PROCESSES CONTROLLING AMMONIA VOLATILIZATION FROM CHIHUAHUAN DESERT SOILS

WILLIAM H. SCHLESINGER and WILLIAM T. PETERJOHN

Departments of Botany and Geology, Duke University, Durham, NC 27706, U.S.A.

(Accepted 25 January 1991)

Summary—Ammonia volatilization was measured at three sites in the Chihuahuan Desert of southern New Mexico, U.S.A. In dry soils, ammonia volatilization ranged from 9 to 11 μ g N m⁻² day⁻¹, but rates increased to 95 μ g N m⁻² day⁻¹ in a shrubland site after an experimental addition of water. Ammonia volatilization also increased with experimental additions of NH₄Cl and decreased with additions of sucrose. Competition by nitrifiers for available NH⁺₄ had little effect on NH₃ volatilization; N-Serve, added to inhibit nitrification, decreased NH₃ volatilization in a grassland site and had little effect at other sites. We suggest that NH₃ volatilization is controlled by the rate of mineralization of NH⁺₄ from soil organic matter, and mineralization is stimulated by rainfall. Overall rates of NH₃ volatilization from undisturbed desert ecosystems appear to be much lower than those reported for rangeland and agricultural soils.

INTRODUCTION

When soil pH exceeds 7.0, NH₃ gas is formed by the deprotonization of NH_4^+ , viz.:

$NH_4^+ + OH^- \rightarrow NH_3\uparrow + H_2O.$

This reaction accounts for the loss of significant amounts of NH_3 and urea fertilizers applied to agricultural soils in arid and semi-arid regions (Terman, 1979). Losses of NH_3 from fertilized agricultural soils and from vertebrate excretion are thought to account for most of the NH_3 in the atmosphere (Buijsman *et al.*, 1987). Since NH_3 is highly soluble in water, volatilization from moist soils is minimal. The loss of NH_3 is greatest from coarse, dry soils with limited cation exchange capacity (Nelson, 1982; Freney *et al.*, 1983; Fleisher *et al.*, 1987).

Little is known about the loss of NH₃ from nonagricultural soils (Warneck, 1988). Many native soils in arid regions have alkaline pH and may be a significant source of NH₃ to the atmosphere (Dawson, 1977). In the absence of exogenous inputs, NH₄⁺ in soils is derived from the mineralization of soil organic N. Loss of NH₃ is affected by the rate of nitrification, cation exchange and biotic immobilizations that compete for NH₄⁺ (Fig. 1). Plant growth in many desert ecosystems is limited by available N during the wet season (Fisher *et al.*, 1988), and gaseous losses of N represent an important potential loss of soil fertility (Peterjohn and Schlesinger, 1990). We have examined the processes controlling the loss of gaseous NH₃ from Chihuahuan Desert soils.

We hypothesized that if the rate of nitrification limits the loss of NH₃ from desert soils, then the rate of NH₃ volatilization should increase when nitrification is inhibited experimentally (Fig. 1). Similarly, if microbial immobilization of NH₄⁺ inhibits the loss of NH₃, then the loss of NH₃ should decline when labile organic C is added. If the availability of NH₄⁺ determines the loss of NH₃, then losses should increase when NH₄⁺ is added or when added water stimulates the rate of N mineralization from native organic matter.

MATERIALS AND METHODS

Field investigations were made on the New Mexico State University Ranch, 40 km NNE of Las Cruces, N.M. in the Jornada Del Muerto Basin. The experimental plots were established at three sites along the desert Long Term Ecosystem Research (LTER) transect that crosses the alluvial piedmont of Mount Summerford in the Doña Ana Mountains. One site was located in a grassland dominated by Bouteloua eriopoda in the upper reaches of the piedmont. A second site was in a mid-slope position in a shrubland dominated by Larrea tridentata, an invasive desert species (Buffington and Herbel, 1965). The third site was located in an ephemeral dry lake, or playa, dominated by Panicum obtusum, at the base of the piedmont. Mean annual rainfall is 23 cm, with roughly 50% falling during July, August, and September.

Soils in the grassland and shrubland sites are derived from the quartz monzonite bedrock of Mount Summerford; soils in the playa are derived from ancestral Rio Grande river deposits with smaller amounts of Mount Summerford alluvium. Soils are described by Wierenga *et al.* (1987) and Lajtha and Schlesinger (1988), and basic soil characteristics are given in Table 1. Grassland and shrubland soils contain 70–80% sand, whereas playa soils are 57% clay in the < 2 mm fraction. Playa soils also had much higher concentrations of NH⁴₄ and NO₃⁻ at the beginning of this study. At the shrubland site, erosion of the upper horizons of the soil has exposed a Pleistocene-age calcic horizon near the surface, accounting for the high soil pH at that site.

Five experimental plots (= blocks) were located at each site. The blocks were chosen subjectively to include the range of local soil and vegetation conditions at each site. Each block contained 16 tubes

Fig. 1. Processes regulating the availability of NH_4^+ in the soil.

that were used to collect NH₃ lost from in situ soil columns subjected to one or more experimental treatments. Tubes, made of 30-cm lengths of 10-cm diam PVC pipe, were pounded into the soil for half their length on 8-10 June 1988.

After a 10-day equilibration period, NH₃ was collected in each tube for 24 h using 10 ml of 2% H_2SO_4 in a small open vial. During the collection the tubes were covered with aluminum foil held with a rubber band. Silicon grease was used to ensure a tight seal between the tube and the foil covering. This initial collection was made to compare natural rates of NH₃ volatilization from all soils before experimental manipulations. To further characterize the initial conditions, soils collected from each plot were measured for water content (% mass loss after 48 h at 110°C), pH in 10 mM CaCl, and concentrations of NH_4^+ and NO_3^- in 2 M KCl extracts.

On 20 June 1988, four experimental treatments, comprising a full factorial design with one replicate per block, including an unmanipulated control, were imposed on each block. Wet tubes received 220 ml distilled water (2.75 cm), chosen to bring the 15-cm soil column to field capacity (0.01 MPa potential) as determined from the moisture tension release curves of Schlesinger et al. (1987). Fertilized tubes received 10 ml of water containing 70 mg of N as NH₄Cl, to achieve $10 \times$ the typical NH⁺ pool found in the surface soils at this site (Lajtha and Schlesinger, 1986). Tubes with added organic C received 10 ml of water containing 26 g sucrose, chosen to add approximtely 10× the natural amount of labile organic C to the soil. Finally, N-serve® (Nitrapyrin) was added to tubes, using 10 ml of a solution of $3.67 \text{ g} \text{ l}^{-1}$ mixed in acetone to achieve the field concentration of 20 mg kg^{-1} recommended by Bundy and Bremner (1973) to inhibit nitrification. In each block, treatments were randomly assigned to tubes, and all solutions were applied to the surface, except for N-serve, which was injected to ca. 5-cm depth using a 0.89-mm dia needle. NH₃ was collected during 24-h periods beginning on 21 June and 23 June and a 7-day period beginning on 29 June, using the procedures described above. The tubes were left uncovered between collection times to allow the normal course of soil drying.

A second set of experiments was established in the grassland in June 1989. Water, N-serve and CaC₂generated C₂H₂ were applied in a full 3-way factorial design in 8 tubes in each of 10 blocks, each of which included an unmanipulated control tube. Water and N-serve were applied as in 1988. C2H2 was applied by covering these tubes with a PVC cap and injecting 30 ml C_2H_2 into the headspace through a rubber septum. The volume was chosen to greatly exceed the 10 Pa level, which is found, in short-term exposures, to cause a persistent inhibition of nitrification in soils (Berg et al., 1982; Hyman and Wood, 1985). The syringe was pumped several times to ensure mixing of the C_2H_2 into the soil pore space. After 10 min the cap was removed, and all tubes were allowed to equilibrate in the field for 24 h. NH₃ was collected during the subsequent 24 h using the 1988 procedures. Following gas collections, the columns were removed, the soil was homogenized and sieved (<2-mm), and subsamples were extracted with $0.5M K_2SO_4$ to determine NH_4^+ concentrations.

NH⁺ was determined in the H₂SO₄ solutions using a TrAAcs^{*} 800 autoanalyzer and Industrial Method NO 786-86T for total N (Bran and Luebbe, 1986). Standards were mixed in aliquots of the same H₂SO₄ solution used in the field collections. Anomalous high values were found in 30 vials (3%) that were contaminated by ants; these were deleted from subsequent statistical treatments. Concentrations of $N\dot{H}_4^+$ and NO_3^- in the KCl and K_2SO_4 extracts were determined following standard procedures on the autoanalyzer.

Table 1. Son and vegetation characteristics at the study sites				
Site Dominant vegetation Soil classification	Grassland Bouteloua eriopoda Ustollic Haplargid*	Shrubland <i>Larrea tridentata</i> Typic Haplargid*	Playa Panicum obtusum Typic Torrerts*	
Surface soil characteristics Physical				
% sand ^a	76	80	10	
% clay*	7	8	57	
% CaCO ^b	0.68	1.06	3.36	
% organic C ^b	0.48	0.19	2.91	
Chemical				
pH (in`10 mм CaCl ₂) ^b	7.02	7.69	7.57	
$NH_4-N (mg kg^{-1})^c$	1.13	2.15	10.24	
$NO_1 - N (mg kg^{-1})^c$	0.57	0.61	6.75	
Moisture (% of fresh mass) ^c	0.95	1.06	5.65	

*Lajtha and Schlesinger (1988).

*Wierenga et al. (1987), 0-30 cm depth.

W. T. Peterjohn, unpublished Ph.D. thesis, Duke University (1990), 0-5 cm depth.

This study on 20 June 1988, 0-15 cm depth.

Table 2. NH ₁ volatilization from Chihuahuan Desert soils. All values are μ g N m ^{-*} day ^{-*} (± 1 SE),
averaged across all treatments. For 168 h, values are daily mean for the 7-day period

Time (h)	Grassland	Shrubland	Playa	Mean
Pretreatment	9.02 (2.51)	9.90 (2.59)	11.02 (2.85)	9.97 (1.52)
24	205.54 (32.60)	668.28 (107.27)	375.79 (69.40)	417.59 (45.67)
48	98.56 (13.97)	271.47 (56.91)	202.67 (33.27)	190.96 (22.82)
168	124.21 (22.64)	397.04 (71.76)	222.59 (32.77)	251.05 (29.16)
Mean	109.18	340.02	204.40	

RESULTS

Spatial and temporal variation, 1988

Before experimental manipulations were applied, losses of NH₃ were small, and there was no significant difference among the sites (Table 2). These soils were dry (Table 1), the most recent rainfall having delivered 7.1 mm of water on 13 June 1988. When averaged over all treatments and times, loss of NH₃ was greatest from the shrubland and least from the grassland. When averaged over all treatments and vegetation zones, losses were greatest immediately after the experimental manipulations. With the deletion of the initial collections, which showed no differences, analysis of variance (ANOVA) shows that time and vegetation zone are significant main effects (Table 3). There were no significant block effects, and in all subsequent considerations, the blocks within each vegetation zone are composited, so that n = 5 for each treatment during each collection period.

Treatment effects, 1988

All experimental treatments had significant main effects on the rate of NH_3 volatilization in one or more vegetation zones (Table 4). Additions of water and NH_4^+ always stimulated the rate of NH_3 loss. The addition of sucrose always retarded the rate of NH_3 loss. N-serve also retarded the rate of volatilization, but only in the grassland.

Significant 2-way interactions were seen for some treatments. Addition of both water and NH_4^+ produced a greater release of NH, than either treatment alone. When sucrose was added to tubes that also received water or NH_4^+ , the rate of volatilization was always lower than from tubes not receiving sucrose. However, when sucrose was added to tubes without water or NH_4^+ , it had little effect.

In the grassland, N-serve always retarded the loss of NH₃, and the effect was greatest when NH₄⁺ was added. In the shrubland, N-serve stimulated the rate of NH₃ volatilization when water was added, but reduced the loss of NH₃ without water (Fig. 2). Significant 3-way interactions were also seen for some treatments, but the 4-way interaction was never sig-

Table 3. Analysis of variance for time and space effects over all vegetation zones and all times after experimental treatment

Source of variation	d.f.	Sums of squares	Probability
Vegetation	2	7.02	0.001
Time	2	4.17	0.001
Block	4	0.96	0.22
Time × vegetation	4	1.21	0.13
Time × block	8	0.48	0.94
Vegetation × block	8	0.98	0.67
3-way interaction	16	0.43	0.99
Error	653	109.98	

nificant. The higher-order responses are not discussed in this paper.

Temporal variations in treatments, 1988

The main effects of sucrose and NH_4^+ showed no change during the course of the experiment, but the effects of other experimental manipulations diminished through time (Table 5). For example, the stimulation of NH_3 volatilization by water was lost after 1 week of soil drying. Significant main and interaction effects of N-serve were only seen for 24 h after treatment of the soil.

Treatment effects, 1989

The processes controlling the loss of NH₃ from grassland soils in 1989 were identical to those observed in 1988. Low rates of NH₃ volatilization were observed in all tubes not receiving water (Fig. 3). Water stimulated the rate of NH₃ volatilization, and the rate was slightly higher with added C_2H_2 (P < 0.13 for the main effect in a 3-way ANOVA). All tubes with water had significantly higher concentrations of NH₄⁺ in the soil (P < 0.0001 in 3-way ANOVA). Tubes receiving N-serve had the highest concentrations of NH₄⁺ in the soil (P < 0.0001), but slightly lower rates of NH₃ volatilization than tubes receiving water and no N-serve (P < 0.11).

DISCUSSION

Field collections in closed chambers introduce a number of changes in the natural rate of gas exchange between the soil and the atmosphere (Fenn and Hosser, 1985; Reynolds and Wolf, 1988). Our estimates of NH₃ volatilization are best used for comparisons among experimental treatments and not for areal extrapolations of NH₃ lost from the soil surface.

Before the experimental treatments, there were no significant differences in the rate of NH_3 loss among sites, and the NH_3 flux from dry soils was small (Table 2). The highest rate was found in the playa, which had relatively high soil pH, soil NH_4^+ and soil moisture. Losses of NH_3 increased markedly after

Table 4. Analysis of variance for experimental treatments over all times. Data are the probability of an insignificant effect

Treatment	Grassland	Shrubland	Playa
Water	0.0071	0.0001	0.0001
NH,	0.0001	0.0001	0.0001
Sucrose	0.0001	0.0001	0.0001
N-Serve	0.0007	0.9705	0.6429
Water × NH ₄	0.0293	0.0355	0.0001
Water × sucrose	0.0010	0.0001	0.0001
$NH_4 \times sucrose$	0.0001	0.0001	0.0002
NH, × N-serve	0.0089	0.1279	0.8279
Water × N-serve	0.6344	0.0158	0.8041
Sucrose × N-serve	0.5836	0.0276	0.2699

Fig. 2. NH₃ volatilization from grassland and shrubland soils in the Chihuahuan Desert, June 1988, in response to additions of water and N-serve. Values are the daily means, shown with one standard error, from collections beginning 24, 48 and 168 h after application, averaged across all other treatments.

application of simulated rainfall, with the greatest change occurring in the shrubland (Table 6). Losses of NH₃ declined as the soils dried during the next 7 days. Others have observed that NH₃ volatilization from dry soils is small, since the microbial production of NH₄⁺ is limited in these conditions. The greatest rates of loss accompany the evaporation of water after irrigation or rainfall (Nelson, 1982).

Our results indicate that the concentration of NH⁺ in the soil solution limits the rate of NH₃ volatilization in desert soils. NH₃ loss increased with experimental additions of NH₄Cl. Despite the high solubility of NH₃ in water, additions of water also stimulated the loss of NH₃, presumably by stimulating the mineralization of organic N to NH⁺ (Milchunas et al., 1988) and raising soil concentrations of NH_4^+ (Fig. 3). Other studies have shown that microbial biomass in dry soils responds rapidly to wetting by rainfall (Kieft et al., 1987), but our results differ from those of Fisher et al. (1987), who found that additions of water to dry soils reduced the rate of net mineralization. Inhibition of NH₃ loss by the addition of sucrose is consistent with our suggestion that NH_4^+ limits the rate of NH_3 volatilization. Sucrose provided a large quantity of labile C to stimulate microbial immobilization of NH⁺ from the soil solution.

We expected that the addition of N-serve would stimulate the loss of NH_3 from Chihuahuan Desert soils, in which high rates of nitrification are observed (Lajtha and Schlesinger, 1986; Fisher *et al.*, 1987).

Table 5. Analysis of variance showing changes in the significance of main effects and 2-way interactions as a function of time. Data are composited across vegetation zones

		Time (h)	
Effects	24	48	168
Water	0.0001	0.0001	0.4541
N-serve	0.0252	0.9773	0.3504
NH	0.0001	0.0001	0.0001
Sucrose	0.0002	0.0001	0.0001
Water × N-serve	0.7954	0.2647	0.0580
Water × NH₄	0.0001	0.0001	0.5111
Water × sucrose	0.0001	0.0001	0.0085
N-serve × NH ₄	0.0231	0.7918	0.3455
N-serve × sucrose	0.5562	0.5260	0.3042
NH₄ × sucrose	0.0022	0.0001	0.0001

Fig. 3. NH₃ volatilization from grassland soils of the Chihuahuan Desert in June 1989, plotted as a function of extractable NH₄⁺ in the soil column at the end of the collection period. Mean values for each treatment (n = 10) are derived from a 3-way factorial experiment.

Applications of nitrification inhibitors are frequently observed to increase NH₃ volatilization from agricultural soils (Sahrawat, 1989). We were surprised to find lower rates of NH₃ volatilization when N-serve was added to the grassland soils. Initially, we thought that the acetone used to apply N-serve might have acted as a source of labile C for soil microbes, which immobilized available NH⁺ during a subsequent growth phase (cf. Shen et al., 1984). Jenkinson and Powlson (1976) observed an analogous effect during soil fumigations with CHCl₃ containing small amounts of ethanol. Following reinoculation, the growth of a new population of bacteria using ethanol as a substrate immobilized all available N. Our observation of high NH⁺ in grassland soils treated with N-serve in 1989 (Fig. 3) suggests that immobilization did not limit the loss of NH₃ from those soils. We suspect that these high NH_{4}^{+} concentrations reflect the inhibition of nitrification by N-serve or an inadvertent extraction of microbial biomass-N by the acetone, analogous to the action of a CHCl₃ fumigation (Brookes et al., 1985). The inhibition of NH₃ volatilization by the application of N-serve and acetone needs further investigation. We found that N-serve and acetone had no effect on soil pH in the laboratory.

In the shrubland, N-serve showed no main effect, but there was a significant two-way interaction with water. N-serve stimulated the release of NH_3 when water was added, indicating that nitrification is an important competitive reaction consuming NH_4^+ when soil microbes are active (Fig. 1). These were the only soils in which the rate of nitrification appeared to control the rate of NH_3 volatilization. In dry soils,

Table 6. Ammonia volatilization from the Chihuahuan desert of southern New Mexico during a drying sequence after application of simulated rainfall. All data are in $\mu g N m^{-2} da y^{-1} (\pm 1 SE)$, and means are calculated from tubes receiving only water. From Schlesinger et al. (1990)

Time				
(h)	Grassland	Shrubland	Playa	
Pretreatment	15(12.7)	15 (7.3)	43 (28.9)	
24	45 (10.9)	95 (18.4)	50 (13.7)	
48	35 (9.2)	30 (8.5)	34 (7.9)	
168	21 (6.2)	24 (6.8)	20 (4.7)	

Table 7. Some comparative rates of NH3 volatilization. All values µgN m72 day-1

Study area	Rate	Notes	Reference
Global	720	Average surface flux calculated by modeling	Dawson (1977)
Tanzania	4901780	Tropical grassland Natural grazing	Reuss and McNaughton (1988)
Canada	220	Marshland Natural grazing by migratory geese	Reuss et al. (1989)
Colorado (U.S.A.)	30	Temperate grassland	Schimel et al. (1986)
New Mexico (U.S.A.)	15-95	Temperate desert	This study
Australia	26,000	Grazed pasture Aerodynamic calculation	Denmead et al. (1974)
Great Britain	4060	Regional estimate from agriculture	Kruse et al. (1989)
Europe	450-9020	Regional estimate of anthropogenic releases	Buijsman et al. (1987)

nitrification is unimportant, and the rate of NH₃ loss showed a slight decline when N-serve was added.

NH₃ volatilization in the shrubland was greater than in the grassland. When shrubland replaces grassland in the process of desertification (Buffington and Herbel, 1965), soil erosion can expose buried calcic horizons that buffer soil pH at ca. 8.3. Thus, during desertification, rates of NH₃ volatilization may increase (Schlesinger *et al.*, 1990).

Despite high soil pH, NH₃ volatilization from the playa was not significantly different from that in the grassland in tubes receiving only water (Table 6). However, playa soils had nearly twice the NH₃ volatilization of the grassland soils, when averaged over all treatments (Table 2). The positive response to additions of water and NH⁺ suggest that the main process regulating NH₃ loss in the playa is the production of NH⁺ through mineralization. N-serve showed no main or interaction effects in the playa. Martens and Bremner (1989) found that NH₃ volatilization was negatively correlated with soil clay content and CEC. Ammonia volatilization in the playa may also have been limited by the retention of NH⁺ on the cation exchange complex contributed by the large clay fraction (Table 1).

Volatile losses of NH₃ from soils are greatest in fertilized agricultural soils and grazed pastures (Table 7). One of the highest rates, 26 mgN m^{-2} day⁻¹, was reported for a grazed pasture in Australia (Denmead et al., 1974). Losses under intensive, natural grazing by ungulates and birds are largely due to the mineralization of excrement deposited on the soil surface (Reuss and McNaughton, 1988; Reuss et al., 1989). Despite the problems associated with measurements of NH₃ flux in closed chambers, our measurements of loss, $15-95 \,\mu g N m^{-2} day^{-1}$ from soils receiving amendments of water (Table 6), probably represent the natural range of NH₃ volatilization from Chihuahuan Desert soils. These values are similar to the loss of $30 \,\mu g N \, m^{-2} \, day^{-1}$ for a shortgrass prairie ecosystem in Colorado (Schimel et al., 1986), in which most NH₃ volatilization was associated with patches of cattle urine. These losses are much lower than the global average rate for NH₃ volatilization from undisturbed soils, $720 \,\mu g N \,m^{-2}$ day⁻¹, calculated by Dawson (1977). Thus, soils in natural ecosystems, even those with high pH, are minor contributors to atmospheric NH₃ compared to agricultural soils and livestock (Dawson and Farmer, 1984).

Measurements of denitrification in soils of the Chihuahuan Desert show that the potential rate of N loss during a 24-h period after rainfall is nearly 8 mgN m⁻² day⁻¹ (Peterjohn and Schlesinger, unpublished). This is about $150 \times$ higher than the rate of NH₃ volatilization under similar conditions (Table 6). Desert soils typically have low concentrations of N (Post *et al.*, 1985; Peterjohn and Schlesinger, 1990), and we believe that the major process contributing to the gaseous loss of N from desert soils is denitrification (Klubek and Skujins, 1981; Peterjohn and Schlesinger, unpublished).

Acknowledgements—We thank Dr Walter G. Whitford and John P. Anderson of New Mexico State University for help with logistics and comfortable accommodations in the field. N-serve was generously donated by the Dow Chemical Corporation of Midland, Michigan. Dr Deborah Roach gave helpful advice in the statistical treatment of the data. Lisa Dellwo Schlesinger assisted in the field and offered a helpful review of the draft manuscript. This is a contribution to the Jornada Long Term Ecosystem Research Program, supported by a National Science Foundation grant to New Mexico State University.

REFERENCES

- Berg P., Klemedtsson L. and Rosswall T. (1982) Inhibitory effect of low partial pressures of acetylene on nitrification. Soil Biology & Biochemistry 14, 301-303.
- Bran and Luebbe (1986) Nitrogen, Total Kjeldahl, Industrial Method 786-86T, Bran and Luebbe Analyzing Technologies, Elmsford.
- Brookes P.C., Landman A., Pruden G. and Jenkinson D. S. (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry 17, 837-842.
- Buffington L. C. and Herbel C. H. (1965) Vegetational change on a semidesert grassland range from 1858 to 1963. Ecological Monographs 35, 139–164.
- Buijsman E., Maas H. F. M. and Asman W. A. H. (1987) Anthropogenic NH₃ emissions in Europe. Atmospheric Environment 21, 1009-1022.
- Bundy L. G. and Bremner J. M. (1973) Inhibition of nitrification in soils. Soil Science Society of America Proceedings 37, 396-398.
- Dawson G. A. (1977) Atmospheric ammonia from undisturbed land. Journal of Geophysical Research 82, 3125-3133.
- Dawson G. A. and Farmer J. C. (1984) Highly soluble atmospheric trace gases in the southwestern United States. I. Inorganic species: NH₃, HNO₃ and SO₂. Journal of Geophysical Research 89, 4779–4787.
- Denmead O. T., Simpson J. R. and Freney J. R. (1974) Ammonia flux into the atmosphere from a grazed pasture. *Science, New York* 185, 609–610.
- Fenn L. B. and Hossner L. R. (1985) Ammonia volatilization from ammonium or ammonium-forming nitrogen fertilizers. Advances in Soil Science 1, 124–169.

- Fisher F. M., Parker L. W., Anderson J. P. and Whitford W. G. (1987) Nitrogen mineralization in a desert soil: Interacting effects of soil moisture and nitrogen fertilizer. Soil Science Society of America Journal 51, 1033-1041.
- Fisher F. M., Zak J. C., Cunningham G. L. and Whitford W. G. (1988) Water and nitrogen effects on growth and allocation patterns of creosotebush in the northern Chihuahuan Desert. *Journal of Range Management* 41, 387-391.
- Fleisher Z., Ravina A. K. I. and Hagin J. (1987) Model of ammonia volatilization from calcareous soils. *Plant and* Soil 103, 205-212.
- Freney J. R., Simpson J. R. and Denmead O. T. (1983) Volatilization of ammonia. In Gaseous Loss of Nitrogen from Plant-soil Systems (J. R. Freney and J. R. Simpson, Eds), pp. 1-32. Martinus Nijhoff, The Hague.
- Hyman M. R. and Wood P. W. (1985) Suicidal inactivation and labelling of ammonia monooxygenase by acetylene. *Biochemical Journal* 227, 719-725.
- Jenkinson D. S. and Powlson D. S. (1976) The effects of biocidal treatments on metabolism in soil—I. Fumigation with chloroform. Soil Biology & Biochemistry 8, 167-177.
- Kieft T. L., Soroker E. and Firestone M. K. (1987) Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biology & Biochemistry 19, 119-126.
- Klubek B. and Skujins J. (1981) Gaseous nitrogen losses from ¹⁵N-ammonium and plant material amended Great Basin desert surface soils. *Geomicrobiology Journal* 2, 225-236.
- Kruse M., ApSimon H. M. and Bell J. N. B. (1989) Validity and uncertainty in the calculation of an emission inventory for ammonia arising from agriculture in Great Britain. *Environmental Pollution* 56, 237-257.
- Lajtha K. and Schlesinger W. H. (1986) Plant response to variations in nitrogen availability in a desert shrubland community. *Biogeochemistry* 2, 29-37.
- Lajtha K. and Schlesinger W. H. (1988) The biogeochemistry of phosphorus and phosphorus availability along a desert soil chronosequence. *Ecology* **69**, 24–39.
- Martens D. A. and Bremner J. M. (1989) Soil properties affecting volatilization of ammonia from soils treated with urea. Communications in Soil Science and Plant Analysis 20, 1645-1657.
- Milchunas D. G., Parton W. J., Bigelow D. S. and Schimel D. S. (1988) Factors influencing ammonia volatilization from urea in soils of the shortgrass steppe. *Journal of Atmospheric Chemistry* 6, 323-340.

- Nelson D. W. (1982) Gaseous losses of nitrogen other than through denitrification. In *Nitrogen in Agricultural Soils* (F. J. Stevenson, Ed.), pp. 327–363. American Society of Agronomy, Madison.
- Peterjohn W. T. and Schlesinger W. H. (1990) Nitrogen loss from deserts in the southwestern United States. Biogeochemistry 10, 67-79.
- Post W. M., Pastor J., Zinke P. J. and Stangenberger A. J. (1985) Global patterns of soil nitrogen storage. Nature, London 317, 613-616.
- Reuss R. W. and McNaughton S. J. (1988) Ammonia volatilization and the effects of large grazing mammals on nutrient loss from East African grasslands. *Oecologia* 77, 382-386.
- Reuss R. W., Hik D. S. and Jefferies R. L. (1989) The role of lesser snow geese as nitrogen processors in a sub-arctic salt marsh. Oecologia 79, 23-29.
- Reynolds C. M. and Wolf D. C. (1988) Effects of field methods and soil cover on estimating ammonia loss from nitrogen-15 urea. Soil Science Society of America Journal 52, 706-712.
- Sahrawat K. L. (1989) Effects of nitrification inhibitors on nitrogen transformations, other than nitrification, in soils. *Advances in Agronomy* 42, 279–309.
- Schimel D. S., Parton W. J., Adamsen F. J., Woodmansee R. G., Senft R. L. and Stillwell M. A. (1986) The role of cattle in the volatile loss of nitrogen from a shortgrass steppe. *Biogeochemistry* 2, 39-52.
- Schlesinger W. H., Fonteyn P. J. and Marion G. M. (1987) Soil moisture content and plant transpiration in the Chihuahuan Desert of New Mexico. Journal of Arid Environments 12, 119-126.
- Schlesinger W. H., Reynolds J. F., Cunningham G. L., Huenneke L. F., Jarrell W. M., Virginia R. A. and Whitford W. G. (1990) Biological feedbacks in global desertification. *Science*, New York 247, 1043-1048.
- Shen S. M., Pruden G. and Jenkinson D. S. (1984) Mineralization and immobilization of nitrogen in fumigated soil and the measurement of microbial biomass nitrogen. Soil Biology & Biochemistry 16, 437-444.
- Terman G. L. (1979) Volatilization losses of nitrogen as ammonia from surface-applied fertilizers, organic amendments, and crop residues. Advances in Agronomy 31, 189-223.
- Warneck P. (1988) The Chemistry of the Natural Atmosphere. Academic Press, London.
- Wierenga P. J., Hendricx J. M. H., Nash M. H., Ludwig J. and Daugherty L. A. (1987) Variation of soil and vegetation with distance along a transect in the Chihuahuan desert. Journal of Arid Environments 13, 53-63.