plant size (modified
from {7]):

[(Ca + Cra?)> M2 + 4V (m)CaCra®]'/® = (Ca + Cpa®)M

2 _
R, = ZCdCR22
(6)
Franklin and Strahler [18] used the approximation:
Vv
52 _ (m) (7)

T (Ca+ Cre )M’

Once R32 is known, N is easily determined.
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TABLE 1
SHRUB CLASSES: SHAPE PARAMETERS BASED ON 1y FIELD MEASUREMENTS; 7', HORIZONTAL CROWN RADIUS; b, VERTICAL CROWN RADIUS; I" FOR THE IMAGE
2
DATES: THE COEFFICIENT OF DETERMINATION OF DENSITY, C'g, BASED ON PHOTOINTERPRETED COUNTS IN 25 PIXELS: THE AVERAGE (Rs7)
AND THE COEFFICIENT OF VARIATION (C' p2) OF SQUARED CROWN RADIUS, BASED ON PHOTOINTERPRETED CROWN RADIUS OF 112 SHRUBS

Class r
Shrub Type  LTER Site Bg’l':s"‘sss m r(m) (sd) b(m) (sd) June Sept.
Tarbush East low 43 046  (0.17) 35 (.09) 3.7 4.4
Tarbush Taylor high 38 038 (0.13) 37 (.08) 39 4.9
Creosote Sand high 50 0.78  (0.29) 59 (19) 3.7 4.5
Mesquite West low 49 0.63  (0.57) 33 (24) 35 40
Mesquite Rabbit high 52 180 (1.25) 57 (26) 34 36
Class Average Range Range Photointerpreted
Ca Cq CRZ R52 (m) (Sd) ny
Tarbush East 2.56 0.76-6.59 0.90-1.27 0.195  (0.209) 2417
Tarbush Taylor 4.77 1.25-5.63 0.99-1.45 0.239  (0.283) 1884
Creosote Sand 491 1.46-5.63 0.95-1.30 0.307 (0.345) 2045
Mesquite West 2.95 1.00-5.90 1.46-2.40 0.558 (1.144) 1411
Mesquite Rabbit 1.03 0.61-1.35 0.91-1.30 2.725  (3.939) 263

Application of the model to shrub canopies will affect the
geometric form and the stand variance (V/(S)). Shrub canopies
generally have a larger ratio of canopy diameter to total height
than trees and cast less shadow per unit crown area. This could
reduce the contrast between X and G, especially in the near-
infrared (Fig. 2(a)), degrading the sensitivity of the model.
Alternatively, because X will be similar to C,and I to «, the
model will be less affected by variations in those parameters.
Secondly, the average canopy in this study is 40-800 times
smaller than the pixel (Table I), while the densities (10-100
plants per pixel) are similar to those found in previous studies
of trees where the pixel/canopy area ratio ranged from 20-200
[17]. Therefore, in the present study cover in each pixel is
likely be close to the stand mean [14], lowering interpixel
variance and reducing the sensitivity of the model.

III. THE STUDY AREA

The Jornada del Muerto basin in southwestern New Mexico,
home to the National Science Foundation’s Jornada Long Term
Ecological Research (LTER) site, has undergone dramatic and
well documented vegetation changes in the past century [27] as
have large areas of southern New Mexico [28] [29]. Perennial
grasslands have been replaced by shrublands over a large ex-
tent in the basin, with associated soil erosion and geomorphic
changes. Current ecological research in the Jornada LTER is
aimed at simulation modeling of the processes leading to this
vegetation transition [30], namely changes in the spatial and
temporal distribution of water and nutrients between landform
clements as a result of the loss of herbaceous cover [31],
[32]. Remote sensing research in the Jornada basin has been
aimed at estimating the vegetation and soil parameters that are
indicators of this form of land degradation [33], [34].

The LTER study area (32°19'N, 106°42'W) is located in
the south end of the basin, approximately 37 km north of Las
Cruces, NM, on the New Mexico State University College
Ranch and USDA Jornada Experimental Range. The study area
is described in [31] and [32]. Inter- and intra-annual patterns
of primary production are currently being monitored by the
LTER investigators on large (70 x 70 m) plots in 15 vegetation
classes: three biomass classes (high, medium, and low) in
each of five community types, including three shrub and two
grassland types (L. Huenneke, pers. comm.) (Fig. 3). The three
shrub types are tarbush (dominated by Flourensia cernua),
creosote bush (dominated by Larrea tridentata), and mesquite
(dominated by Prosopis glandulosa). In the present study, the
canopy model was tested in five of the nine shrub-dominated
classes (Table I).

IV. METHODS AND DATA SOURCES

A. Parameters Measured in the Field

In order to characterize shrub shape, height and crown
diameter were measured for 40-50 plants within circular plots
adjacent to the LTER biomass plots (one plot per class, Table
I). The geometric parameter I' (Table I) was calculated using
the average ratio of r to b and the solar zenith angle at the
time of the acquisition of each SPOT scenc (Fig. 1).

B. Aerial Photography

True color aerial photographs of the Jornada study area were
acquired on Sept. 29, 1989 at a nominal scale of 1:2500. The
photographs were used to: 1) locate the sample stands used
to test the model, and for each stand; 2) enumerate shrub
density (n); 3) sample crown size (estimate R,? and Cp2);
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Fig. 2. Red versus infrared reflectance of (a) the four component signatures
sampled using an Exotech radiometer and SPOT bandpass filters near the
Tarbush-East LTER site in September 1989 and June 1990. Means of 10-20
observations are plotted, G - sunlit soil, Z - shaded soil, C' - sunlit shrub, T’
- shaded shrub; (b) the two components predicted from the model, averaged
by type; (.\') o, (square) G; t - tarbush, c - creosote bush, m - mesquite,
j - June image, s - September image.

and 4) establish the spatial pattern of plants (determine Cj).
The model was tested in 26 one-ha stands (equal to 5 x 5
SPOT pixels), 5-6 in each shrub stratum. Sample stands were
selected if they were:
* within the limited air photo coverage (flight lines only
included the 15 LTER biomass plots),
* at least 100 m apart if possible (to avoid autocorrelation
among the vegetation parameters),
* at least 25 m from a road,
* near the LTER sites and appearing to fall within the same
vegetation classes as them.
The stands were chosen subjectively, from 74 stands used
in [35], to span a range of shrub cover values. Given the
photo coverage, the choice of 1-ha nonoverlapping stands was
limited, and some sites were close together (Fig. 3).
Shrub size and density measurements were required to
assess the accuracy of the model. Density was determined

Fig. 3. False-color composite of September 1989 SPOT XS subimage
(approximately 15 x 10 km) of the study area showing the extent of the
air photo coverage (polygons outlined), the LTER biomass plots (L), the 26
stands used in the study (small boxes), and other landmarks.

for each of the stands by mapping the point locations of all
shrubs from the air photos using a Zoom Transfer Scope.
The spatial pattern of shrubs was described by the coefficient
of dispersion of density (Cy), calculated from the counts of
shrubs in pixel-sized contiguous quadrats (called pixels for
simplicity) for each stand [7], [36]. Crown size was determined
by measuring the diameters of shrubs in the photos (magnified
to a nominal scale of 1:200) in a subsample of five randomly
chosen pixels or 20% of the stand. C'r2 was calculated based
on the 250-2500 crowns measured in each stand using the
photos (Table TI).

C. Satellite Imagery

SPOT images of the study area were acquired on June 12
and Sept. 24, 1989, and used to test the model. The SPOT XS
sensor records radiance in the green (.50—-.59 pm), red (.61-.68
pum) and near-infrared (.79-.89 pm) wavebands. The images
were nominally corrected for variations due to atmospheric
effects and changes in solar elevation using a dark-object
subtraction method, and the reflectance was calculated for each
pixel using the method described in [37], so that the digital
number in the transformed image corresponds to reflectance
multiplied by 255. The images were also geometrically ref-
erenced to a UTM projection based on ground control points
and nearest neighbor resampling. The stands were located in
the images visually using the many roads, arroyos and other
features prominent in both the imagery and the air photos (Fig.
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TABLE II
REGRESSION SLOPES (A), INTERCEPTS (B) AND 72 FOR THE BACKGROUND (G) AND SHRUB/SHADOW (Xg) SIGNATURES, USED TO ESTIMATE
SIGNATURES FROM THE MAXIMUM AND MINIMUM REFLECTANCE NUMBERS IN EACH STAND USING IMAGERY FROM EACH DATE

G Xo
Type Band A B I A B r?
September
Tarbush all 1.40 4.65 0.97 0.98 -41.22 0.54
Creosote all 1.00 271 0.99 1.06 -18.92 0.56
Mesquite all 1.00 0.31 0.99 0.92 -2.69 0.94
June
Tarbush 1 1.23 -54.14 0.04
2 1.13 -0.27 0.98 2.76 -150.79 0.19
3 2.25 -161.58 0.12
Creosote all 1.01 2.21 0.99 0.99 -21.19 0.56

3). Reflectance statistics (minimum, maximum, S and V(S)
in each band) were extracted for the stands, and were used to
determine signatures for G and X, and to invert the model.

D. Testing the Model

Component signatures G and X were first modeled in each
spectral band utilizing the satellite image data and known
values of N, R,2, Cgz, Cy and for each stand. Equations (4)-
(6) were used to predict the signatures by solving for G and
Xo. These modeled values of G and X, were related to the
minimum and maximum reflectance numbers for each stand
using linear regression, and then the regression coefficients
were used to estimate component signatures in each site from
the minimum and maximum reflectance in each band [18]. The
estimated component signatures (Gg, X,g) were then used
with the stand parameters (I', Cg2, Cy), and the reflectance
statistics (S, V/(S)) for each spectral band, to estimate the size
and density (R,> and N) of shrubs in a stand from both (6)
and (7). Thus there were three predictions (from the three
SPOT bands) of size and density per stand for each equation,
and instead of averaging this small number of predictions, the
median value was chosen [18]. Note that testing the model on
the same stands used to estimate the signatures will tend to
overestimate model performance.

E. Assessing Model Performance

Predicted and observed shrub size and density were com-
pared using the following statistics: the mean absolute percent
error (MAPE),

K
1 &P — 04
MAPE = — E _—

the mean absolute error (MAE),

K
1
MAE:EZ|Pk-Ok| ©)
k=1
and the mean percent error (MPE),
K
1 P, — O
MPE = — _ 10
K2 0, (10)

where K is the number of stands, P is the predicted, and Oy,
is the observed size or density for stand k [38]. The MAPE

expresses error as a proportion of the observed values, the
MAE is in the units of the variable being predicted, and the
MPE can reveal systematic errors in the predictions.

The accuracy based on all stands was evaluated for several
trials designed to examine the effect of the time of year of
the image acquisition (related to plant phenology and canopy
shadowing), and the parameter describing shrub spatial pattern
(Cy), on the model performance. Three trials were run using
the September (end of the summer growing season) image
data: a) Cy was set to one [9], b) Cy was set to the actual
value calculated for each stand (Table I), and c¢) Cy was set
to an average value for the shrub type (a value of 3 was used
for all but the Mesquite-Rabbit class where Cyq was set to
1). Then for the June (early in the summer growing season)
image, the model was tested using the value of Cy that gave
the best results in the previous trials. Finally, the accuracy for
each shrub class was evaluated based on the best trial, using
the same statistics.

V. RESULTS

A. Estimation of Signatures

Signatures were modeled and estimated separately for each
shrub type and for each trial (because Cy enters into the
calculation). For most trials, there was a linear relationship
between the modeled signatures and extreme reflectance values
for the stands for all bands combined. The relationship was
much stronger for G than for X (Table II). However, the
model is more sensitive to the accurate characterization of G
[18].

In general, for both signatures, the slope was close to one,
except for the tarbush type in the June imagery. The intercept
was small and positive for G, so that the estimated background
signature was always slightly brighter than the brightest pixel
in the stand. If there are no pixels of pure background (or
vegetation) in the stand, the model will predict a signature
for G (or Xg) that is brighter (darker) than the maximum
(minimum) reflectance. The intercept was large and negative
for Xy, so that estimated X, was always much darker than the
darkest pixel in the stand, resulting in a negative value in some
cases. Negative values would not be expected for calibrated
satellite data, and could indicate either that satellite data were
not perfectly calibrated, or that V(S) contains noise variance
(from variance in G or Xj), causing X to be underestimated.




298 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 30, NO. 2, MARCH 1992

TABLE Il
OVERALL MODEL RESULTS SHOWING THE MEAN ABSOLUTE ERROR (MAE),
MEAN ABSOLUTE PERCENT ERROR (MAPE), AND MEAN PERCENT ERROR (MPE)
OF CROWN AREA (m?) AND DENSITY (PER ha) FOR THE DIFFERENT TRIALS

10

e

Trial

MAE MAPE MPE

CROWN AREA (m?)
September Image (26 sites)

Observed Cy 1.24 0.41 0.01
Ci=1 1.20 0.40 0.02
Average Cy by stratum 1.16 0.35 -0.07
June Image (16 sites)
Average Cy by stratum 0.32 0.40 0.07
DENSITY (per ha)
September Image (26 sites)
Observed Cy 702 0.43 0.19
Cq=1 525 0.38 0.20
Average Cy4 by stratum 452 0.31 0.17
June Image (16 sites)
Average Cy by stratum 275 0.15 0.01

All bands could be grouped for signature estimation because
the desert soils in these sites are brighter than shrub canopy
in all wavebands (including band 3, the near-infrared). The
only time this was not the case (and X signatures had to be
estimated separately for each band) was again for the tarbush
type in the June imagery (Table II).

B. Accuracy of Model Predictions

Results from (6) and (7) were nearly identical and all results
presented below are based on (7). The overall accuracy was
highest for the trials run using the September imagery when
an average value of Cy for each stratum was used, lowest
when the observed value of Cy for each stand was used, and
intermediate when Cy was set equal to one (Table IIT). The
MPE shows that density was systematically overestimated and
size underestimated in the September trials where an average
Cy4 was used (Fig. 4). The MAPE (30-43%) indicates that
overall accuracy of the model is low for both dates.

It was expected that the June image data would yield
more accurate predictions. In June, at the beginning of the
summer growing season, the deciduous tarbush and mesquite
have started to leaf out, and the evergreen creosote bush is
growing new leaves, but the perennial and annual grasses have
not yet greened up [39]. Therefore, the contrast between the
shrub layer and background should be greatest at that time.
In September, grass cover, extensive in some areas (especially
in the tarbush type) may cause both reduced contrast between
G and Xy and increased variance in G among pixels, which
reduce the accuracy of the model [18]. However, the June 1989
image of the Jornada contained both nonsystematic noise in
some portions of the image (preventing the mesquite stands
from being examined), and systematically higher reflectance
numbers than the September image in all bands, even after
atmospheric correction [35]. A systematic offset should not
affect the results of the canopy model; however, unobserved
nonsystematic noise could degrade the results. The MAE’s of
the June results can not be compared directly to September
results because they are based on a smaller number of stands,
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Fig. 4. Observed versus predicted (a) shrub size (crown area in m?), and
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but the MAPE for crown size was roughly the same while
MPE indicates that size was overestimated. MAPE for density
was lower and the predictions were unbiased (Table III).
When the stands are grouped by shrub class the results
based on both image dates are more encouraging. Table IV
shows the average observed and predicted values for the 5-6
stands within each class, and the accuracy statistics, based
on the average Cy trial. The MAPE varied greatly among
strata, and values ranged around the overall figures (15-40%)
with the exception of crown size for Mesquite-Rabbit (67%).
However, predicted values were often within the range of
observed values for the stratum, i.e., the MAE’s were usually
within one standard deviation of the observed values for size,
even for Mesquite-Rabbit, and within two standard deviations
of the observed values for density (but the sample size for
each class was small). Also, the rank order of the predicted
and observed average size and density were the same. In
other words, the model is differentiating among the canopy
structures represented by these five classes. The means and
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TABLE IV
MODEL RESULTS SHOWING THE OBSERVED AND PREDICTED AVERAGE VALUES OF CROWN SIZE AND
DENsITY FOR EACH CLASS, THEIR STANDARD ERRORS, AND THE THREE ACCURACY STATISTICS

Class n Obs. (sd) Pred. (sd) MAE MAPE MPE
SEPTEMBER

Crown Area (m?)

Tarbush East 5 0.62 (0.15) 0.45 (0.41) 0.20 0.32 -0.25
Tarbush Taylor 5 0.80 0.27) 078  (0.34) 019 021  -0.02
Creosote Sand 6 1.02 (0.33) 0.79 (0.12) 0.37 0.38 -0.14
Mesquite West 5 1.79 0.49) 1.80 (0.65) 0.33 0.17 0.00
Mesquite Rabbit 5 972 (6.02) 714 (1.82) 487 067  0.08
Density (per

ha)

Tarbush East 5 2286 (319) 3019 (944) 912 0.39 0.33
Tarbush Taylor 5 1902 (299) 2042 (551) 351 019 0.6
Creosote Sand 6 1644 (290) 2099 (535) 569 0.35 0.26
Mesquite West 5 1303 (222) 1333 (467) 347 0.28 0.01
Mesquite Rabbit 5 294 (66) 259 @®7) 9% 036  0.12
JUNE

Crown Area (m?)

Tarbush East 5 0.62 (0.15) 0.46 (0.18) 0.15 0.26 -0.26
Tarbush Taylor 5 0.80 0.27) 093 (031 024 032 020
Creosote Sand 6 1.02 (0.33) 0.90 (0.13) 0.32 0.40 0.07
Density (per ha)

Tarbush East 5 2286 (319) 3123 (1267) 1067 045 033
Tarbush Taylor 5 1902 (299) 1818 (599) 405 0.22 -0.06
Creosote Sand 6 1644 (290) 1655 (174) 275 0.15 0.01

standard deviations reported for crown size in Table IV are
grand means of the means for each stand within a class. The
variances of all photointerpreted crown size measurements for
individual shrubs within a class were much higher (Table I).
Overall, there does not seem to be a consistent improvement
in the results by class based on the June imagery.

VI. DISCUSSION AND CONCLUSION

The large errors in model predictions are a result of a) poor
estimation of component signatures, b) a weak relationship
between V'(S) and shrub size, and c) low V(S), leading to
low model sensitivity. Errors would presumably be even larger
if the model were tested on an independent set of stands.
The signature estimation procedure yielded realistic values for
the background signature, G, considering that field-sampled
G shown in Fig. 2(a) was based on soil only and did not
include litter or herbaceous vegetation. However, unrealistic
X signatures were predicted (Fig. 2(b)), and they were poorly
related to stand reflectance characteristics as indicated by the
low r? values in Table II. A possible solution would be to
estimate the X signature from field data, holding it constant
for a vegetation type, and only estimate G from the stand
histogram. Alternatively, G could be a variable, predicted from
the model, if some other parameter were known, such as the
distribution of b/r (X. Li, pers. comm.).

Further, large errors resulted because the stand spectral
variance, V(S), was not closely related to shrub size. Even
within a vegetation type there were stands with high V(9)
and relatively small shrubs. If the true variance was poorly
estimated from the 25 observations in the 1-ha stands, then an
image segmentation procedure that delineates stands composed

of more pixels might characterize V'(S) better [19]. Alterna-
tively, if V(S) is strongly affected by within-stand variance
in G, there are two possible solutions: a) band transformations
might reduce the variance in G; b) a fixed proportion of
V(S) could be attributed to V(G), perhaps as a function of
vegetation type, and the remaining variance used to predict
crown size.

Finally, if V(S) is low because the shrubs are very small
relative to the pixel size, shrub spatial pattern is regular, or
because of poor contrast between G and X, the problem is
poorly posed. For many of the creosote bush and mesquite
sites the variance was only 1-2 reflectance numbers (< 1%
reflectance) in the three SPOT bands.

The systematic errors in the predictions based on average
Cy may have occurred because the value used for most stands
(3) overcompensated for the effect of a clumped spatial pattern
in some cases. In those tarbush-east and creosote stands where
Cy was actually less than 3, crown size was underestimated
and density overestimated because too much of the variance
in reflectance was attributed to variation in density rather than
larger crown size. This pattern of errors could also result if
crown size was more variable for sparse stands, and less so for
dense stands. However, this was not observed in the estimated
values of Cz2 (Table I).

In the June imagery, V(S) was not lower than in September
as hypothesized, but, in fact, was higher in band 3 and varied
by site in bands 1 and 2. It is not known if this is due to
radiometric noise in the June satellite data (noted above) or to
variations in the phenology of shrubs or other vegetation.

The simple model that was used assumes no overlap of
crowns and shadows, a reasonable assumption for low plant
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cover (independently estimated crown cover ranged from
20-45% in the stands [35]). However, in the case of a clumped
spatial pattern, overlap could occur even at intermediate den-
sities. If overlap is present, application of the nonoverlapping
model would result in underestimation of size (and density)
in higher-cover stands. While size was underestimated in the
tarbush and creosote classes density was overestimated and it
is more likely that the error is related to signature estimation
and to the parameter Cy as noted above.

The Jornada data set could be used to test more complex
versions of the geometric optical canopy model by:

* using the four spectral components, and exploring the
trade-off between this and including additional back-
ground spectral components, which necessitates using TM
or other data with more spectral wavebands;
predicting m for each pixel based on multiple bands and
a maximum likelihood, look-up table approach, using the
overlap model [19];

* using larger stands, in order to better estimate component
signatures and stand spectral variance, and more of them,
to allow for cross validation of the model results.

The importance of the invertible discrete-object reflectance
models is that, while other empirical and deterministic remote
sensing models predict a single parameter (biomass, cover,
leaf area index) from a reflectance or spectral index value, the
invertible models use the average reflectance of a stand and
its spatial variance to estimate two parameters of vegetation
structure, plant size and density. These parameters are more
closely related to primary productivity [40], surface roughness,
and other important biophysical parameters [15] of woody
vegetation than cover alone.
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