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 Abstract. We provide an assessment of the global sources of NH3 in the atmosphere, which
 indicates an annual flux of about 75 Tg of N as NH3. The emissions from land are
 dominated by the release of NH3 during the hydrolysis of urea from the urine of domestic
 animals (32 TgN/yr) and by emanations from soils in unmanagedi ecosystems (10 TgN/yr)
 and from fertilized agricultural soils (9 TgN/yr). Emissions from the sea surface may
 approach 13 TgN/yr. The total annual source of NH3 is in reasonable agreement with
 estimates of global NH' deposition from the atmosphere, the major fate of atmospheric
 NH3. As an alkaline atmospheric species, NH3 emitted to the atmosphere each year can
 neutralize only about 32% of the annual production of H+ in the atmosphere from natural
 and anthropogenic sources.

 Introduction

 Atmospheric ammonia is derived from a variety of sources, of which
 emanations from decomposing excrement, inadvertent losses during the
 production and application of fertilizer, and losses from burning biomass
 are thought to be the most important. Despite its relatively short mean
 residence time in the atmosphere, about 10 days, NH3 is the third most
 abundant nitrogen gas (after N2 and N20). In the remote marine atmos-
 phere, concentrations average about 0.06 upg/m3 (Ayers and Gras 1980),
 whereas downwind of strong point-sources, values of 300 pug/m3 are not
 uncommon (e.g. Harper et al. 1983).

 Ammonia is the only natural alkaline gas in the atmosphere. It is
 important in the neutralization of anthropogenic acidity in the atmosphere
 by reactions such as:

 2NH3 + H2SO4 -' (NH4)2SO4. (1)
 Thus, the major sink for atmospheric NH3 is conversion to NH+, which is
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 deposited in dry particles or as a dissolved ion in precipitation. In many
 areas, the release of ammonia to the atmosphere has increased in recent
 years (Asman et al. 1988), and ammonium contributes to excessive atmos-
 pheric deposition of nitrogen in areas that are downwind of major sources
 (Draaijers et al. 1989). Many of these areas show forest decline, perhaps
 due to nitrogen saturation (Nihlgard 1985; Aber et al. 1989) and increas-
 ing soil acidity resulting from nitrification of NH4 inputs (Van Breeman
 et al. 1982; Verstraten et al. 1990).

 Despite its importance to biogeochemistry, the atmospheric budget for
 NH3, particularly estimates of source strength, is poorly constrained.
 Bowden (1986) estimated total inputs of about 150 TgN/yr (as NH3),
 whereas Warneck (1988) suggested only about 1/3 of that value (54 TgN/
 yr). Although the importance of releases during animal husbandry and
 fertilizer usage is well known, we know much less about the natural
 release of NH3 from soils. Using a model of soil processes, Dawson
 (1977) estimated an annual release of 39 TgN/yr from soils in undis-
 turbed ecosystems. Estimates of net release to the atmosphere are compli-
 cated by the uptake and assimilation of NH3 by living plants (Denmead et
 al. 1976; Nason et al. 1988; Langford and Fehsenfeld 1992). In this paper,
 we compile values from the literature and estimate the soil flux of NH3
 from the world's undisturbed ecosystems. Then, we derive a new global
 estimate for the total flux of NH3 to the atmosphere from all sources.

 Ammonia emissions from soils

 When soil solution pH exceeds 7.0, NH3 gas is formed by the deprotoni-

 zation of NH+, viz:

 NH + OH- -- NH3 + H20. (2)
 This reaction accounts for the loss of significant amounts of ammonium
 and urea fertilizers applied to agricultural soils, particularly in arid and
 semi-arid regions where soils are often alkaline (Terman 1979). Little is

 known about the loss of NH3 from non-agricultural soils, in which NH- is
 derived from the mineralization of organic N compounds. We should
 expect the greatest losses from coarse, dry soils with limited cation
 exchange capacity and low rates of nitrification (Nelson 1982; Freney
 et al. 1983; Sahrawat 1989; Fleisher et al. 1987).

 Measurements of the emission of ammonia from undisturbed soils are

 given in Table 1. In a few cases, these data were obtained by placing small
 chambers over the soil, providing a site-specific measurement of flux.
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 Table 1. Measurements of NH3 flux from undisturbed soils.

 Biome Flux Reference

 Location, vegetation (ugN/m2/hr)

 Temperate forest
 USA, coniferous forest 4 Langford & Fehsenfeld (1992)
 Norway, coniferous forest 12 Overrein (1968)
 Canada, coniferous forest 71 Marshall & DeBell (1980)
 Germany, regional, summer 211 Lenhard & Gravenhorst (1980)

 winter 30

 Canada, coniferous forest 800 Camire & Bernier (1981)
 Korea, oak forest, summer 1284 Kim (1973)

 pine forest, summer 1671 Kim (1973)

 Tropical grassland
 E. Africa, savanna 47 Ruess & McNaughton (1988)
 Venezuela, savanna 103 San Jose et al. (1991)

 Temperate grassland & pasture
 USA, rangeland 1.3 Schimel et al. (1986)

 Germany, 5 field soils,,mean 2 Georgii & Lenhard (1978)
 (range 1 to 20)

 Germany, fields 3 Goethel (1980)
 in Warneck (1988)

 USA, prairie (control sod) 21 Hooker et al. (1973)
 Hungary, short grasses 55 H6rvath (1983)
 England, 19 fields 92 Harrison et al. (1989)
 Australia, ungrazed field 200 Denmead et al. (1976)
 Netherlands, regional 356 Erisman et al. (1988)
 USA, unfertilized field 4184 Kissel et al. (1977)
 USA, unfertilized field 4345 Lightner et al. (1990)

 Tundra and alpine tundra
 USA, wet meadow tundra 0 Van Cleve & Alexander (1981)

 Desert scrub

 USA, Chihuahuan desert, dry 0.63 Schlesinger & Peterjohn (1991)
 wet 4.00

 USA, Great Basin desert 114 West & Skujins (1977)

 Flooded soils, swamp, marsh & lake
 Canada, salt marsh 9 Ruess et al. (1989)
 Phillipines, swamp 150 Ventura & Yoshida (1977)
 Canada, prairie lake 297 Murphy & Brownlee (1981)

 Often these measurements are biased by the effect of the chamber on the
 flux of gas during the collection interval (Marshall and DeBell 1980; Fenn
 and Hossner 1985). In other studies, a gradient in atmospheric concentra-
 tion was used to provide a regional estimate of flux (e.g. Lenhard and
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 Gravenhorst 1980). Although they avoid the problem of chamber effects,
 these studies may be affected by agricultural or industrial activities outside
 of the area of measurement.

 The study by Marshall and DeBell (1980) allows some insight to the
 accuracy of emission estimates using different techniques. These workers

 compared three different methods for collecting volatilized NH3 over a
 40-day period after the application of urea fertilizer in a coniferous forest.
 Their estimates range from 13.1 to 26.0% of the applied nitrogen. Assum-
 ing similar variation in unfertilized plots, we can assume that their value in
 Table 1 is accurate to within a factor of two.

 When regional estimates are made using micrometeorological ap-
 proaches or when measurements are made in low vegetation, the reported
 flux of ammonia is the net flux, including any losses from attached
 senescent leaves and uptake by living plants (Whitehead and Lockyer
 1987; Whitehead et al. 1988). Studies employing chambers on the soil
 surface, on the other hand, do not include any effects of the aboveground
 vegetation. Measurements from undisturbed ecosystems include emissions
 from the excretions of wild animals that naturally graze these areas, but
 emissions from domestic animals are given in the next section.

 We attempted to assess the accuracy of the estimate for tropical
 savanna by developing an independent estimate for the 25,000-km2
 Serengeti of Africa based on estimates of animal populations and the
 emission of NH3 from animal excretion each year (Table 2). We used
 estimates of the emission of NH3 from domestic farm animals (M6ller and
 Schieferdecker 1989), adjusted for differences in body mass, to provide
 per capita emission factors for the major grazing animals of the Serengeti.
 Considering the uncertainties involved, the resulting value, 0.26 gNH3-N/
 m2/yr, is tolerably close to measurements of ammonia volatilization from
 the soil surface in that system, 0.42 gNH3-N/m2/yr, by Ruess and
 McNaughton (1988). The latter value also includes emissions other than
 those associated with hydrolysis of urea in urine.

 Hourly rates of ammonia volatilization range over four orders of
 magnitude (Table 1), with the highest values found in some grassland
 ecosystems. Much of this variation may be due to differences in soil
 temperature and moisture during the period of measurement. For exam-
 ple, 24 hours after wetting a Chihuahuan desert soil, Schlesinger and
 Peterjohn (1991) found that the rate of ammonia volatilization had
 increased by a factor of six over previous dry conditions.

 Many of the values in Table 1 are derived from midday or summertime
 measurements, when the rates of volatilization are greatest. Although
 these values may represent an accurate measurement of flux during the
 specific period of study, extrapolations of these values to provide annual
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 Table 2. Emissions of NH3 from the hydrolysis of ungulate urine in the Serengeti of Africa.

 Species Estimated Mean body Emission Total flux
 population mass4 factor

 (kg) (kgN/yr) (kgN/yr)

 Wildebeest 1,150,0001 163 3.65 4,140,000
 Gazelle 625,0001,2 16 0.96 562,500
 Zebra 215,0002 219 5.07 1,075,000
 Buffalo 43,0001 447 9.95 425,700
 Topi 60,0003 108 6.16 366,000

 6,569,200

 Assuming an area of 25,000 km2 (McNaughton 1985), the average emission for the
 Serengeti is 0.26 gNH3-N/m2/yr

 1 Population estimate from Dublin et al. (1990)
 2 Population estimate of Sinclair (1979)
 3 Population estimate of McNaughton (1985)
 4 Body mass from Bell (1971)
 5 Emission factor scaled from domestic cattle (see Table 4)
 6 Emission factor scaled from domestic sheep (see Table 4)
 7 Emission factor scaled from domestic horse (see Table 4)

 estimates of loss are well in excess of realistic estimates of soil nitrogen
 mineralization, which ranges from 3.0 to 10.0 gN/m2/yr in most terrestrial
 ecosystems (Bowden 1986). Because losses of NH3 during fertilizer
 applications typically average about 20% of the amount applied, we
 believe that it is unrealistic to expect losses from natural ecosystems to
 exceed 20% of the annual net mineralization of soil nitrogen. Thus, an
 upper limit for the annual mean rate of ammonia volatilization, is about
 230 ugN/m2/hr, and in most cases this rate appears likely to lie between
 1 and 100 pugN/m2/hr (0.0088 and 0.88 gN/m2/yr).

 A global estimate for NH3 emission from natural soils

 To develop a global estimate of NH3 flux from natural soils, we assigned a
 range of emission values to major biomes and multiplied these by esti-
 mates of the world land area in each biome (Table 3). Tropical rainforests,
 boreal forests, and tundra were assumed to have no efflux, since the soils
 in these ecosystems are normally wet and very acidic. We also assumed no
 flux from extreme deserts such as the Sahara. The values for temperate
 forest were applied to the world area of woodland and shrubland. The
 resulting global flux estimate ranges from 6 to 45 x 1012 gN/yr lost as
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 Table 3. Emissions of NH3 from the soils of natural ecosystems.

 Ecosystem type Area' Estimated rate Total annual
 of volatilization2 volatilization

 (1012 M2) (gNH3-N/m2/yr) (TgN/yr)

 Low High Low High

 Temperate forest 12 0.1 1.0 1.2 12
 Woodland & shrubland 8.5 0.1 1.0 0.85 8.5

 Tropical savanna 15 0.25 0.75 3.75 11.25
 Temperate grassland 9 0.01 1.00 0.09 9
 Desert scrub 18 0.01 0.25 0.18 4.50

 6.1 45.3

 From Whittaker and Likens (1973)
 2 Derived by annualizing values from Table 1

 NH3. This range is large and poorly constrained. The low alternative is
 somewhat smaller than the recent estimate of Warneck (1988) for emis-
 sion from soils (15 TgN/yr), and it is 8% of the value that we derive here
 for the total annual global emission of NH3. The high alternative, which
 cannot be dismissed by the available field data, is close to the estimate of
 39 TgN/yr derived in the theoretical model presented by Dawson (1977).
 Our assumptions yield a conservative estimate of global flux, for some

 acid soils of tropical and boreal forests show ammonia volatilization
 (Blasco and Cornfield 1966, Overrein 1968). However, we suggest that a
 reasonable value for the natural emission from soils is 10 TgN/yr. As we
 will show later, significantly higher estimates, in conjunction with well
 constrained estimates of the flux from other sources, would yield a total
 global source of atmospheric NH3 that is incompatible with estimates of

 the major global sink - atmospheric deposition of NH3 and NHI.

 Emission from biomass burning

 A substantial amount of the nitrogen in plant tissue is lost as various
 nitrogen gases, including NH3, during combustion (Lobert et al. 1990).
 Based on measurements of forest fires in Amazonia, Andreae et al. (1988)
 estimated a global flux of 3.3 TgN/yr to the atmosphere as particulate
 NH+, indicating that an estimate including gaseous NH3 would be even
 greater than this value. The global flux of NH3 from biomass burning can
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 be assessed from estimates of the amount of biomass consumed by fire
 each year and the average emission of NH3 per unit of biomass burned.

 Estimates of CO2 released from biomass burning range from 2 to 6 x
 1015 gC/yr (Wong 1978; Seiler and Crutzen 1980), with nearly 80% of
 the release occurring in the tropics (Crutzen and Andreae 1990). In gases
 collected from 5 forest fires throughout North America, Hegg et al.
 (1990) measured an emission of 1.81 ? 0.87 gNH3/kgC consumed,
 assuming that the average biomass contained 49.7% carbon. Their meas-
 urements yield a global flux of 3 to 9 TgN/yr as NH3 from biomass
 burning. In a laboratory study, Lobert et al. (1990) found that about 4%
 of the nitrogen in biomass was released as NH3 during combustion.
 Assuming that the mean C/N ratio in vegetation is about 150 (Vitousek
 et al. 1988), we calculate that 0.5 to 1.6 TgN/yr is released as NH3 during
 biomass burning. We recognize that the C/N ratio of foliage and small
 branches, which represent a large portion of the biomass consumed by
 fire, is often as low as 50. Thus the global emissions calculated from this
 approach may be as high as 5 TgN/yr. As in the case of emissions from
 soils, the uncertainty of estimated emissions from biomass burning extends
 over an order of magnitude, but an estimate of about 5 Tg/yr appears to
 be a reasonable value (Andreae 1991). Even the maximum estimate of 9
 TgN/yr is only 12% of the total annual global flux (cf. Hegg et al. 1990).

 Emissions from domestic animals

 Emissions from domestic animals are calculated from estimates of the

 worldwide population of domestic animals and measurements of the
 annual volatilization of NH3 from the production of urine and feces by
 each individual. Losses of NH3 from urine typically average 20% of the
 nitrogen content of urine deposited on grassland (Whitehead and Bristow
 1990).

 As for the recent global inventory of methane emissions (Lerner et al.
 1988), estimates of the worldwide population of animals were derived
 from the FAO Production Yearbook of 1989 (Table 4). Estimates of the
 annual emission per individual were derived from surprisingly convergent
 values given by ApSimon et al. (1987) and Buijsman et al. (1987), who
 segregate the emissions during periods of active grazing from emissions
 derived from the disposal of wastes that accumulate when animals are
 housed indoors. In the UK, cattle typically spend 50% of the year indoors
 (Kruse et al. 1989) and about 50% of the emission of NH3 is derived from
 the subsequent spreading of barnyard wastes (Buijsman et al. 1987). Thus,
 the animal emissions factors derived from the European farms are prob-
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 Table 4. Global emissions of N in NH3 derived from domestic animals.

 Animal World population Emissions per Total NH3
 category estimate' individual2 emission

 (kgN/yr) (TgN/yr)

 Cattle 1,281,472,000 15.5 19.86
 Water buffalo 140,028,000 15.53 2.17
 Sheep 1,175,524,000 2.4 2.82
 Goats 526,440,000 2.44 1.26
 Camels 19,072,000 2.44 0.05
 Pigs 846,174,000 2.35 1.99
 Horses, mules & asses 118,386,000 15.0 1.78
 Poultry 11,335,000,000 0.21 2.38

 32.31

 1 FromFAO (1989a)
 2 From ApSimon et al. (1987) and Buijsman et al. (1987)
 3 Assumes cattle emission factor

 4 Assumes sheep emission factor

 ably applicable to areas of the world where livestock are at pasture during
 the entire year. The resulting estimate of global emissions from this source
 is 32 TgNH3-N/yr (Table 4).

 Roughly 2/3 of this total is derived from cattle, so uncertainties in the
 emission factor for cattle are critical to the accuracy of the global estimate.
 Based on the range of emissions factors for cattle compiled by Miller and
 Schiefferdecker (1989), the contribution of cattle could be as high as 22.1
 kgN/yr per animal, and the global emission from domestic animals would
 be about 37 TgN/yr. Thus, the uncertainty in this component of the global
 estimate is as much as 30%.

 Emissions from fertilizer application

 Applications of ammonia, ammonium-based, and urea fertilizers to culti-
 vated and pastured lands can result in significant losses of volatile NH3.
 Much of the early literature for upland soils was reviewed by Terman
 (1979), Nelson (1982) and Fenn and Hossner (1985). Generally, losses
 are greatest with ammonia, urea, and (NH4)2SO4 applications, and slight
 with NH4NO3. Losses are reduced when fertilizers are placed below the
 soil surface and the soil is wet. Losses from forest fertilization are often

 somewhat lower than those from cultivated and pastured land, especially
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 when the nitrogen is applied in inorganic forms. A compilation of recent
 studies suggests that at least 20% of urea-N and 10% of (NH4)2SO4-N are
 lost in a short period after application to upland soils (Table 5). These
 losses include the losses from the leaves of crop plants (Schjoerring 1991).
 Field studies of emission following the use of (NH4)2SO4 are relatively few
 (Table 5), but the losses reported are similar to those found in laboratory
 studies (e.g. Gasser 1964; Meyer et al. 1961; Fenn and Kissel 1973) and
 in mass-balance studies in the field (Nrmmik 1966). Similar losses of NH3
 are seen when fertilizers are applied to rice paddies (Fillery et al. 1984;
 Freney et al. 1990; De Datta et al. 1991).

 The FAO Yearbook for Fertilizer indicates that worldwide production
 of nitrogen fertilizer was 85.2 Tg in 1988-1989, of which 79.4 Tg was
 available for agricultural use. Forty-four countries, representing 71% of
 worldwide production, report data for urea, indicating that 40% of the
 global production of nitrogen fertilizer, or 34.1 Tg/yr, is in this form.
 Similarly, we estimate that NH4NO3 accounts for 24% (20.4 TgN/yr) of
 world production and (NH4)2SO4 accounts for 5.5% (4.7 TgN/yr). Most
 of the remainder is listed as unspecified nitrogen fertilizer, which may also
 include a portion in these forms.

 Our estimate for the global emission of NH3 from fertilizer (Table 6) is
 based on the breakdown of fertilizers given by the FAO statistics and
 estimated emissions from major types, derived from Table 5. Emissions
 from urea dominate the global total of 8.5 TgN/yr. Our emission factor
 for urea (20%) is higher than that used in some recent regional assess-
 ments (Buijsman et al. 1987, Whitehead and Raistrick 1990), but it
 appears conservative based on many of the data in Table 5. Our estimate
 of total emission from fertilizers is about 10% of the annual fertilizer

 production - somewhat larger than that included in other assessments of
 atmospheric NH3 balance (Warneck 1988). Losses of NH3 from fertilizers
 applied to the 10% of the Earth's surface in intensive agriculture rival the
 natural emissions from the 90% of the land surface in other use.

 Ammonia volatilization from the sea

 Low concentrations of NH3 in the remote marine atmosphere led Quinn
 et al. (1987) to postulate gaseous losses of NH3 from the sea surface
 following Henry's law for the distribution of soluble gases between the
 solution and gaseous phase. Subsequent measurements in a wide area of
 the Pacific Ocean suggested a flux of 7 pmol/m2/day (Quinn et al.
 1990) and 10 pmol/m2/day (Quinn et al. 1988) from pelagic and near-

 shore environments, respectively. A flux of 7 /mol/m2/day is equiva-
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 Table 5. Some field estimates of NH3 volatilization following fertilization of agricultural
 fields, pastures, and forests.

 Soil type Fertilizer Percentage Interval of Reference
 application loss rate observation
 (kgN/ha) (days)

 UREA APPLICATION

 Cultivated land

 Mollisol 120 4-9 10-16 McInnes et al. (1986)
 Entisol 120 17

 Mollisol 168 30 3-5 Keller & Mengel (1986)
 Alfisol 168 11 3-5

 Mollisol

 Row-cropped 200 7-30 12-20 Beyrouty et al. (1988)
 No-till 200 31-35

 Ultisol 100 14-46 7 Hargrove et al. (1987)
 Aridisol 40-120 9-23 20 Aggarwal et al. (1987)
 Mollisol 448 13 14 Harding et al. (1963)

 Pasture and grassland

 Alfisol 200 30 8 Lightner et al. (1990)
 Inceptisol 100 28 6 Black et al. (1985)
 Ultisol 100 35-43 15 Reynolds & Wolf (1988)
 Spodosol 112 21-29 7 Volk (1959, 1961)
 Vertisol 336 7-10 12 Kissel et al. (1977)

 Forest

 Spodosol 220 22-26 40 Marshall & DeBell (1980)
 Spodosol 200 0.7-14 45 Nason et al. (1988)
 Spodosol 224 30 1 Camire & Bernier (1981)
 Spodosol 200 20-22 28 N6mmik (1973)
 Spodosol 100 4 7 Volk (1970)
 Spodosol 500 3.5 48 Overrein (1968)
 Alfisol 200 4-13 30 Craig & Wollum (1982)

 NH4NO3 APPLICATION

 Cultivated land

 Mollisol 168 3.7 3-5 Keller & Mengel (1986)
 Alfisol 168 1.5 3-5

 Mollisol 448 1.3 14 Harding et al. (1963)

 Pasture and grassland

 Spodosol 112 0.3 7 Volk (1959, 1961)
 Vertisol 336* 2.2-2.9 12 Kissel et al. (1977)

 Forest

 Alfisol 200 0 30 Craig & Wollum (1982)
 Spodosol 224 0.3 1 Camire & Bernier (1981)
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 Table 5 (Continued)

 Soil type Fertilizer Percentage Interval of Reference
 application loss rate observation
 (kgN/ha) (days)

 (NH4)2SO4 APPLICATION

 Cultivated land

 Mollisol 448 7.8 14 Harding et al. (1963)
 Pastureland

 Vertisol 33-280 50 4 Hargrove et al. (1977)
 Vertisol 33-280 27-39 4 Kissel et al. (1977)
 Spodosol 112 0.4-19 7 Volk (1961)
 Forest

 Spodosol 224 0 1 Camire & Bernier (1981)

 * Applied as Ca(NO3)2

 Table 6. Global emissions from production and use of nitrogen fertilizers and industrial
 chemicals.

 Global

 Form production1 Emission factor2 Global emissions
 (TgN/yr) (TgN/yr)

 Urea 34.1 0.20 6.8

 NH4NO3 20.4 0.025 0.5
 (NH4)2SO4 4.7 0.10 0.5
 Other

 fertilizer 20.2 0.03 0.6

 Total

 fertilizer 79.4 8.40

 Other

 industrial

 production 5.8 0.01 0.06

 Total

 production 85.2 8.46

 1 FAO (1989b)
 2 Derived from Table 5, as described in the text.
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 lent to 4.1 pmol/m2/day, which is in the range of values found for
 undisturbed soils (Table 1). Assuming this flux estimate is appropriate for
 the global surface area of the sea (361 x 1012 m2), the global flux from the
 sea is as much as 13 TgN/yr. Marine NH3 has a short atmospheric lifetime
 (Quinn et al. 1990). The global flux from the sea is nearly equal to a
 recent independent estimate of 16 TgN/yr for the deposition of NH3/NH4
 on the sea surface (Duce et al. 1991).

 Other sources of atmospheric ammonia

 Other sources of atmospheric ammonia appear to contribute < 10% to
 the annual budget in the atmosphere (Table 7). We derived the value for
 human excrement using the approach of Warneck (1988), assuming that
 the current human population has now reached 5 billion. All recent
 assessments conclude that emissions from coal combustion and auto-

 mobiles are small, and we have adopted the values of Warneck (1988).

 A global budget for atmospheric NH3

 Our 'best' estimate for total global emission of NH3 is 75 TgN/yr. Emis-
 sions from fertilized agriculture and domestic animals account for over
 half the total, reflecting the level of direct human impact on the global
 ammonia budget of the atmosphere. Estimates of the potential range of
 NH3 emission extend from 50 to 128 TgN/yr (Table 7). However, with
 the exception of the emission from undisturbed soils, most of the estimates
 of individual sources are fairly well constrained.

 Annual denitrification appears to return over 150 TgN/yr from land to
 the atmosphere, mostly as N2 (Bowden 1986; Schlesinger 1991). The flux
 of NH3 (75 TgN/yr) appears to be the next largest transfer from the
 biosphere to the atmosphere in the global nitrogen cycle. It exceeds the
 flux of other trace biogenic nitrogen gases, such as the natural flux of N20
 and NO from soils [(ca. 6 and 20 TgN/yr, respectively) Davidson 1991].
 Of course, unlike N2, the emissions of NH3 and NO from land remain as
 forms of 'fixed' nitrogen that may return to cycle in the biosphere on a
 relatively short time scale.

 The ammonium content in Greenland ice cores provides a historical
 record of variations in atmospheric emissions during the last several
 centuries (Spencer et al. 1991). High concentrations of NH+ are found in
 layers of ice that show independent evidence of forest fires. If other
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 Table 7. A budget for atmospheric NH3.

 Inputs: 'Best' estimate Potential range
 (TgN/yr)

 Domestic animals (Table 4) 32 24-40
 Sea surface (text) 13 8-18
 Undisturbed soils (Table 3) 10 6-45
 Fertilizers (Table 6) 9 5-10
 Biomass burning (text) 5 1-9
 Human excrement* (Warneck 1988) 4
 Coal combustion* (Warneck 1988) 2
 Automobiles* (Warneck 1988) 0.2

 TOTAL INPUTS 75 50-128

 Outputs:

 Wet deposition on land 30
 (Warneck 1988)

 Dry deposition on land 10
 (Warneck 1988)

 Wet deposition on sea surface 16
 (Duce et al. 1991)

 Reaction with OH radical 1

 (Warneck 1988)

 TOTAL OUTPUTS 57

 * incremented to represent current human and automobile populations.

 sources of NH3 have relatively constant values, annual variations in the
 atmospheric budget of NH3 could be due to variations in biomass burning,
 despite our suggestion that fires contribute only 7% to the average annual
 flux of NH3 to the atmosphere (Table 7).
 A 19-year record of precipitation chemistry in the eastern United

 States suggests that the deposition of NHI has declined 34% from 1963 to
 1982 (Likens et al. 1984). This trend is surprising given the increasing use
 of urea fertilizer and the increasing practice of no-till agriculture, in which
 urea is spread directly on the soil surface often producing large emissions
 (Beyrouty et al. 1988; Raczkoswki and Kissel 1989). Greater emissions
 from fertilized agriculture may be masked by decreasing emissions from
 other sources that contribute to the ammonia budget of North America.
 Decreasing deposition of NH+ may also be caused by an increasing
 regional emission of SO, during the same interval, as the reaction of NH3
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 with H2SO4 to produce (NH4)2SO4 aerosols appears to increase the mean
 residence time and the potential for long-range transport of NH3/NHI in
 the atmosphere (Allen et al. 1988; Hedin et al. 1990). In light of the
 recent lower levels of SO2 emission in eastern North America, an in-
 advertent test of this hypothesis is currently underway.

 Processes that remove NH3 from the atmosphere

 Several attempts have been made to estimate the global atmospheric
 deposition of NH1~ in rainfall and dry fallout. The deposition calculated by
 Berner and Berner (1987), 23 TgN/yr, is probably too low, because it can
 not account for the fate of the better-known sources in Table 7. Their

 value may underestimate deposition on land by underestimating the dry
 deposition of NH3 and NH+ on plant surfaces. In a forest of eastern
 Tennessee, Lindberg et al. (1986) found that 33% of the annual input of

 NHI- from the atmosphere was deposited or absorbed as NH3 on plant
 surfaces. Such high rates of dry deposition have also been recorded in
 other areas (Tjepkema et al. 1981; Heil et al. 1988; Langford and
 Fehsenfeld 1992).

 Warneck (1988) estimates the global atmospheric deposition of NH- as
 48 TgN/yr. If his estimate for the deposition on the ocean surface is
 revised upward to 16 TgN/yr based on the recent, comprehensive treat-
 ment by Duce et al. (1991), the global atmospheric deposition is 56
 TgN/yr (Table 7). Reactions of NH3 with OH radical in the atmosphere
 make a small additional contribution (1 TgN/yr) to the annual global loss
 of NH3 from the atmosphere (Warneck 1988). Thus, our estimate of
 global NH3 emission (75 TgN/yr) is somewhat higher than our best
 estimate of the global sink (57 TgN/yr) (Table 7).

 The lower bound of the potential range of the estimated global emis-
 sion (50 to 128 TgN/yr) overlaps with the estimated global sink, which
 speaks strongly for a conservative estimate of the emission from undis-
 turbed soils - the component with the most poorly constrained contribu-
 tion to the global flux. Any upward revision in the estimated global sink of
 atmospheric NH3, perhaps as a result of better estimates of dry deposition
 on land, would be more compatible with our current estimate of the global
 source strength of atmospheric NH3. Further refinements of the atmos-
 pheric budget of NH3 are needed, but in any case, the excess of NH'4
 deposition over NH3 emission noted in earlier assessments of the global
 nitrogen cycle (Sdderlund and Svensson 1976; Lemon and Van Houtte
 1980) has largely been reconciled.
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 Our estimate of total NH3 emission to the atmosphere allows a calcula-
 tion of the maximum potential neutralization of natural and anthropogenic
 acidity in rainfall. An emission of 75 X 1012 gN/yr as NH3 can consume
 5.4 X 1012 moles of H+, by reactions such as that in equation 1. The
 neutralization will be lower to the extent that plants and soils directly
 absorb NH3.

 A variety of reactions produce HI in rainfall. If all precipitation were in
 chemical equilibrium with atmospheric CO2, producing a rainfall pH of
 5.6, the total deposition of H+ on the Earth's surface would be 1.24 X
 1012 moles/yr. The production of NO by lightning [20 X 1012 gN/yr
 (Levine et al. 1984)] and by soil microbes [20 X 1012 gN/yr (Davidson
 1991)], and its removal in rainfall as HNO3 potentially contributes an
 additional 2.9 X 1012 moles/yr of H+ to rainfall. Similarly, volcanic
 emanations of SO2 that form H2SO4 in rainfall contribute 1.3 X 1012
 moles H+/yr, and the oxidation of biogenic S gases could produce 4.1 X
 1012 moles H+/yr (Schlesinger 1991). Although free acidity from carbonic
 acid may be reduced in the presence of strong acids and NO and SO2 may
 be removed by processes other than rainfall, the total potential acidity
 from natural sources is about 9.5 x 1012 moles H+/yr.

 Anthropogenic sources of acidity add about 7.4 X 1012 moles/yr of H+
 to the atmosphere (Schlesinger 1991), nearly equalling the natural sources.
 Thus, the NH3-derived neutralization of atmospheric acidity, even acidity
 derived from natural sources, is incomplete, amounting to only 5.4 x 1012
 moles/yr or 32% of total atmospheric acidity. NH3 may be an important
 source of alkalinity in precipitation in some regions affected by air pollu-

 tion, but the subsequent atmospheric deposition of NH+- is potentially
 acidifying to soils as a result of the generation of H+ during nitrification.
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