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 Abstract.-Fragmented landscapes alter ecological interactions by modifying the flux of organ-
 isms, material, and energy. Fragmented distributions of hypothetical resources and species were
 represented by several fractal models of landscape patterns at scales ranging from 90 to
 2,400 m. Maps of resource aggregations at three scales resulted in multiple-scale notions of
 "patch," "gap," "edge," "corridor," "source," and "sink." A neutral model of species co-
 occurrence was developed for analyses conducted at several scales. The neutral model has
 implications for sampling mutualistic species and for detecting species' responses to changes in
 environmental conditions. An ecologically meaningful view of landscape pattern depends on the
 home range size, dispersal ability, or speed with which organisms use resources rather than on
 the cartographic depiction of the landscape used by humans.

 All species are restricted in their ability to occupy space. A long tradition of

 spatial and temporal analysis has identified several major factors, such as climate
 and disturbance, that regulate the fragmented distributions of species (see, e.g.,
 Cowles 1899; Warming 1909; Elton 1927; Watt 1947; MacArthur 1972; Walter
 1979). Despite the importance of spatial variation in species abundance and re-
 sources, the intractable complexity of ecological patterns in space and time
 prompted early workers to remove ecological interactions from a spatial context
 and thereby gain an ability to make predictions (Gause 1935; Cole 1954; Bray
 and Curtis 1957; Hutchinson 1957; Preston 1962; MacArthur and Connell 1966;
 Whittaker 1967; Margalef 1968; Odum 1971). Subsequent considerations of sys-
 tem stability focused attention once again on the interactions between spatial
 pattern and dynamics (Bormann and Likens 1979; Shugart and West 1981) and
 reflected an ongoing concern among ecologists that the central theories of gradi-
 ents, succession, and competition were incomplete or inadequately tested (Drury
 and Nisbet 1973; Austin 1985).

 Several complementary approaches, including landscape ecology (Forman and
 Godron 1986), hierarchy theory (Allen and Starr 1982; O'Neill et al. 1986), and
 supply-side ecology (Gaines and Roughgarden 1985), recently have begun to ana-
 lyze the origin of fragmented distributions and the mechanisms of species coexis-
 tence. Both hierarchy theory and supply-side ecology recognize that ecological
 processes and patterns are regulated by dynamics occurring simultaneously at
 several spatial or temporal scales. The return to an explicit spatial context in-
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 FIG. 7.-Aggregation of the grassland pixels of fig. 2. Surface height is proportional to the

 number of windows of size L = 15 that visited each pixel during the measurement of the

 probability-density function p(m,L). Coloration corresponds to the frequency of visitation

 by windows of L = 3 (red), L = 9 (green), and L = 15 (blue). Color intensity was rescaled
 to relative values. The surface height has been rescaled for clarity at the expense of smooth-
 ing the fractal surface (D = 2.56).
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 FIG. 8.-Magnification and flat projection of a portion of the aggregation surface. The
 color scheme is as in fig. 7.
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 FRACTAL LANDSCAPES 35

 cludes an acute sensitivity to the scale at which observations are made. Scale

 serves as a particular spatial or temporal perspective applied purposefully by the

 observer to reveal the differential effects of regulatory or constraining factors.

 Some factors, such as the influx of larval recruits (Gaines and Roughgarden 1985),
 are constant over the short term but highly dynamic over broader time scales.

 Thus, observations made at different scales are informative in the sense that

 visible and X-ray radiation yield different, but complementary, aesthetic and

 technical views of a masterpiece painting.
 In retrospect, the existing theories of diversity, community composition, suc-

 cession, and species interactions may be confounded somewhat by the limited
 ability of theory and empirical work to accommodate the recently discovered

 consequences of scale (sensu Mandelbrot 1982). The term scale has many mean-
 ings because any set of observations has both an extent and grain resulting from

 arbitrary choices made during data collection (O'Neill et al. 1986). Extent (i.e.,
 the spatial and temporal breadth of a set of observations) and grain (i.e., the size
 of the smallest resolvable unit of observation) interact (Gardner et al. 1987) as two

 fundamental components of scale. In addition, analytical techniques purposefully
 impose scales on data such that raw observations are aggregated or pooled within

 "windows," which thereby provides for the measurement of statistics. Alterna-
 tively, pairs of observations at various distances may be compared, as in studies
 of autocorrelation. Here, in discussions of other studies, scale denotes the spatial
 or temporal extent of a set of observations. Regarding new results presented in
 this article, scale is used in the sense of Mandelbrot (1982) to mean the width of
 a window and is denoted by L or L', for the length scale. Scale in this sense is
 not the grain of the data, which is presumably fixed. Rather, the grist for the
 fractal analyses is digital data representing landscape cover types. The data are
 visualized as pixels on maps or computer monitors. Several pixels may occur

 simultaneously in sampling units of variable length L.
 This article presents a general approach for incorporating a strong sensitivity

 to scale in a variety of ecological studies. Implications will appear for biological
 surveys, conservation biology, theories of resource use, sampling strategies, and
 the interpretation of spatial data, as in geographical information systems. First,
 however, a brief review of the contributions of landscape ecology, hierarchy
 theory, and supply-side ecology may indicate why it is necessary to develop tools
 for relating processes and patterns across a wide range of scales.

 SCALE-SENSITIVE STUDIES IN ECOLOGY

 A landscape-ecological view of fragmented distributions is explicitly spatial
 (Forman and Godron 1986; Wiens and Milne 1989) and focuses on the origin
 and ecological consequences of landscape pattern. For some investigators (e.g.,
 Shugart and West 1981; Delcourt et al. 1982; Urban et al. 1987), landscape pat-
 terning results from a combination of temporal and spatial processes spanning
 from minutes to millennia, from meters to astronomical units. Others (e.g., Neil-
 son and Wullstein 1983; Woodward 1987; Rykiel et al. 1988) emphasize that or-
 ganisms have scale-dependent responses to constraints, such as moisture avail-
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 ability or disturbance. Gaines and Roughgarden (1985) emphasize the connection

 between processes operating at scales outside the + 100-meter-wide purview of

 classical community ecology (see Ricklefs 1987), for which the term supply-side
 ecology has been coined to represent the role played by distant sources of propa-

 gules and predators that modify dispersal rates. Recent studies have addressed

 spatial heterogeneity by focusing on several scales simultaneously (see Ver Hoef
 and Glenn-Lewin 1989; Wiens 1989), which adds to earlier observations that

 correlations among species vary with quadrat size (Noy-Meir and Anderson
 1973).

 In the hierarchical view, changes in scale reveal factors that appear as constants

 at some scales and as fluctuations at others (Wiens 1981; Allen and Starr 1982;

 O'Neill et al. 1986). For example, species exhibit orders of magnitude variation
 in the scale at which they interact with the environment, as represented by differ-

 ences in dispersal distances, density, and body length (see, e.g., Morse et al.
 1985), correlates of body mass (e.g., range area; see Peters 1983; Brown 1984),
 and the time required to move about the home range (Swihart et al. 1988). Not

 only are the distributions of resources and species patchy, ephemeral, or hetero-
 geneous (Erickson 1945), but responses to landscape patterns vary among species
 due to differences in the scales at which organisms perceive the environment.
 Temporal effects of scale correspond to thresholds or rates of physiological re-

 sponse (Woodward 1987).
 The functional roles of landscape patches (e.g., as sources and sinks; see Pul-

 lium 1988) may vary markedly as a consequence of patch mosaic structure (Burel

 1989; Milne 1991a). Patch mosaic structure is characterized by the kinds, aerial

 coverages, and juxtapositions of patches. Some mosaics facilitate the flow of
 disturbance, energy, and resources (Risser et al. 1984; Turner 1987), whereas
 other arrangements curtail the flows of nutrients such as phosphorus (Correll
 1983; Johnston et al. 1988). For deer in New Brunswick, Canada, the juxtaposi-
 tion of habitat and nonhabitat varies significantly with scale and with the suitabil-
 ity of habitat (Milne et al. 1989). Consequently, the proximity of highly suitable
 environments to less suitable environments results in a spilling over of animals
 into the less suitable locations.

 In summary, the landscape, hierarchical, and supply-side views of ecology
 reveal that spatial pattern and the scale of organismal response interact to regulate
 species distributions. The juxtaposition of resource patches varies through time
 and with spatial scale (Wiens 1976, 1981; Visscher and Seeley 1982) and regulates
 processes including dispersal, community interactions, and mass flow of abiotic
 materials (Gosz et al. 1988). Theoretical, conceptual, and analytical tools are
 needed for quantifying patch mosaic structure in ways that capture both the
 statistical aspects of the pattern (see, e.g., Robertson 1987) and the spatial varia-
 tion of resources, species, and the forces of natural selection.

 Three analyses of landscape geometry and resource clustering were developed
 to determine, first, whether spatial variation in density could be evaluated at
 many scales while information about local density was simultaneously preserved
 and, second, whether neutral models could be formulated describing the expected
 statistical characteristics of species or resources that co-occur at many scales.

This content downloaded from 128.123.176.43 on Fri, 06 Dec 2019 19:23:50 UTC
All use subject to https://about.jstor.org/terms



 FRACTAL LANDSCAPES 37

 Resources generally occur in patches, clusters, or locally dense aggregations.
 In the first of three analyses, a generally applicable method based on fractal
 geometry (Mandelbrot 1982) was used to quantify variation in resource density
 across many scales, for both artificial and remotely sensed grassland patterns.

 Second, maps were made to show the spatial distribution of resource aggrega-
 tions, or clusters, at several scales. The mapping provided a visualization of
 the physical basis for the statistical scale dependence of landscape pattern. The
 visualization provided insights about how animals that operate at different scales
 may perceive variation in resource density. The multiscale analysis revealed that

 the sizes of resource aggregations vary continuously with scale. Unlike other
 geostatistical approaches that portray variation as a function of the distance be-
 tween observations (see, e.g., Robertson 1987; Palmer 1988), maps of aggregation
 represent the spatial proximity of resources explicitly and obey strict fractal scal-
 ing relationships as will be illustrated later. Organisms may respond directly to
 aggregates of resources while foraging, dispersing, and maintaining territories.

 Third, studies of species co-occurrence necessarily include a particular sam-
 pling area over which co-occurrence is evaluated. Generally, sampling is con-
 ducted at some biologically or methodologically meaningful scale. However, the
 intuitive notion of scale dependence suggests that greater predictive power might
 be obtained by studying co-occurrence at many scales simultaneously (see, e.g.,
 Ver Hoef and Glenn-Lewin 1989). Simulated patch mosaics were used to illustrate
 a scale-sensitive neutral model for the distribution of co-occurring species. The
 neutral model may help to distinguish arbitrary associations of fractally distrib-
 uted species from those that are constrained by ecological interactions such as
 competition. The model has implications for the design of scale-sensitive sampling
 strategies, source-sink relationships, conservation biology, and biogeography.

 METHODS

 Study Area

 The Sevilleta National Wildlife Refuge and Long Term Ecological Research
 site (universal transverse Mercator coordinates: zone 13; E 350,000; N 3,805,000)
 is -100,000 ha of semiarid grasslands straddling the Rio Grande and flanked by
 mountainous areas of Pinus edulis and Juniperus monosperma woodland at the
 eastern and western boundaries. The site is located at the confluence of the Great
 Basin, Great Plains, Chihuahuan, and Mogollon flora (McLaughlin 1986), which
 contribute over 728 plant taxa to the site (Manthey 1977). Ungrazed by cattle
 since 1974, the Sevilleta exhibits typical geomorphic and topographical patterns
 for semiarid grasslands. Granitic and limestone mountains abut alluvial plains and
 contribute sediment to the bajadas or foot slopes of the mountains. East of the
 Rio Grande, McKenzie Flats features ephemeral streams called arroyos that spill
 onto the plains from the canyons, carving anastomosing networks into the grassy
 plains. The plains have deep Turney-Yesum-Wink loamy sand soils and very
 shallow Nickel-Caliza-Lozier soils (U.S. Department of Agriculture 1988). Soil
 deposition, erosion, and the complex deposits of variously textured alluvium from
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 the mountains create natural patterns on the landscape, to which plants respond
 in both varying species composition and production.

 Source of Landscape Data

 Remotely sensed data representing complete aerial coverage of an :18.5-km2
 region of McKenzie Flats and the vicinity were used to investigate the potential
 consequences of patch mosaic structure at multiple scales. As part of an ongoing
 study of beetle movements through semiarid grasslands (Wiens and Milne 1989),

 remotely sensed data were obtained from the Landsat Thematic Mapper (TM)

 sensor on September 10, 1987, and were used to estimate the coverage of grass
 and bare soil. I ground-truthed the TM data by estimating the coverage of bare
 soil along 50-m transects that were approximately the length of the 30-m pixels
 of the TM imagery (Milne 1991a). The transect data were used to calibrate a
 regression relationship between the percentage of bare soil and TM band 5 (R2
 = 0.86; Milne 1991a). The TM band 5, a measure of surface brightness, measures

 radiance in the short-wave infrared (Goetz et al. 1983). Radiance was coded as
 digital numbers ranging from 0 to 255, which is the range available in existing
 digital display hardware.

 Classification of the calibrated TM data provided digital maps showing regions
 occupied by bare soil, the geometry of which affects beetle movements at fine
 scales (Wiens and Milne 1989). Although several classes of bare soil were cali-
 brated, illustrative analyses of aggregation presented here focused on the spectral
 class representing 0%-9% bare soil. Grass cover modifies beetle movement
 (Wiens and Milne 1989), which suggests that the presence of the bare soil class
 represents an impedance to the dispersal of beetles over distances less than
 30 m. Image display, classification, and custom Fortran routines were imple-
 mented using the Microimage system from Terra-Mar (Mountain View, Calif.).

 Fractal Representations of Landscape Complexity

 Much of the complexity apparent in landscapes, resource distributions, and
 ecosystem heterogeneity can be modeled using fractal geometry (Mandelbrot
 1982; Gardner et al. 1987; Krummel et al. 1987; Barnsley 1988; Feder 1988; Milne
 1988, 1991a, 1991b; O'Neill et al. 1988; Voss 1988; De Cola 1989; Gupta and
 Waymire 1989). Fractals are mathematical representations of complex natural
 patterns such as clouds, terrain, shorelines, and patch shapes; a technical defini-
 tion appears in the next paragraph. Like other geostatistical methods, fractal
 geometry provides measures of spatial dependence at several scales. Fractal anal-
 yses are often analogous to, and sometimes directly related to, analyses of auto-
 correlation and semivariance (see, e.g., Burrough 1981; Palmer 1988). Fractal
 geometry includes a tremendous diversity of alternative models, all of which
 share two closely related characteristics.

 First, fractals are subsets of the geometrical space within which they reside.
 Ever since Euclid, points have been envisioned as zero-dimensional objects resid-
 ing in higher-dimensional sets, such as lines, planes, and solids. In fractal geome-
 try, a collection of points along a line (say, plant intercepts along a transect)
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 forms a set that occupies less than the entire space that contains the line. Fractals

 may be described by equations or algorithms that specify the exact portion of the

 geometrical space the fractal occupies (Barnsley 1988).

 Second, by virtue of occupying a small portion of a larger geometrical space,
 fractals have "fractal dimensions" that are less than or equal to the Euclidean

 dimension of the space they occupy (Mandelbrot 1982). Thus, very jagged fractal

 "curves" residing in the two-dimensional plane may have dimensions less than
 or equal to two. The noninteger values exhibited by fractal dimensions stem from
 the general scaling law,

 Q = k L Dq (1)

 in which a quantity Q varies as a power of the length scale L (Stanley 1986) and

 k is a constant. The exponent Dq is the fractal dimension of the quantity, or
 closely related to the fractal dimension, and quantities that obey this scaling law
 are fractal (Mandelbrot 1982; Stanley 1986). In general, fractal models provide
 precise characterizations of complex patterns by representing exponential
 changes in measured quantities (e.g., perimeter length, semivariance, and area)
 with changes in length scale. Fractals capture much of the intuitive character of

 natural heterogeneity and are one of the best available tools for conducting analy-

 ses at multiple scales.
 As a growing discipline, fractal geometry experiences shifts in emphasis. Early

 descriptions emphasized the constancy of the fractal dimension across a wide
 range of scales and the "self-similarity" of geometrical patterns. Self-similarity
 refers to the tendency for small parts of a pattern to resemble the whole pattern,
 either exactly or statistically (Stanley 1986). The necessity to qualify the precise
 nature of self-similarity has somewhat reduced the value of the concept, and
 consequently it will not be emphasized here. A necessary caveat relates to the
 constancy of a given fractal dimension: a fractal dimension is generally constant
 within a finite range of length scales and is not a valuable descriptor of patterns
 at scales outside of the finite range.

 The Probability-Density Function

 The essence of the fractal analyses presented here involved a particular
 probability-density function describing the aggregation of points on a map. The
 probability function has moments, just as the familiar normal distribution has
 moments (e.g., mean and variance), that vary with the measurement scale. The
 scaling behavior of the moments is the basis for transforming estimates of mass,
 area, and density from one scale to another.

 The probability-density function p(m,L) is most easily obtained from measure-
 ments made on a digital map in raster form, that is, from a computerized map on
 which each point is addressed using a pair of x and y coordinates. Unlike typical
 sampling schemes where quadrats are distributed randomly, the density function
 is generated from square sampling windows that are centered on each pixel repre-
 senting the land cover type of interest (e.g., grassland). The total number of pixels
 of the cover type of interest, m, contained in each window of length L is tallied
 (to center the windows exactly, raster data require that L be an odd number).
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 Finally, the frequencies for each m value for a given L are determined, and

 frequency distributions are constructed for a series of different window sizes

 (Voss 1988; Milne 1991b).

 Consequently, N(L) is the number of different m values obtained from windows

 of length L. The frequencies of the m values are transformed to satisfy the

 probability-density function,

 N(L)

 > p(m,L) = 1, (2)

 which indicates that the sum of the probabilities of finding m pixels in a window

 L units long is 1 (Voss 1988). The quantity N(L) will equal L2 for maps containing

 compact patches of at least length L, whereas sparse distributions may yield N(L)

 < L2. Measurement of p(m,L) provides statistics that describe the aggregation of
 pixels in the patch mosaic.

 The p(m,L) distribution has moments just as the normal distribution has a mean
 and a variance (Voss 1988; Milne 1991b). By definition, the qth moment of p(m,L)
 is found using the moment-generating function,

 N(L)

 M(L)q Mq m"p(m,L), (3)
 m=1

 where M(L)q is qth moment obtained using a quadrat L units long: the moment
 is raised to the qth power. Naturalistic fractals possessing statistical self-similarity
 with changes in L (Voss 1988) exhibit striking regularity in the qth root of the qth
 moment as a function of L. In particular, the roots scale as a power of the length
 scale according to

 (M(L)q)q = k LDq (4)

 where the exponent Dq is the fractal dimension of the mapped set if q = 1 (see
 eq. [1]). Natural landscapes containing statistically self-similar fractals exhibit
 consistent changes in Dq calculated for successive moments (Stanley 1986; Man-
 delbrot 1989). Observed changes in Dq as a function of q (Milne 1991b) probably
 reflect the large number of quasi-independent processes (see, e.g., Urban et al.
 1987) that contribute to landscape patterns.

 Nonetheless, when Dq is calculated using the first moment, the dimension is a
 parameter describing the tendency for patches to be contagious. When L > 1 and
 D = 2, the map is filled evenly by the set of interest (i.e., the expected number
 of pixels in a window of size L is proportional to L2) or the points are randomly
 distributed. Fragmented distributions may have D < 2 because they fill less than
 the complete plane at all scales and are aggregated more than random patterns
 of comparable density. Thus, the fractal dimension relates the expected number
 or "mass" of pixels (e.g., resources, individuals) observed at one scale to the
 observations obtained at another scale.

 Despite the attention given to fractal dimensions per se, it is equally important
 to interpret the coefficient on the right-hand side of equation (4). The coefficient
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 A) B) C)

 FIG. 1.-Artificial landscape patterns: (A) random, (B) checkerboard, (C) sinusoidal. Each

 40 x 40-pixel pattern is 50% covered with filled pixels.

 k relates to the sheer preponderance of the pattern relative to the extent of the

 map within which it occurs. Thus, there is always the possibility that a pattern
 with a small value for k may exhibit a high fractal dimension, which indicates a

 relatively compact pattern occupying a small portion of the entire study region.

 Conversely, k may be large and D small, which indicates a highly dispersed
 pattern spanning a majority of the study area. Interplay between k and D is very
 important relative to attempts to extrapolate quantities across scales, although
 the topic of scale extrapolation is beyond the scope of this article.

 Three analyses based on fractal distributions were made to quantify the fractal
 geometry of patch mosaics, to provide maps of spatial aggregations at several
 scales simultaneously, and to specify the geometry of overlapping distributions
 to produce neutral models of species co-occurrence at many scales.

 1. Mosaic structure at multiple scales.-The analyses of the fractal geometry

 of a patch mosaic included three phases. To provide some background reference,
 three maps (i.e., lattices composed of 40 x 40 grid cells) of simulated mosaic
 patterns were generated, including a random map, a checkerboard, and a sine-
 wave pattern (fig. 1). Fifty percent of each map was occupied by filled pixels,
 which are referred to simply as "pixels." White regions of figures 1 and 2 were
 ignored because they did not represent locations of interest in this study. Four
 p(m,L) distributions were measured for each simulated map using windows that
 were 5, 11, 17, and 25 pixels wide. Second, p(m,L) distributions were measured
 for the map of 0%-9% bare soil generated from the Landsat TM data of the
 Sevilleta (fig. 2). Window lengths included 5, 7, 9, 11, 17, 23, and 25 pixels, that
 is, -150, 210, 270, 330, 510, 690, and 750 m, respectively. The first moments of
 each distribution were formed (eq. [3]), logarithmically transformed, and then
 regressed against the logarithm of L. The fractal dimension of the grassland mo-
 saic was estimated from the slope of the regression. Third, a random map with
 the same number of pixels and covering the same area as figure 2 was generated
 as a neutral model (Gardner et al. 1987); that is, pixels were placed at points
 whose coordinates were obtained from a uniform random distribution. The proba-
 bilities p(m,L) for windows of 17 pixels in length were measured on the random
 and observed maps. Graphical comparison was made between the p(m,L) distri-
 butions from the two maps.
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 FIG. 2. Remotely sensed grassland pattern from the Sevilleta National Wildlife Refuge,
 New Mexico. The 200 x 200-pixel image is composed of 30 x 30-m pixels within which the
 coverage of bare soil was estimated to range from 0% to 9%.

 2. Aggregation at multiple scales.oMaps showing the aggregation of grassland
 pixels were produced by a slight modification of the p(m,L) method. Rather than
 tallying the number of pixels within a window, I tallied the number of windows
 of size L that included each pixel and stored it at the pixel location. Displayed
 in a spatial context, the counts of window visits created surfaces that were inter-
 preted as measures of the aggregation of grassland pixels. Three surfaces were
 constructed using windows of L = 3, 9, and 15 pixels, corresponding to 90, 270,
 and 450 m, respectively. Differences between the surfaces were emphasized by
 displaying the surfaces simultaneously in the red, green, and blue color guns of
 a computer monitor. The brightness of light in each color gun was proportional
 to the height of the surface. Although it is possible to compute the number of
 visits by windows with L > 15, 15 is approximately the number of visits that can
 be displayed by existing image hardware without the added step of rescaling the
 counts to fall in the range of 0-255.

 Aggregation surfaces created with different window sizes could differ simply
 because small windows yield exponentially fewer visits and, consequently, flatter
 surfaces or dimmer images. However, when the height of each surface relative
 to the maximum number of visits observed is rescaled, the relative aggregation of
 pixels apparent to species operating at different scales is made visible. Interested
 readers are referred to Meakin (1988) for a discussion of how, in general, the
 activity of imposing a process on a fractal yields a measure that is itself fractal.
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 At first, the aggregation maps may seem simply to be a form of "smoothing"

 at different scales. For the trivial reason that the original grassland map was
 binary, the counts of windows that visited each pixel were not a smoothed repre-

 sentation of the grassland pixels. Rather, it is ecologically more informative to

 interpret the counts of window visits as measures of the density of grassland
 pixels surrounding each grassland pixel. The various window sizes were analo-

 gous to the home range sizes used by organisms of increasing mass (Peters 1983;

 Milne et al., in press) or perhaps the visitation radii used by different pollinators.
 Thus, inspection of the aggregation map for each of several scales indicates where

 species with different home range sizes would have to center their ranges to
 sample a given density of resources.

 The scale-dependent characteristics of each surface were studied using meth-

 ods suggested by Hurst et al. (1965) and discussed by Voss (1988). Unlike fractal
 patch mosaics, surfaces describing a dependent variable as functions of latitude
 and longitude may not exhibit fractal scaling quite as described by equation (1).
 Rather, the dependent variable may vary more strongly as a function of one
 variable than another. By definition, such a surface is an "affine transformation"
 of the independent axes, and each point x on the surface can be envisioned as

 having coordinates (rlx, r2y, . . ., r,z) where the various coefficients ri are
 possibly unique or unequal (Feder 1988). For example, an increment of five units
 on an independent axis may correspond to a greater or lesser increment on the
 dependent axis. In contrast, fractal patterns from remotely sensed images of
 grassland mosaics reside in a coordinate system composed only of latitude and

 longitude, for which one assumes the axes to be similar.
 For some fractal surfaces, the property of self-affinity may hold, for which the

 mean standardized range of the dependent variable increases as a power of the
 length scale L' of the independent variables (see, e.g., Feder 1988) used to mea-

 sure the range (i.e., range = maximum elevation in a window minus the minimum
 elevation in the same window of length L'). By convention, the scaling exponent
 is denoted H (after Hurst) and is related to the fractal dimension of the surface
 by D = 3 - H (Mandelbrot 1982). Surfaces describing generalized regional vari-
 ables as functions of geographical coordinates may have values of the fractal
 dimension ranging from two (flat) to nearly three (extremely jagged and tending
 to fill the three-dimensional space completely). In practice, H and D were ob-

 tained after rescaling (Hurst et al. 1965) the range of the dependent and indepen-
 dent variables to an equal range before conducting the analysis.

 Mandelbrot (1982) discusses the expectations for fractal dimensions of surfaces
 relative to models of fractional Brownian motion. Surfaces having H = 0.5 may
 be produced by classical Brownian motion, which exhibits equal probabilities of
 increases or decreases in values of a dependent variable sampled from a Gaussian

 distribution (i.e., there are random fluctuations up and down). Values of H < 0.5
 indicate that the function approaches white noise, whereas H > 0.5 indicates high
 amounts of autocorrelation in the dependent variable. Milne (1991b) illustrates
 changes in H that are interpreted in light of topographical constraints regulating
 spatial autocorrelation in remotely sensed data from the Sevilleta.

 3. Overlapping mosaics. To study the fractal scaling of overlapping mosaics,

This content downloaded from 128.123.176.43 on Fri, 06 Dec 2019 19:23:50 UTC
All use subject to https://about.jstor.org/terms



 44 THE AMERICAN NATURALIST

 the calibrated TM band 5 data were used to create hypothetical spatial patterns
 analogous to distributions of "species" or resources. The distributions were pro-
 duced by classifying TM band 5 data into three spectrally overlapping classes
 (class 1 = TM digital number 65-100, class 2 = 90-120, class 3 = 95-135,
 inclusive). Thus, pixels with TM band 5 values from 90-100 were members of
 both classes 1 and 2, and pixels with values of 95-100 were members of classes

 1, 2, and 3. The overlapping mosaics provided data analogous to those collected

 during faunal or floristic surveys in which each sampling point in a grid may
 contain one or more species.

 Although p(m,L) could have been used to estimate the fractal dimension of

 each class, an alternative method that yields the so-called grid dimension (Voss
 1988) was used. The grid procedure represented the typical use of quadrats, in
 that each cell was placed without regard to the location of particular mosaic
 pixels. To calculate the grid dimension, a lattice of square grid cells was superim-
 posed on maps of classes 1, 2, and 3, and the number of cells containing any
 portion of the classes was counted for grid cells of width L = 5, 8, 10, 16, 20,
 40, and 80 pixels. Hypothetically, the number of cells occupied by the mosaic
 decreases according to the equation

 N(L) = L-Dg (5)

 where N(L) is the number of occupied cells of size L and Dg is the grid fractal
 dimension of the mosaic. Given that there were E = 400 pixels along one edge
 of the map, the proportion of total grid cells occupied varied as

 CL -Dg
 prop(L) = (EIL)2' (6)

 where the denominator is the number of cells of size L2 over the entire map.
 A neutral model of the co-occurrence of classes 1 and 2 was constructed based

 on the proportion of the landscape occupied by each class. The proportion of the
 map occupied by classes that occur everywhere and at all scales would simply
 be prop(L) = 1. However, the proportion of the landscape occupied by S indepen-
 dently distributed classes is

 Ac CL -D(i)g

 A(L)-1 B2 (7)
 i= 1

 where the numerator describes the amount of landscape covered by the ith class,

 D(i)g is the grid fractal dimension of the ith species, the denominator represents
 area, and B is a constant that varies with the extent of the study. Thus, the
 product of the ratios across all classes describes the expected proportion of the
 landscape occupied jointly by the S classes, if one assumes independence in their
 fractal distributions.

 In summary, three measurements of fractal distributions were used to quantify
 the spatial structure of simulated resource distributions, to formulate neutral mod-
 els of co-occurring species, and to map the aggregations of resources or species
 at several scales. The analyses represent the diverse applications that fractals
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 FIG. 3.-Distributions describing the probability of finding m pixels within windows of
 size L centered on the shaded pixels of fig. 1. Analyses of the (A) random pattern, (B)
 checkerboard, (C) sinusoidal map, and (D) checkerboard and sinusoidal placed side by side.
 The distributions in each panel were measured, from left to right, in windows of L = 5, 11,
 17, and 25, respectively.

 have in the study of landscape structure, and they suggest how landscape struc-
 ture and density vary depending on the scale at which organisms perceive the
 environment.

 RESULTS

 Mosaic Structure at Multiple Scales

 The p(m,L) distributions obtained from analyses of random, checkerboard, and
 sinusoidal test patterns revealed striking and interpretable differences between
 the artificial patterns. The p(m,L) distributions of the random map resembled
 binomial distributions (fig. 3A), with steady increases in the expected value of m
 as L increased. In contrast, the p(m,L) distributions of the checkerboard pattern
 (fig. iB) were shaped like spikes, which reflects the monotonic value of m =
 112L2 for large windows (fig. 3B). Although little attempt was made to model real
 landscapes, the patch structure of the sinusoidal pattern was most reminiscent
 of topographically controlled landscape patterns found in places like Goodland,
 Kansas (B. T. Milne, personal observation), and yielded p(m,L) distributions of
 great complexity (fig. 3C).

 A simulated "ecotone" pattern, composed of the checkerboard and sinusoidal

 patterns placed side by side (fig. lB and IC), provided p(m,L) distributions that
 were additive mixtures of the distributions in figure 3B and 3C. The p(m,L) distri-
 butions of figure 3C reappeared in figure 3D, albeit rescaled and pierced by the
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 FIG. 4.-Distributions of the probability of finding m pixels within windows of size L on

 the grassland map of fig. 2. (A) window size L = 5, (B) L = 11, (C) L = 25, and (D) all
 three distributions.

 spikes of figure 3B, which thus reflects the joining of the distinctive p(m,L) distri-

 butions of the checkerboard and sinusoidal patterns. In general, irregular patterns
 produced p(m,L) distributions that increased in complexity as the window size
 increased.

 Striking patterns of scale dependence were indicated by the shapes of the
 p(m,L) probability-density functions (fig. 4) of the grassland mosaic (fig. 2). Sam-
 pling the map with small 5 x 5-pixel windows (= 150 x 150 m) produced a
 relatively smooth curve for p(m,L). Increases in L resulted in very complex
 distributions (e.g., fig. 4C). When compared on the same axes (fig. 4D), p(m,L)
 for small windows (i.e., L = 5) increased sharply with a maximum p(m,L) at m
 = L2. The terminal spike indicated that it was most common for the windows to
 be saturated by pixels. However, with increasing window sizes (i.e., L = 25),
 the maximum value of p(m,L) shifted downward, away from m = L2. Thus,
 many large windows were not saturated with pixels because large windows were
 generally longer than the width of grassland patches.

 Despite the great variation among the curves, the first moments increased as a
 power of the length scale used in the analysis (fig. 5). The regression of the
 logarithmically transformed first moment with the logarithm of L produced an
 estimate of the fractal dimension of the map (D = 1.751, SE = 0.001) and a
 model of the expected number of pixels as a function of window size (Ml = 0.967
 L' 751). Thus, the map exhibited scale dependence in the expected number of
 pixels observed in variously sized windows. The extremely high fit of the regres-
 sion could be attributed to the strong scale dependence of the pattern, the lack
 of independence among the observations, or both. Thus, a probability value de-
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 FIG. 6.-Comparison of the probability-density functions obtained from the grassland map

 with a window size of L = 17 and from an analysis of a random map of equal area and

 density.

 scribing the likelihood that the slope of the curve is "significantly different from
 zero" is not reported, as such a test would violate an assumption of linear re-
 gression.

 Finally, to determine how the structure of the grassland mosaic differed from
 random, I measured p(m,L) on a random map of the same extent and number of
 pixels as figure 2. The empirical grassland map exhibited a much greater diversity
 of m values (fig. 6), a greater mean and variance, and generally lower probabilities
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 for many values of m. The grassland p(m,L) indicated a greater diversity of pixel
 arrangements and clusters compared to a random map of the same overall density.

 Aggregation at Multiple Scales

 An image was made to represent the scale-dependent clustering of bare soil
 (fig. 7; See p. 33). The number of windows of size L that included each grassland
 pixel provided a measure of the aggregation of bare soil. The three aggregation
 surfaces obtained using windows of length L = 3, 9, and 15 pixels were rescaled
 relative to L2 and then displayed simultaneously in the red, green, and blue color
 guns, respectively, of the imaging system (fig. 7). Consequently, white regions
 had maximal concentrations of pixels at all scales. Pixels with many neighbors
 were visited by relatively many windows, although the exact meaning of "many
 neighbors" depended strongly on the window size.

 Places with warm or cool hues (fig. 7) represented areas with quite different
 patterns of pixel aggregation at each scale. For example, magnification of figure
 7 revealed both scale-dependent "islands" and gaps in the bare soil mosaic (fig.
 8; See p. 34). Isolated reddish areas, such as islands or peninsulas, were visited
 relatively frequently by small windows but not by large ones. Blue rings sur-

 rounding black gaps in the clusters of bare soil indicated that the gaps decreased
 the apparent aggregation of bare soil observed in small windows but not in large
 windows (i.e., grassland pixels surrounding the black gaps had relatively many
 neighbors when large windows were used, and consequently such pixels appeared
 distinctly blue).

 Another common feature of the map was the tendency for white regions to be
 outlined in red, which indicated that small windows were more sensitive to the
 edges of the patches. The occurrence of the red edge can be explained by compar-
 ing the density of pixels found within 3 x 3-pixel versus 15 x 15-pixel windows.
 The windows yield different densities if one considers windows surrounding a
 grassland pixel found on a perfectly straight edge of a patch. In such cases, small
 3 x 3 windows would be 66.6% filled (i.e., the area of the window would have
 two columns, or rows, of grassland pixels, including the filled center column and
 one filled edge of the window, for a total of 3 x 2 = 6 grassland pixels out of a
 possible 32; 6/9 = 66.6%). In contrast, the large 15 x 15-pixel windows would
 be 53.3% filled with grassland pixels (i.e., 15 x 8/152). Thus, the large windows
 yield a dimmer image in the blue color than the small windows yield in red. In
 all, the relative aggregation, isolation, and perforation of the landscape mosaic
 differed with the scale used to study aggregation.

 Despite the complexity of the surfaces, regular scale-dependent variation in
 surface elevation was found (table 1). Regressions used to estimate the Hurst
 parameter of the L = 3-pixel surface exhibited strong quadratic departures from
 the linear model (fig. 9). However, the fit of the Hurst model increased consider-
 ably for the L = 15-pixel surface (table 1).

 Co-occurrence

 The fractal grid dimension was used to quantify the scale-dependent mosaic
 structure of overlapping patch mosaics (table 2). Class 3, with extensive coverage
 of the map (67.5%), had the highest dimension of 1.98, although the constant of
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 TABLE 1

 HURST MODELS OF THE AGGREGATION SURFACES SHOWN IN FIGURE 7

 SCALE USED TO CREATE
 THE AGGREGATION SURFACE

 PARAMETER L = 3 L = 9 L = 15

 Constant, C 82.3 43.8 35.2
 Exponent (H) .354 .427 .439
 SE of H .0432 .0317 .0190
 Fractal dimension 2.65 2.57 2.56
 R 2 .93 .96 .98
 Root-mean-squared error .091 .085 .052

 NOTE.-The models are of the form R = CLH, where R is the mean range of the surface elevation
 observed in a window of size L'. The Hurst exponent H is related to the fractal dimension of the
 surface by D = 3 - H. The best linear fit to the logarithmically transformed Hurst model was
 obtained for the surface created using windows of L = 15, as indicated by a relatively high R2 and a
 low root-mean-squared error of the regression model.

 6 Hurst scaling:
 seen L = 3
 ooooo L = 9
 ooooo L = 15 *

 cio
 E O

 0 U4-J

 3 ,
 0 1 2 3 4 5

 Log (window size, L')

 FIG. 9.-Hurst scaling of the mean elevational range of the aggregation surfaces observed
 within windows of length L'.

 equation (5) was a major determinant of the proportion of the landscape occupied
 by the mosaic (table 2; fig. 10). Despite small numerical differences between the
 fractal dimensions of the three classes, the exponents had a large effect on the
 proportion of the landscape occupied at each length scale (fig. 10).

 By design, the neutral expectation for the positive co-occurrence of classes 1
 and 2 greatly underestimated the actual proportion of the landscape occupied
 jointly by the classes (fig. 10). The neutral model did not capture the way in which
 the distribution of the class with minimal coverage (i.e., class 1) constrained the
 distribution of the intersection of the two classes. The constraining effect of class
 1 was indicated by the similarity between the fractal dimensions of class 1 and
 the dimension of the joint distribution of classes 1 and 2 (t = - 0.197, P > .05).
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 TABLE 2

 FRACTAL SCALING OF CO-OCCURRING PATCH MOSAICS

 CLASS

 PARAMETER 1 2 3 1&2*

 Constant, C 44,833 92,679 146,268 39,065
 Dimension, D 1.79 1.87 1.98 1.76
 SE of D .009 .014 .006 .014
 R 2 .99 .99 .99 .99
 Root-mean-squared error .025 .036 .017 .036

 NOTE.-The number of grid cells of area L2 occupied by each class was modeled as CLD.
 * Class 1&2 is the region of overlap where classes 1 and 2 occurred together.
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 FIG. 10.-Semilogarithmic plot of the predicted occurrence of three simulated landscape

 classes. Also included are the observed proportions for the intersection of classes 1 and 2

 and the neutral expectation for the co-occurrence of classes 1 and 2.

 An apparent interaction between the observed and expected distributions of
 classes 1 and 2 appeared at L = 80 (fig. 10). The intersection of the curves for
 observed and expected proportions at L- 65 indicated that a neutral model was
 an effective predictor of species co-occurrence at broad scales but not at fine
 scales (cf. Getis and Franklin 1987). The critical scale at which a neutral model
 is sufficient varies with the scaling behavior and dependence between the classes.

 DISCUSSION

 When viewing maps or satellite images of landscapes, we marvel at the spatial
 complexity and readily interpret the finest details of the scene. In contrast, earth-
 bound animals living within home ranges or sibling seeds dispersing away from
 parent plants effectively integrate landscape pattern at various scales that span
 several orders of magnitude (see Peters 1983). Consequently, a given landscape
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 has functionally different geometries depending on the scale of perception. Frac-

 tal geometry provides measures of the different geometries and a means of inte-
 grating the disparate perceptions of species that occupy a given landscape.

 The analyses of aggregation and fractal scaling were based on a probability-
 density function that is as much at the heart of fractal geometry as the normal

 distribution is in parametric statistics. Unlike the normal distribution with the
 associated assumption of independent samples, p(m,L) provides a direct measure
 of spatial dependence. Natural landscapes are not random (fig. 6; Gardner et al.
 1987), so alternatives to the assumptions of parametric statistics are needed for
 studies conducted in the spatial context (Sokal and Oden 1978; Legendre et al.

 1990). In addition, the moments of the probability-density function varied regu-
 larly with scale (fig. 5), which suggests a strategy for adjusting measured resource
 density to match the effective density experienced by species that operate at
 different scales.

 The highly regular increase in the first moment of p(m,L) with scale (fig. 5)
 offered little for interpreting the physical landscape as organisms may perceive
 it. Organisms that sample the environment step-by-step or by the mouthful have

 little ability to integrate information in the way needed to construct p(m,L) and
 much less the first moment. A fractal dimension of the landscape is a statistical
 characteristic rather than an observable trait to which organisms may respond
 directly.

 In contrast, the explicit mapping of pixel aggregation (fig. 7) provided a local-
 ized view of landscape structure at three scales, much as animals with different
 home ranges may perceive the landscape. A local view is one that an organism
 or propagule would experience as it moves from place to place. For example,
 white regions within figure 7 represented dense aggregations of resources at three
 scales, and species that use the resources could easily move from one white pixel
 to an adjacent white pixel because there would be little or no gap in resource
 availability. Consequently, the contiguous white regions could be true "corri-
 dors" for the dispersal of many species, with movement rates being proportional
 to the local density of resources (i.e., the height of the surface) or some function
 of density (see Gefen et al. 1983). In contrast, regions with red hues could be
 dense "patches" for species operating at fine scales but not for broad-scale spe-
 cies. Certainly, broad-scale species could move between small patches, but the
 utility of sparse resources, relative to the metabolic requirements of massive
 animals, might be small (Milne et al., in press). The isolation of small patches
 from the large white patches suggests that they may remain unoccupied by re-
 source users (Milne et al. 1989) because of the large intervening region devoid of
 resources. Alternatively, vagile species with small home ranges may find the
 patches readily and thereby avoid competition from broadly ranging species for
 which the patches are of inconsequential size. The scale-dependent patterns of
 resource aggregation suggest several effects on species interactions.

 Several features of the aggregation map (figs. 7 and 8) suggest extensions of
 the traditional concepts of "edge," "gap," and "corridor" to the multiscale
 context (see Forman and Godron 1986 for discussions of these landscape ele-
 ments). Even though gaps at the northwestern end of the largest patch appeared
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 distinct (fig. 2), the blue-green shading around the interior edges of gaps, con-
 trasted with the reddish shading at the exterior edge of the patch (fig. 8), indicated

 that interior and exterior edges (Stanley 1986; Milne 1987) may be differentiated
 based on the scale-dependent properties of p(m,L). Ecological implications of
 the interior versus exterior edges relate to the nature of interior and edge species

 (see, e.g., Forman and Baudry 1984) that perceive the size and arrangement of
 landscape patches quite differently.

 Multiscale notions of "islands," "sources," and "sinks" (sensu Pullium 1988)
 are equally relevant in considerations of the functional roles of landscape ele-
 ments. Analyses of landscape structure as a function of scale allow the entire
 mosaic to be studied simultaneously, which thereby obviates the enumeration of
 individual islands and the attendant distance effects between all possible pairs of
 islands.

 Rather, fractal aggregations (e.g., fig. 7) indicate that an island is only an island
 relative to a particular length scale, which may correspond to the dispersal dis-
 tances used by organisms to hop from one point of land to another. Consequently,
 an archipelago is also a scale-dependent entity in that some species may infiltrate
 all points, whereas less vagile species experience greater isolation among points
 of land. Interactions between the spectrum of dispersal capabilities of a species
 pool and the fractal geometry of land masses are predicted.

 Judging by the degree of fit obtained for the Hurst model of surface roughness,

 the aggregation map generated by using 15 x 15-pixel windows followed a fractal
 scaling relationship better than the surface generated from a 3 x 3-pixel window.
 The quadratic effect observed for small windows should be compared to the
 tendency for the p(m,L) distributions of small windows to have modal responses
 at m = L2, whereas large windows do not (fig. 4). In a sense, small windows
 were easily saturated by bare soil pixels, which made measures of aggregation or
 the scaling of aggregation somewhat less sensitive to the overall geometry of the
 pattern. Here, "geometry" could best be characterized by the various moments
 of the p(m,L) distribution, for both positive and negative values of q (Mandelbrot
 1989; Milne et al., in press). The aspects of the pattern that are best characterized
 by the lower moments will be evident if the windows used in the analysis of
 aggregation are larger than the average diameter of the patches. Theoretical con-
 siderations (see, e.g., Mandelbrot 1989) suggest that there are deeper issues in-
 volved with the quadratic departure from the Hurst model than can be treated in
 this article. Nonetheless, the quadratic departure for small window sizes suggests
 that windows should be large enough to ensure that the modal value of the p(m,L)
 distribution is less than the square of L.

 The scale dependence of species co-occurrence and the neutral model have
 implications for sampling and conservation strategies. First, studies of animal-
 plant interactions, mutualism, and host-parasite relations are probably affected
 by an interaction between the scale at which samples are collected and the fractal
 geometry of the species distributions. At sufficiently large scales, co-occurring
 species may be collected in direct proportion to their abundance predicted by
 equation (5), whereas at finer scales the rarer of the two species may constrain
 the number of locations at which the two are found together. Thus, the range of
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 length scales over which the distribution of one species is dependent on that of the
 other may be determined by comparing the observed proportion of the landscape
 occupied to the proportion predicted by the neutral model.

 Of course, temporal changes in species occurrence may be detected more
 readily at high resolution than at coarse resolution. Precisely how high a resolu-
 tion is sufficient may depend both on the fractal geometry of a species and on
 the relative fractal dimensions of interacting species. For example, plants tend to
 form clusters of plants due to birth and death processes and to the dispersal of
 propagules from nearby parents. Clusters of plants then generate more clusters,
 in a positive feedback fashion. Consequently, the appearance of new clusters
 close to old clusters may not signal a fundamental change in the plant population.
 However, a change that indicates a fundamental change in the dynamics of the
 population may be the appearance of relatively isolated clusters of plants. For
 species that are distributed fractally, the meaning of "close to" is relative to the
 scale of observation, and "close to" can only be defined in a scale-independent
 fashion by referring to the fractal dimension. Indeed, the appearance of "iso-
 lated" new clusters requires a sensitivity to fractal dimensions. In general, expo-
 nentially greater sensitivity to change will be obtained for any given increase in
 resolution. More to the point, sensitivity to species changes will increase most
 rapidly with decreases in the length scale for species with low areal or grid fractal
 dimensions (fig. 10). Perhaps we can best assess temporal changes by observing
 changes in the scaling behavior of spatial distributions rather than in the distribu-
 tions per se.

 Second, the effect of scale on the co-occurrence of several species is relevant
 to the design of sustainable nature reserves. Whenever two or more species are
 of interest, the minimum expected area over which they co-occur is described by
 equation (7). However, if the species are mutualistic or if differential responses
 to climatic fluctuation decrease the density of one species faster than that of a
 second species, an alternative model may be needed to accommodate either the
 positive or negative association between species.

 A model for the co-occurrence of two fractally distributed species whose distri-
 butions are contingent on each other or on a limiting resource requires a modifi-
 cation of equation (7), namely, a conditional form:

 prop(L) = IiBL 2 min(CjL D(j)g) (8)
 1=1I

 Here, the proportion of grid cells occupied by the ith species is measured only
 within windows occupied by species j (or resource) whose coverage of the land-
 scape at scale L is less than the coverage of any other species (i.e., min[Cj
 L-D(i)g] considered for all species j = 1, . . . , S).

 Parameter estimation for equation (8) is necessarily a two-step process. First,
 the constants Cj and D(j)g are estimated for each species individually, and the
 species with minimum coverage (e.g., class 1, fig. 10) is found. The distribution
 of the species with minimal coverage is treated as a constraint on the distribution
 of other species and used as a template upon which the distribution of other
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 species is examined. The fractal scaling of the other species is then measured

 only within grid cells that contain the template species. The constrained distribu-

 tions are described by AiLD(i)L , where the constant Ai and the fractal dimension
 D(i)g are contingent on the underlying distribution min(CjL-D(j)g).

 Despite this accommodation of mutualism, equation (8) remains a "neutral"

 model because it specifies the co-occurrence of two or more species, if one as-

 sumes that the distribution of one species is simply a subset of the distribution

 of a second. Other factors, such as an Allee effect (Allee et al. 1949) or a threshold

 density below which a mutualist could not detect the presence of a host, may
 alter the observed scaling relative to that predicted by equation (8).

 Little is known about how the fractal distribution of individual species changes
 through time (see Turner et al. 1989a and 1989b for examples from simulation

 studies). Theoretically, a cosmopolitan species has a grid dimension -2 and a
 large constant in equation (1), whereas geographically restricted species have Dg
 < 2. A reasonable prediction is that unfavorable climatic fluctuations will de-
 crease the fractal grid dimension of sensitive species. Consequently, sensitive

 species will disappear from the landscape rapidly, with the most apparent changes
 occurring at fine scales (fig. 10). If whole suites of species or keystone species
 are the targets of conservation, then the ability of a nature reserve to maintain a
 particular suite of species will be eroded in direct proportion to the rate at which
 the fractal dimension of the limiting species decreases through time. Sensitive
 populations in small reserves will be exponentially more volatile than comparable
 populations in large reserves. Students of island biogeography will appreciate the

 implied relationship between the exponentially smaller proportion of the land-
 scape occupied by a species viewed with small window sizes (fig. 10) and the
 well-known exponential increase in the number of species with island area.
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