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 DISCONTINUITIES WITHIN ORDERED
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 Abstract. Current ecological theory hypothesizes that boundaries between adjacent eco-
 system units are important in determining ecosystem structure and function across het-
 erogeneous landscapes, and that such boundaries are potentially important sites for early
 detection of global climate change effects. Hence, there is an increasing research effort to
 elucidate the structure and function of ecological boundaries. Yet traditional data analysis
 methods focus primarily on homogeneous units rather than on the boundaries between
 them; thus, new methods are being developed for detecting, characterizing and classifying
 boundaries, e.g., split moving-window boundary analysis (SMW). SMW is a simple yet
 sensitive method for locating discontinuities that may exist within multivariate, serial data
 (ordered in one dimension) at various scales relative to the length of the data series.
 However, SMW is subjective and relative, and therefore locates apparent discontinuities
 even within random, serial data. In this paper we present two nonparametric methods for
 determining the statistical significance of discontinuities detected by SMW. First, we de-
 scribe a Monte Carlo method for determining the statistical significance of scale-dependent
 discontinuities (i.e., discontinuities that are significant relative to only one scale). Second,
 we propose a nonparametric, scale-independent method (it also is dependent upon scale
 size, but to a much lesser degree than the Monte Carlo method) that is more appropriate
 for locating statistically significant discontinuities that separate different, relatively ho-
 mogeneous groups of varying size along a series. We examine the robustness of these two
 methods using computer-generated data having varying intensities of imposed disconti-
 nuities, and illustrate their application to locating boundaries between vegetation samples
 collected at systematic intervals across a desert landscape in southern New Mexico, USA.

 Key words: boundary detection; concentration contours; dissimilarity profile; gradient; Monte Carlo
 simulation; non-metric multidimensional scaling; nonparametric; ordination; permutation procedures;
 spatial pattern; statistical methods; transect.

 INTRODUCTION
 The existence of boundaries, ecotones, or transition

 zones between relatively homogeneous ecosystem units
 has long been recognized by ecologists (e.g., Livingston
 1903, Clements 1905), but interpretations of their eco-
 logical significance have been quite varied (cf. Leopold
 1932, Whittaker 1956, van Leeuwen 1966, Dauben-
 mire 1968, van der Maarel 1976, Margalef 1979, Allen
 and Starr 1982). Current landscape ecology theory hy-
 pothesizes that boundaries function in a fashion anal-

 ogous to semi-permeable membranes, thereby con-
 trolling the rates of movement of abiotic and biotic
 components between units across heterogeneous land-
 scapes (Wiens et al. 1985, Forman and Godron 1986).
 In addition, ecotones are hypothesized to be more dy-
 namic relative to the larger homogeneous units they
 separate, and as such, may be important sites for the
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 early detection of global environmental change over a
 broad range of temporal and spatial scales (Hansen et
 al. 1988; however, see van der Maarel 1990). Given
 the potential significance of boundaries in current eco-
 logical theory and the paucity of information on them,
 more research is needed on elucidating the structure
 and function of ecosystem boundaries.

 Most traditional methods for analyzing ecological
 data have concentrated on comparisons between
 homogeneous units, rather than on the boundaries be-
 tween them. Thus, there is a need for further devel-

 opment of numerical methods for detecting, charac-
 terizing, and classifying boundaries (Wiens et al. 1985,
 Holland 1988, van der Maarel 1990). Quantitative
 methods for locating discontinuities in ordered data
 have been used by European phytogeographers and
 phytosociologists since the 1930s (van der Maarel 1976
 and included references), and more recently by North
 American ecologists (e.g., Whittaker 1956, Ludwig and
 Cornelius 1987, and included references). The basic
 approach has been to calculate indices of composi-
 tional dissimilarity or similarity between successive
 pairs of ordered samples (e.g., vegetation stands or-
 dered along field transects, or through ordination). Dis-
 similarity (or similarity) profile graphs are then con-
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 structed by plotting index scores vs. the midpoint
 locations between successive samples (also known as
 differential profiles, van der Maarel 1976, or distance
 profiles, Orl6ci and Orl6ci 1990). Sharp discontinuities
 in index values (i.e., peaks in a dissimilarity profile
 graph, troughs in a similarity profile graph) indicate
 the locations of relative discontinuities within the data

 series. A closely related method is "split moving-win-
 dow boundary analysis," or SMW (Webster 1973, 1978,
 Ludwig and Cornelius 1987), which detects disconti-
 nuities within multivariate data ordered in one di-

 mension through comparisons of dissimilarity metrics
 computed between the two halves of all sequential
 groups of samples (i.e., windows) of specific sizes; vary-
 ing the window size (i.e., the number of ordered sam-
 ples within each window) changes the scale at which
 boundaries are detected. The variable scale capability
 of SMW substantially improves the detection of dis-
 continuities within noisy data.

 Boundary detection methods are only useful for lo-
 cating "relative" discontinuities (Whittaker 1956,
 Webster 1973). Consequently, SMW will "detect" dis-
 continuities even within random data at both large and
 small scales relative to the length of the data series;
 hence, additional objective methods are necessary for
 determining statistical significance. In this paper, we
 present two objective methods for assessing the poten-
 tial statistical significance of discontinuities identified
 by SMW. First, we describe an empirical, Monte Carlo
 method for determining the statistical significance of
 scale-dependent discontinuities (i.e., discontinuities that
 are significant relative to only a certain window size
 or scale). Second, we propose a nonparametric, scale-
 independent method (it also is dependent upon scale,
 but to a much lesser degree than the Monte Carlo meth-
 od) that is more appropriate for locating statistically
 significant discontinuities that separate different, rel-
 atively homogeneous groups of widely varying size along
 a series. This method consists of hierarchical parti-
 tioning of a series using SMW results pooled from sev-
 eral scales, the calculation of test statistics from multi-
 response permutation procedures, MRPP (Mielke 1986,
 1991), and examination of overlap in concentration
 contours between the groups defined at each level of
 partitioning within ordination diagrams from non-
 metric multidimensional scaling, NMDS (Davison
 1983). We examine the robustness of these two meth-
 ods using computer-generated data having varying in-
 tensities of imposed discontinuities, and illustrate their
 application to locating boundaries between vegetation
 samples collected at systematic intervals across a desert

 ANALYTICAL METHODS

 Boundary detection methods

 A variety of boundary (or edge) detection methods
 (BDMs) have been used in the natural sciences (par-
 ticularly geology, soil science, and ecology) and in the
 fields of robotics vision and biomedical digital imaging

 landscape in southern New Mexico, USA.

 (see Table 1). Some BDMs based on binary data are
 objective, utilizing statistics to locate boundaries (e.g.,
 chi-square contingency analysis or Monte Carlo meth-
 ods), while other approaches make use of parametric
 statistical comparisons between positions on both sides
 of all potential discontinuities (subject to the limiting
 assumptions of the test statistic used). However, most
 quantitative BDMs are essentially subjective; i.e., the
 researcher must decide if a discontinuity is "signifi-
 cant."

 BDMs developed by soil scientists and geologists
 (i.e., SMW, global zonation, and the maximum level-
 variance method, MLV; Table 1) appear to have the
 greatest potential for general ecological application.
 However, global zonation and MLV are complex, mul-
 tivariate statistical procedures based upon assump-
 tions of independence and multivariate normality, and
 as such may not be appropriate when applied to eco-
 logical data that severely violate these assumptions (see
 also Turner et al. 1991). Webster (1978) found that
 SMW generally performs as well or better than MLV,
 and suggested that the simplicity and lower compu-
 tational burden of SMW makes it more generally ap-
 plicable. SMW is also the only BDM that directly in-
 corporates variable scale, which is particularly useful
 with noisy data and for locating boundaries at different
 scales relative to the sample scale.

 Split moving-window boundary analysis

 Split moving-window boundary analysis (SMW) was
 developed by soil scientists for optimally locating
 boundaries between relatively homogeneous soil units
 along transects (Webster 1973, 1978). Our particular
 application of SMW consists of (refer to Appendix 1
 for a mathematical description): (1) placing a window
 of a certain even-numbered size at the beginning of a
 data series, (2) splitting the window into two equal
 halves, (3) calculating averages for each variable within
 each half, (4) calculating some type of dissimilarity
 metric between the two halves of the window, (5) shift-
 ing the data window one position along the series, and
 (6) repeating steps 2-5 until the end of the data series
 is reached. Dissimilarity profile graphs are then con-
 structed by plotting the dissimilarity values vs. the
 location of the window midpoint. Sharp peaks in dis-
 similarity suggest the locations of discontinuities. Eco-
 logical applications of SMW can be found in Ludwig
 and Cornelius (1987), Wierenga et al. (1987), Johnston
 et al. (1991), and Turner et al. (1991). See Brunt and
 Conley (1990) for a detailed study examining the be-
 havior of SMW using squared euclidean distance on
 simulated boundaries of varying complexity.

 Any one of a large number of dissimilarity measures
 could be used in SMW, depending upon whether the
 researcher wants to emphasize differences based on
 absolute abundances (e.g., euclidean distance), relative
 abundances (e.g., chord distance), or binary composi-
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 TABLE 1. Overview of quantitative methods for locating discontinuities in ordered data.

 Method

 1. Compare indices of composition-
 al similarity or dissimilarity be-
 tween successive pairs of ordered
 samples

 2. Compare compositional similari-
 ty or dissimilarity of each se-
 quential sample relative to an
 end point sample

 3. Compare species turnover rates
 along gradients

 4. Compare interspecific association
 between adjacent blocks of sam-
 ples

 5. Statistical analysis of overlap in
 species distributions

 6. Binary Monte Carlo estimation
 of expected number of species

 7. "Constrained" or "conditional"
 classification techniques

 8. Split moving-window boundary
 analysis (SMW)

 9. Global zonation procedure

 10. Maximum level-variance method
 (MLV)

 11. Orl6ci edge detection method

 12. Other edge detection methods

 Description

 Plot index score vs. midpoint be-
 tween adjacent samples, subjective-
 ly determine locations of disconti-
 nuities

 Plot index score vs. sample position,
 subjectively determine positions
 where sharp transitions occur

 Plot ordination scores vs. sample lo-
 cation, subjectively determine posi-
 tions where sharp transitions occur

 Probabilistic determination of com-
 positional discontinuities based on
 chi square

 Probabilistic comparison of frequen-
 cy of overlap in species distribu-
 tion boundaries vs. expected value

 Probabilistic comparison of number
 of species held in common be-
 tween ordered samples relative to
 an expected number if all species
 were distributed at random

 Maintain the order of samples in the
 formation of clusters

 Compare distances computed be-
 tween the two halves of all sequen-
 tial windows of specific sizes

 Hierarchically divides series into seg-
 ments that maximize the ratio of
 within-segment sums of squares to
 between-segment sums of squares

 Searches for optimal partitioning of
 ordered data into a pre-specified
 number of segments

 Remove first-order serial effects; or-
 dinate residuals with canonical
 contingency analysis; derive dis-
 tance (edge location), deviations
 (edge intensity), and angles (edge
 sharpness) profiles for edge detec-
 tion

 From fields of robotics vision and

 biomedical digital imaging; primar-
 ily through differentiation or gradi-
 ent measurements of optical inten-
 sity or density in one or two
 dimensions

 References

 van der Maarel 1976 and included ref-
 erences, Whittaker 1956, 1960, Beals
 1969, Bratton 1975

 van der Maarel 1976, Hobbs 1986

 Whittaker et al. 1979a, b, Shmida and
 Whittaker 1981, Hobbs 1986

 Lange and Sparrow 1985

 Pielou and Routledge 1976, Pielou
 1977, Gardiner and Haedrich 1978,
 Harper 1978, Underwood 1978,
 Dale 1986

 Raup and Crick 1979, McCoy et al.
 1986

 Gordon 1973, Lefkovitch 1980, Legen-
 dre et al. 1985, Legendre and Fortin
 1989

 Webster 1973, 1978, Ludwig and Cor-
 nelius 1987, Nwadialo and Hole
 1988

 Gill 1970

 Hawkins and Merriam 1974

 Orl6ci and Orl6ci 1990

 Marr and Hildreth 1980 and included
 references. Smith et al. 1988

 tion (e.g., Ochiai distance) (see Ludwig and Reynolds
 1988). For ease of comparison, we use standard euclid-
 ean distance in all statistical methods presented below
 (i.e., SMW, MRPP, and NMDS).

 The scale at which discontinuities are identified by
 SMW, and to some extent the type of discontinuity
 identified (e.g., sharp vs. gradual), is dependent upon
 the scale of the sampling and the window size used.
 Large window sizes are necessary to minimize the ef-
 fects of noise on the results (i.e., minimize detecting a
 discontinuity that does not exist), and to maximize the
 ability to detect weak discontinuities (e.g., a trend dis-

 continuity with a broad boundary, which may be un-
 differentiated from background noise at small scales).
 However, window sizes that are too large may not be
 able to detect discontinuities that exist at smaller scales

 (e.g., large windows that contain more than one dis-
 continuity). Thus, results are sensitive to different win-
 dow sizes, and selection of discontinuities usually re-
 quires the selection of an appropriate window size for
 the scale of interest.

 Depending on objectives, the scale dependency of
 SMW may be either useful or confusing. Variation in
 the location and intensity of boundaries at different
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 scales may provide valuable information for research
 in landscape ecology, and for detecting subtle changes
 in ecosystem boundaries in response to environmental
 change. In such cases, Monte Carlo methods are most
 appropriate for determining the statistical significance
 of discontinuities. However, for other types of analyses
 (e.g., classification of vegetation zones along a transect),
 scale-related variability in the location and intensity
 of discontinuities may complicate problem solution.
 In these cases, the scale-dependency of SMW can be
 reduced by pooling information from several different
 scales, since the locations of peaks in a pooled dissim-
 ilarity profile are relatively scale independent com-
 pared to the dissimilarity profiles at each window size.

 Determining the statistical significance of
 scale-dependent discontinuities

 We used a Monte Carlo method to estimate the mean

 expected SMW dissimilarity and standard deviation
 between window halves for a given data series and
 window width, which we then used to determine the

 statistical significance of scale-dependent discontinu-
 ities under a null hypothesis that no discontinuities
 exist. Our method is related to that of Raup and Crick
 (1979) for boundary location with binary, species dis-
 tribution data. Our Monte Carlo method consists of

 randomizing the position of each data vector along the
 series (which maintains the correlation structure of the
 data) and repeating the calculation of SMW dissimi-
 larities as outlined previously. These randomized SMW
 calculations are repeated numerous times (1000 in our
 analyses), and then a mean dissimilarity and standard
 deviation are calculated for each window mid-point
 position (see Appendix 2). We then calculate an overall
 expected mean dissimilarity and standard deviation for
 a given window size by averaging the independent es-
 timates from each position (see Appendix 3). We have
 examined the distributions of dissimilarity values from
 SMW analyses on several randomly generated data sets
 and several window sizes using euclidean distance, and
 almost all were normally distributed (Kolmogorov-
 Smirnov test statistic, P < .05 determining signifi-
 cance); hence, the mean and standard deviation are
 appropriate estimators of location and concentration.

 We overlayed lines onto the dissimilarity profile
 graphs at values of 1, 2, and 3 standard deviations
 above the overall mean expected dissimilarity. We as-
 sumed that dissimilarity peaks extending above 2 stan-
 dard deviations were significant for that particular data
 series and scale, which is a conservative enough cri-
 terion for determining statistical significance in most
 cases. Statistical confidence limits can also be defined

 around the expected mean dissimilarity using either
 standard parametric statistical methods (e.g., Steel and
 Torrie 1980), or an empirical approach similar to Or-
 l6ci and Beshir (1976). The Monte Carlo method is
 highly dependent upon scale size, and is relative only
 to the data series being analyzed, but can easily be

 applied to SMW analyses using any type of dissimi-
 larity measure.

 Determining the statistical significance of
 scale-independent discontinuities

 Hierarchical partitioning of the data series. -We first
 partitioned the series into groups using a pooled SMW
 dissimilarity profile (created by averaging together SMW
 dissimilarities from several different window sizes, for
 each window midpoint location). Because dissimilar-
 ities from small window sizes are usually greater than
 those from large window sizes, especially in very noisy
 data, simple averaging of dissimilarity values will often
 give more weight to the smaller window sizes. In order
 to give approximate equal weighting to dissimilarities
 from large and small scales, we transformed dissimi-
 larity values for each window width into standardized
 variables, or Z scores, relative to the Monte Carlo es-
 timate of the expected mean dissimilarity and standard
 deviation (Appendix 3), prior to averaging (Appendix
 4). The resulting pooled dissimilarity profile is rela-
 tively scale-independent in comparison to the ones for
 each individual window size. We used this pooled dis-
 similarity profile to partition the data series into groups
 hierarchically. The location of the highest peak was
 used to partition the series into two groups (level 1).
 The second highest peak was used to partition one of
 the groups resulting from the first partition into two
 new groups (level 2). We continued partitioning each
 data series until there were no longer any visually dis-
 cemable dissimilarity peaks.

 Multi-response permutation procedures. - Multi-re-
 sponse permutation procedures (MRPP) represent a
 relatively new and powerful, distribution-free, multi-
 variate statistical method for making comparisons be-
 tween defined groups (Mielke 1986, 1991). MRPP is
 based on the within-group average of pairwise distance
 measures between object responses in a euclidean data
 space. While MRPP is functionally similar to MAN-
 OVA or Mahalanobis distance, MRPP may be more
 appropriate for most ecological data because it is per-
 mutation based; hence there are no distributional re-
 quirements of the data. In addition, MRPP is based
 on euclidean geometry, making it easy to relate the
 analysis to the perceived euclidean data space (Mielke
 1991). See Biondini et al. (1985) and Zimmerman et
 al. (1985) for other ecological applications of MRPP.

 MRPP provides a valuable statistical tool for deter-
 mining the significance of potential discontinuities
 identified by SMW, because both methods can use the
 same dissimilarity measure, e.g., euclidean distance,
 chord distance, etc. We calculated MRPP test statistics
 and significance levels between the new groups formed
 at each level of hierarchical partitioning of the data
 series. We computed MRPP test statistics using the
 FORTRAN computer program MRPP (Mielke 1991)
 with the following options in effect: v = 1, which makes
 the analysis space of MRPP ordinary euclidean; g = 2,
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 tfor statistical comparisons between two defined groups;
 and C(i) = n(i)/Zn(i) for the within-group weighting
 factor, where i = 1 to g, and n(i) is the number of
 objects within group i. (This weighting factor makes
 the MRPP test statistic (b) the weighted average of
 within-group pairwise distance measure means.) We
 plotted MRPP significance levels vs. hierarchical par-
 tition level and examined the resulting graph for break-
 points, which we used along with significance levels as
 criteria for deciding the potential number of statisti-
 cally significant discontinuities.

 Nonmetric multidimensional scaling. -Nonmetric
 multidimensional scaling, NMDS (Davison 1983), is
 a nonlinear ordination method that gives an optimal,
 reduced-dimension, graphical representation of the re-
 lationships among observations in a data set. NMDS
 assumes no underlying structure to data other than that
 pairwise dissimilarities in the reduced-dimension space
 are monotonically related to dissimilarities in the orig-
 inal n-dimensional data space. Ecological applications
 of NMDS have shown that it causes the least distortion

 of original nonlinear data structure when compared to
 other common ordination methods (Kenkel and Orl6ci
 1986 and included references). Wartenberg et al. (1987)
 point out that NMDS may fail to order points correctly
 over very large gradients. However, this failure is likely
 due to failure of the particular dissimilarity measure
 to quantify differences between the ends of the gradient,
 and not due to failure of the NMDS algorithm. Brad-
 field and Kenkel (1987) adjusted pairwise dissimilarity
 values between points along large simulated gradients
 using a "flexible shortest path" algorithm, which great-
 ly improved NMDS reconstruction of long gradients.

 NMDS ordination of pairwise dissimilarities be-
 tween sample units of a data series, with concentration
 contours (see following pargraph) graphed around the
 centroids of defined groups, provides a valuable graph-
 ical tool for determining the significance of potential
 discontinuities identified by SMW. Like SMW and
 MRPP, NMDS can easily use any dissimilarity mea-
 sure. For each data set analyzed we calculated a matrix
 of pairwise euclidean distances between samples and
 conducted NMDS ordinations using BASIC programs
 modified from Ludwig and Reynolds (1988). We ob-
 tained 10 separate two-dimensional solutions for each
 data set, each with different random initial configura-
 tions. We selected the solution with the lowest mini-

 mum stress value as the optimal ordination solution.
 This lessened the possibility of obtaining NMDS so-
 lutions of local rather than global minima (Davison
 1983).

 Concentration contours. -We present results from
 NMDS ordinations by plotting the two-dimensional,
 rescaled axes vs. each other. We then compute and plot
 1 standard deviation concentration contours (L. Or-
 lo6ci, personal communication) around the centroid of
 each group by: (1) projecting all points within a group
 onto a single axis that passes through the group centroid

 at set angles to the original axes; (2) calculating the
 mean and standard deviation for all points on the axis;
 and (3) mapping the location of the mean + 1 standard
 deviation into the NMDS coordinate system. We then
 rotate the axis at 5° intervals for 180°, repeating steps
 1-3 for each interval (see Appendix 5). These concen-
 tration contours serve as graphical representations of
 the effective size of a group of points, comparable to
 drawing "ellipses of equal concentration" around groups
 in an ordination diagram (Lagonegro and Feoli 1985),
 or confidence circles around group centroids in dis-
 criminant functions analysis (Pimentel 1983). The "el-
 lipses of equal concentration" method assumes the
 cloud of points has a simple, bivariate normal distri-
 bution, and derives concentration ellipses from the
 variances around the group centroid in the two di-
 mensions and the correlation between the two variates.

 Our method assumes only a normal distribution for
 the projection of all points onto a single axis. Thus the
 size of the standard deviation estimate can vary with
 the angle of the axis through the data cloud, which is
 more appropriate for defining concentration contours
 of data clouds that vary widely from a bivariate normal
 distribution. We preferred using 1 standard deviation
 contour widths to characterize group concentration,
 rather than constructing confidence sets on group means.

 Data sets analyzed

 Generated data. -We first examined the robustness

 of the methods described above using computer-gen-
 erated data with varying intensities of discontinuity
 signals relative to the background noise. This objective
 was best met by generating data from simple uniform
 random distributions rather than from complex Gauss-
 ian distributions along gradients, which essentially have
 no boundaries. We examined five types of computer-
 generated data sets, all with 100 observations and 10
 continuous variables. For each data set all 10 variables

 were generated from the same uniform random dis-
 tribution. For data set No. 1, each variable for the
 entire series was generated from a range of 0-20. The
 other four types of generated data sets were similar to
 No. 1, except that step discontinuities were imposed
 at locations 34 and 67 of the series. For each of these

 generated data sets we varied the size intensity of the
 imposed step discontinuities relative to the background
 noise of the data. We indicate the intensity of an im-
 posed discontinuity using a signal-to-noise ratio index
 from communication theory (Whalen 1971), in which
 signal size is divided by the root mean square noise
 (i.e., within-groups standard deviation). For example,
 we generated all variables from data set No. 2 from a
 range of 0-20 for locations 1-33, a range of 1-21 for
 locations 34-66, and a range of 2-22 for locations 67-
 100. A uniform random variable has variance defined

 as (maximum value - minimum value)2/ 12. Thus data
 set No. 2 had a discontinuity signal size of 1, a within-
 groups variance of 33.3333 [=202/12], a root mean
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 TABLE 2. Characteristics of the computer-generated data sets
 analyzed. Each data set consisted of 10 variables and 100
 observations, which were subdivided into three ranges: 1-
 33, 34-66, and 67-100. Each observation of all 10 variables
 within a range was generated from the same uniform ran-
 dom distribution.

 Discon-

 tinuity
 Data set Range 1 Range 2 Range 3 step S/N
 number 1-33 34-66 67-100 size ratio*

 1 0-20 0-20 0-20 0 0.0000
 2 0-20 1-21 2-22 1 0.1732
 3 0-20 2-22 4-24 2 0.3464
 4 0-20 4-24 8-28 4 0.6928
 5 0-20 8-28 16-36 8 1.3856

 * Signal-to-noise ratio. Calculation is described in Analyt-
 ical methods: Data sets analyzed: Generated data.

 square noise of 5.7735, and a signal-to-noise (S/N)
 ratio of 0.1732. Characteristics of the five generated
 data sets are summarized in Table 2.

 Field data. -We also applied these methods to field
 data consisting of cover abundance estimates of vas-
 cular plant species taken from 89 sampling stations at
 30-m intervals along a transect traversing a topoedaph-
 ic gradient at the Jornada Long-Term Ecological Re-
 search (LTER) site (Wierenga et al. 1987, Orl6ci and
 Orl6ci 1990, Cornelius et al. 1991). The study site is
 located in the northern Chihuahuan Desert approxi-
 mately 40 km north of Las Cruces, New Mexico, USA.
 The transect crosses a 1500-ha closed-basin watershed

 draining the slopes of an isolated granitic mountain
 (Mt. Summerford) and extends in a south-southwest
 direction from an ephemeral lake or playa located on
 the basin floor, across a fan piedmont and alluvial fan
 (bajada) located on the piedmont slope, and onto the
 base of the mountain (Cornelius et al. 1991). During
 mid-October of 1984 (the time of year when biomass
 accumulation from the summer growing season is at
 maximum), cover estimates of all vascular plant spe-
 cies were obtained by measuring the percentage of liv-
 ing crown cover intercepting 30-m lines positioned per-
 pendicular to the main transect. For analysis we
 combined the cover estimates of individual plant spe-
 cies into guilds based upon a combination of photo-
 synthetic pathway type (C3, C4, and CAM) and growth
 form (shrubs, subshrubs, succulents, and perennial and
 annual grasses and forbs; see Cornelius et al. 1991 for
 details). Nine vascular plant guilds occurred along the
 transect: C3 shrubs, C3 subshrubs, CAM succulents, C4
 perennial grasses, C3 and C4 perennial forbs, C4 annual
 grasses, and C3 and C4 annual forbs.

 RESULTS

 Generated data

 The scale of spatial separation between discontinu-
 ities relative to the length of the data series was known
 for the generated data sets; hence, we only include SMW
 results from window sizes of 10, 20, 30, and 40. In

 addition, since results from data sets No. 1 (S/N ratio
 of 0.00) and No. 2 (S/N ratio of 0.1732) were similar,
 only the latter is presented. Likewise, results from data
 sets No. 4 (S/N ratio of 0.6928) and No. 5 (S/N ratio
 of 1.3856) were very similar, so only results for data
 set No. 4 are presented. All results are summarized as
 SMW euclidean distance profiles (Fig. 1), hierarchical
 partition levels (Fig. 2 and Table 3), and NMDS or-
 dinations (Fig. 2). For illustrative purposes one of the
 10 variables analyzed from each data set is presented
 (Fig. 1A, B, C, top panel). All 10 variables were used
 in the analyses (Fig. 1A, B, C, panels 2-6, Fig. 2).

 In data set No. 2 (S/N ratio of 0.1732, Fig.1 A, panel
 1), there were several sharp peaks in the SMW dissim-
 ilarity profiles (panels 2-5), but none occurred at the
 locations of the imposed step discontinuities (i.e., lo-
 cations 33 and 66). At window sizes 10, 20, and 30
 there were several statistically significant scale-depen-
 dent discontinuities, indicated by peaks >2 standard
 deviations above the Monte Carlo estimate of mean

 expected dissimilarity. Based on the pooled SMW dis-
 similarity profile (Table 3 and Fig. 1A, panel 6), we
 hierarchically partitioned the data series into three
 groups. Significance levels from MRPP test statistics
 between the new groups formed at the first two levels
 of partitioning were not significant (Fig. 2A, panel 1),
 and there was a large degree of overlap in concentration
 contours between the groups defined at each level of
 partitioning in the NMDS ordination diagrams (Fig.
 2A, panels 2-4). These results indicate that even though
 the series may contain several statistically significant
 scale-dependent discontinuities, there are likely no sig-
 nificant discontinuities separating different homoge-
 neous groups. Thus, the methods failed to detect the
 imposed discontinuities at this low level of S/N ratio.

 In data set No. 3 (S/N ratio of 0.3464, Fig. 1 B, panel
 1), SMW detected discontinuities corresponding to the
 locations of the imposed step discontinuities (i.e., lo-
 cations 33 and 66) for window sizes 20, 30, and 40
 (but not at window size 10) (Fig. 1 B, panels 2-6). How-
 ever, only the peak at location 66 was >2 standard
 deviations above the mean expected dissimilarity. We
 made three hierarchical partitions of the data series
 based on the pooled SMW dissimilarity profile (Table

 TABLE 3. Locations within each data series where potential
 discontinuities were identified at each hierarchical partition
 level based on the pooled split moving-window (SMW)
 dissimilarity profile.

 Hierarchical partition level

 Data set 1 2 3 4 5 6 7

 1 55 38 20 73
 2 30 10 81 47
 3 63 32 9 ... ... ... ...
 4 32 65 21 .. ... ... ...
 5 32 66 47 11 ...

 Jornada 7 59 72 33 81 11 49
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 FIG. 1. Results from split moving-window (SMW) analyses of computer-generated data containing two step discontinuities
 with S/N ratios of (A) 0.1732, (B) 0.3464, and (C) 0.6928. Each of the three vertical sets of panels has graphs of window
 midpoint location vs. values for one of the 10 variables analyzed in each data set (panel 1), SMW dissimilarity profiles for
 window sizes 10, 20, 30, and 40 (panels 2-5), and the pooled average Z score profile (panel 6). Horizontal lines in the SMW
 dissimilarity profiles are at 1, 2, and 3 standard deviations above the overall expected mean euclidean distance.

 3, Fig. 1 B, panel 6). Only the significance level of MRPP
 test statistics between the new groups formed at the
 first partition level was significant (Fig. 2B, panel 1).
 The NMDS ordination diagram shows very little over-
 lap between the groups defined at the first partition
 level, with progressively greater degrees of overlap at
 partition levels 2 and 3 (Fig. 2B, panels 2-4). Thus,
 our analysis reveals that there are likely one or two
 statistically significant discontinuities separating rela-
 tively homogeneous groups within the data series.

 In data set No. 4 (S/N ratio of 0.6928, Fig. I C, panel
 1), SMW showed prominent peaks at locations 33 and
 66 at all window sizes 10-40 (Fig. 1C, panels 2-5); and
 the SMW peaks were all > 2 standard deviations above

 the mean expected dissimilarity. We made four hier-
 archical partitions of the data series based on the pooled
 dissimilarity profile (Table 3, Fig. 1C, panel 6). Sig-
 nificance levels from MRPP test statistics between the

 new groups formed at each partition level indicate that
 as many as three levels could be statistically significant
 (Fig. 2C, panel 1). The NMDS ordination diagram

 shows no overlap of concentration contours between
 groups at partition levels 1 and 2, with substantial
 overlap occurring at partition level 3 (Fig. 2C, panels
 2-4). Our analysis revealed that there were likely two
 or three statistically significant discontinuities sepa-
 rating relatively homogeneous groups within the data
 series.

 Results from data set No. 5 (S/N ratio of 1.3896,
 not shown) revealed the presence of two statistically
 significant discontinuities within the data series.

 Field data

 The scale of field sampling restricted our SMW anal-
 yses to small window sizes (i.e., 4-12). Dissimilarity
 profiles from small window sizes (e.g., 4 and 6) were
 quite noisy in comparison to those from larger ones
 (e.g., 8, 10, and 12), but the dissimilarity peaks at tran-
 sect positions 7 and 59 were prominent at even small
 window sizes (Fig. 3A, panels 2-6). Only at locations
 7 (for window sizes 4-12) and 59 (for window sizes
 10-12) were the discontinuities greater than 2 standard
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 FIG. 2. Results from MRPP and NMDS analyses of computer-generated data containing two step discontinuities and S/N
 ratios of (A) 0.1732, (B) 0.3464, and (C) 0.6928. Each vertical panel has plots of hierarchical partition level vs. significance
 levels from MRPP test statistics for comparisons between the new groups formed at each level (panel 1, top); and NMDS
 ordination diagrams with one standard deviation concentration contours around the centroids of all groups formed at
 hierarchical partition levels 1-3 (panels 2-4).

 deviations above the expected mean dissimilarity. We
 made seven hierarchical partitions of the data series
 based on the pooled SMW dissimilarity profile (Table
 3, Fig. 3A, panel 7). MRPP significance levels indicate
 that up to six partitioning levels are likely significant
 (Fig. 3A, panel 1). NMDS ordination diagrams showed
 no overlap in concentration contours around the cen-

 troids of groups defined at partition levels 1-5 (Fig.
 3B, panels 1-5).

 Overall, our objective analysis suggests the presence
 of six statistically significant discontinuities separating
 seven homogeneous groups in the Jornada vegetation
 spatial series, with locations corresponding closely to
 vegetation zones identified subjectively in previous
 studies (Ludwig and Cornelius 1987, Wierenga et al.
 1987, Orl6ci and Orl6ci 1990, Cornelius et al. 1991).
 Average cover of the nine vascular plant guild types
 varied tremendously between the seven major vege-
 tation zones (Table 4), with C3 shrubs dominating the

 playa fringe and bajada shrubland zones, C4 perennial

 grasses dominating the playa, lower and upper pied-
 mont grassland zones, C3 annual forbs dominating the
 upper mixed basin slopes zone, and C3 annual forbs
 and C4 perennial grasses co-dominating the lower mixed
 basin slopes zone. Previous studies have shown that

 these vascular plant guilds are apparently distributed
 along the transect relative to a complex environmental
 gradient of available water and nitrogen (Cornelius et
 al. 1991).

 DISCUSSION

 Our results indicate that locating statistically signif-
 icant discontinuities within a data series is difficult,
 even with the aid of objective methods. This is es-
 pecially true when a series contains very subtle dis-
 continuities (e.g., the discontinuities in the generated
 data sets with S/N ratios of 0.1732 and 0.3464). Sharp,
 obvious boundaries are easily differentiated by the
 quantitative methods, but they are also easily deter-
 mined subjectively (e.g., the imposed discontinuities
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 FIG. 3. Results from analyses of the LTER Jomada vegetation spatial series. (A) MRPP significance level from comparisons
 between the new groups formed at each hierarchical partition level (panel 1, top), SMW dissimilarity profiles for window
 sizes 4, 6, 8, 10, and 12 (panels 2-6), and for the average Z-score of window sizes 4-12 (panel 7). (B) NMDS ordination
 diagrams with 1 standard deviation concentration contours around the centroids of groups formed at hierarchical partition
 levels 1-6 (panels 1-6). Horizontal lines in the SMW dissimilarity profiles in part A are at 1, 2, and 3 standard deviations
 above the overall expected mean euclidean distance.

 within the generated data sets with S/N ratios of 0.6928
 and 1.3896, and the boundaries at transect positions
 7 and 59 within the field data set). Objective, quanti-
 tative methods are necessary for determining the sta-
 tistical significance of discontinuities, but in many ap-
 plications may be most useful for defining lower and

 upper limits to the potential number of significant dis-
 continuities rather than defining their actual number.

 We used a nonparametric, Monte Carlo method for
 determining the statistical significance of scale-depen-
 dent discontinuities. Their significance could also be
 determined by calculating some type of multivariate
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 TABLE 4. Average fall 1984 cover of vascular plant guilds within each of the seven significant vegetation zones identified
 by split moving-window boundary analysis (SMW). Names of vegetation zones are adapted from Wierenga et al. (1987)
 and Cornelius et al. (1990).

 C4 C3 C4
 Tran- C3 CAM peren- peren- peren- C4 C3 C4
 sect C3 sub- suc- nial nial nial annual annual annual

 Vegetation zone stations shrubs shrubs culents grasses forbs forbs grasses forbs forbs

 Playa 1-7 0.0 0.0 0.0 62.6 39.1 0.0 0.0 1.6 3.6
 Playa fringe 8-11 24.9 5.8 0.0 21.0 5.5 2.8 0.0 1.3 20.2
 Lower mixed basin slopes 12-33 1.3 5.7 0.1 14.0 9.4 3.2 3.4 2.5 16.4
 Upper mixed basin slopes 34-59 2.5 4.4 0.0 6.4 5.5 1.8 9.3 1.7 49.3
 Bajada shrubland 60-72 25.5 3.2 0.5 6.0 3.2 0.7 0.0 0.0 3.6
 Lower piedmont grassland 73-81 4.9 3.9 2.9 23.2 4.2 0.9 9.0 5.4 1.8
 Upper piedmont grassland 82-89 4.1 0.6 3.6 42.1 1.3 3.8 5.0 3.2 9.1

 test statistic between the two window halves, such as

 in the original implementation by soil scientists, e.g.,
 Hotelling's T2 (Webster 1973, 1978), Lawley-Hotelling
 trace statistic (Wierenga et al. 1987) or Wilk's lambda
 (Nwadialo and Hole 1988). However, this approach is
 not ideal because it requires stringent statistical as-
 sumptions, it makes comparisons between the two
 halves of a window and not between defined groups
 (i.e., it is highly scale dependent), and the number of
 observations must always be greater than the number
 of variables (not always possible with ecological data
 that have large numbers of species and other variables).
 Webster used principal components analysis (PCA) to
 reduce the dimensionality of the data space, and cal-
 culated dissimilarities between window halves using
 scores from the first few principal axes. However, PCA
 assumes linear relations among data and should only
 be used when this assumption is not severely violated
 (Orlo6ci 1979). Thus, for many ecological data Web-
 ster's approach may not be appropriate.

 The Monte Carlo method successfully located all
 discontinuities in the generated data series with high
 S/N ratios (0.6928 and 1.3896), but failed to identify
 all boundaries in the low S/N ratio data series (0.1732
 and 0.3464). This is because the definition of limits
 for determining the statistical significance of dissimi-
 larity peaks is dependent upon the variation present
 within the entire series. In a highly variable series this
 could lead to an erroneous determination of nonsig-
 nificance for boundaries that may actually be signifi-
 cant (i.e, a type II statistical error). For example, for
 any given window size, analysis of the field data set
 with the Monte Carlo method identified only one or
 two boundaries as statistically significant, while the
 scale-independent method identified six boundaries as
 potentially significant.

 The extreme scale dependency of SMW may cause
 problems when analyzing complex data series consist-
 ing of several boundaries separated by widely varying
 spatial distances (such as the case for the field data set
 we analyzed). We addressed this problem by combin-
 ing information from several scale sizes into a single
 dissimilarity profile, which we then used to partition

 the data series into groups hierarchically. Other meth-
 ods could also be used to address the scale-dependency
 problem of SMW. For example, Webster (1973) used
 autocorrelation analysis of ordered scores on the first
 few principal components to estimate an average spa-
 tial distance between boundaries along a data series,
 then chose a window size of -2/3 this average distance
 as optimal. Similarly, optimal window sizes could be
 determined using semivariogram analysis (e.g., Rob-
 ertson 1987), quadrat variance spatial analysis meth-
 ods (e.g., Gibson and Greig-Smith 1986, Ver Hoef and
 Glenn-Lewin 1989), and multivariate geostatistical
 methods (e.g., Legendre and Fortin 1989). However,
 determining an optimal SMW window size in this man-
 ner assumes that all boundaries are close to the same

 distance apart, and will only be appropriate when this
 assumption is not severely violated.

 We used nonparametric methods for determining
 the statistical significance of scale-independent discon-
 tinuities defined from hierarchical partitioning of a
 pooled, SMW dissimilarity profile. One approach con-
 sisted of calculating test statistics from MRPP between
 the new groups defined at each level of partitioning.
 Traditionally, multivariate comparisons between a
 priori defined groups have been made using multivar-
 iate analysis of variance (MANOVA, for multi-group
 comparisons), Mahalanobis distance and its associ-
 ated Hotelling's T2 test statistic (for pairwise group
 comparisons), and discriminant functions analysis (e.g.,
 Klecka 1980, Pimentel 1983). Proper use of these
 methods requires meeting assumptions of multivariate
 normality and equality of covariance matrices, as-
 sumptions often violated with ecological data. MRPP
 is permutation based, so there are no distributional
 requirements of the data, which makes it more appro-
 priate for many ecological applications (Mielke 1986,
 1991).

 In addition to MRPP, we also examined NMDS or-
 dination diagrams and the overlap in confidence con-
 tours between the centroids of new groups defined by
 each level of partitioning. Such graphical analyses of
 relationships among sample units in ecological data
 have traditionally been made using dimension-reduc-
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 tion ordination techniques based on eigenanalysis (Or-
 l6ci 1978, Legendre and Legendre 1983, Ludwig and
 Reynolds 1988). These ordination methods (e.g., prin-
 cipal components analysis, correspondence analysis or
 reciprocal averaging, and metric multidimensional
 scaling or principal coordinates analysis) assume linear
 relationships among variables, an assumption violated
 by many ecological data (Beals 1973, Orl6ci 1979).
 Other ordination methods (e.g., Gaussian ordination
 and detrended correspondence analysis) have been de-
 veloped to "adjust" for nonlinearity of data, but they
 also stringently assume an underlying structure to the
 data. NMDS is a nonlinear ordination method that

 gives an optimal, reduced-dimension, graphical rep-
 resentation of the relationships among observations in
 a data set, and that assumes no underlying structure
 to the data other than that pairwise dissimilarities in
 the reduced dimensional space are monotonically re-
 lated to dissimilarities in the original n-dimensional
 data space. Thus, NMDS is more appropriate for or-
 dination of most ecological data (see also Kenkel and
 Orl6ci 1986).

 One appealing advantage for using MRPP and NMDS
 to determine the significance of discontinuities iden-
 tified by SMW is that all methods can use the same
 dissimilarity measure. The examples we presented all
 used standard euclidean distance, which makes com-

 parisons between absolute abundances of variables, and
 permits easy geometric interpretation of results. How-
 ever, if data vectors are normalized prior to analysis,
 then results will be based on chord distance, or the
 differences in relative abundances of the variables.

 NMDS and SMW can easily use any dissimilarity met-
 ric. The particular computer program we used for cal-
 culating MRPP test statistics (Mielke 1991) is based
 only on euclidean distance type measures, because their
 behavior is understood enough so that a full permu-
 tation estimate is unnecessary. There is also a full per-
 mutation version of MRPP that can use any dissimi-
 larity measure, but it is extremely computationally
 intensive for large-sample sizes. Thus, the methods we
 have applied here can be modified for probabilistic
 partitioning of serial data using any type of qualitative
 or quantitative dissimilarity measure.

 In summary, we proposed nonparametric methods
 for determining the statistical significance of both scale-
 dependent and scale-independent discontinuities that
 may exist within a data series, as identified by SMW.
 The scale-dependent method compares the peaks in
 SMW dissimilarities relative to a Monte Carlo estimate

 of the mean dissimilarity and standard deviation ex-
 pected for a given series. The scale-independent meth-
 od consists of hierarchical partitioning of a series using
 SMW results pooled from several scale sizes, and the
 calculation of MRPP test statistics and examination of

 overlap in concentration contours in NMDS ordina-
 tion diagrams between the groups defined at each level
 of partitioning. These methods provide valuable, ob-

 jective criteria for determining the potential number
 of statistically significant discontinuities within a data
 series. However, even the simple examples included
 here showed that the methods are not ideal, as they
 sometimes indicated the potential significance of one
 discontinuity more or less than was actually imposed
 in the generated data (type I and type II errors inherent
 to all statistical procedures). However, our methods do
 allow definition of lower and upper limits to the po-
 tential number of statistically significant discontinu-
 ities that may exist, which is valuable information for
 interpreting complex, multivariate data from a long
 spatial or temporal series.
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 APPENDIX 1

 CALCULATION OF SPLIT MOVING-WINDOW
 DISSIMILARITIES

 Consider a data series ofj = 1, 2, 3, ... N ordered positions
 with i = 1, 2, 3, . . V measurement variables at each position.
 X,, is the abundance of the ith variable at the jth position
 along the series. Consider a window of width Q that brackets
 sequential positions along the series, as in the calculation of
 moving averages. A series of length N will have N-Q se-
 quential windows of width Q. If Q is a non-zero, even integer
 <N, then a window of width Q can be split into two equal
 halves, designated by W4 and WB, with each half window
 having Q/2 sequential positions. The location of each window
 can be uniquely defined by the location of its window mid-
 point k + 0.5, where k = Q/2, Q/2 + 1, Q/2 + 2, . . N-Q/
 2. For each window midpoint location the average of each
 variable i in each window half is given by

 W _=- -- Q12
 An1 )., Q/2

 and

 k+Q/2

 Z X1,
 Q/2

 A dissimilarity/similarity index (DSk+o .5) can be calculated
 between each of the resulting N-Q pairs of average vectors.
 For each window midpoint location the standard euclidean
 distance between average, half-window vectors is given by

 DSk+().5 (WAkO5, - WBk+O.5,) 2

 APPENDIX 2

 CALCULATION OF OVERALL EXPECTED
 MEAN DISSIMILARITY AND

 STANDARD DEVIATION

 Using Monte Carlo simulation techniques an expected mean
 dissimilarity can be estimated for an SMW dissimilarity array
 calculated for a given window width Q. Each data vector is
 randomly repositioned along the data series for / = 1, 2, 3,
 . . . M times, and SMW dissimilarities (as in Appendix 1) are
 calculated for each of the re-ordered data sets, resulting in an
 array of dissimilarities, DR k+0 5,. The mean expected dissim-
 ilarity and standard deviation for each k + 0.5 window mid-
 point location along the series is given by

 Wiens, J. A., C. Crawford, and J. R. Gosz. 1985. Boundary
 dynamics as a conceptual framework for studying landscape
 ecosystems. Oikos 45:421-427.

 Wierenga, P. J., J. M. H. Hendrickx, M. H. Nash, J. A. Lud-
 wig, and L. A. Daugherty. 1987. Variation of soil and
 vegetation with distance along a transect in the Chihuahuan
 Desert. Journal of Arid Environments 13:53-63.

 Zimmerman, G. M., H. Goetz, and P. W. Mielke, Jr. 1985.
 Use of an improved statistical method for group compar-
 isons to study effects of prairie fire. Ecology 66:606-611.

 ?4

 M z DRk+0.5/

 DSk+0.5 - M

 and

 L (DR,+0o.5.- DSo+0.5)2

 SD+o.5 1

 and the overall expected mean dissimilarity and average stan-
 dard deviation for the series at window width Q is given by

 N-(2/2

 : DSk+0.5
 DS. = Q/2

 N - Q

 and

 N-Q/2

 2 SDk+o.5
 SD = k=Q/2

 N - Q

 APPENDIX 3

 Z SCORE TRANSFORMATION OF
 SMW DISSIMILARITIES

 For each window midpoint location the SMW dissimilarity
 estimate from a window of a given width can be transformed
 to a standardized variable, or Z score (DZ+o 5), relative to
 the overall expected mean dissimilarity and standard devia-
 tion for that window width (from Appendix 2) by

 DSk,0.5 - DS. DZk+0_5 =
 SD

 APPENDIX 4

 CALCULATION OF POOLED SMW DISTANCES

 For each window midpoint location a pooled SMW dissim-
 ilarity estimate can be calculated from the individual Z score-
 transformed SMW dissimilarities from s = 1, 2, 3, ... T
 different window widths by

 '2 DZ-+o.5,s

 DZk+o.5 = T=l  T

 APPENDIX 5

 CALCULATION OF CONCENTRATION CONTOURS
 AROUND BIVARIATE GROUP CENTROIDS

 Consider a bivariate, orthogonal set of i = 1, 2, 3, ... N
 data points. Each point has ordinate and abscissa coordinates
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 of X, and Y,, respectively. The grand centroid of the data set
 has coordinate positions defined by

 N N
 £- N and Y= - N .

 Consider a new axis A, with angle a relative to the X axis and
 passing through the grand centroid of the set of data points.
 Each point i in the original XY coordinate system can be
 projected onto the new axis, with each coordinate location A,
 being defined as relative to the grand centroid by

 A, = cos a(X, - ) + sin a(Y,- Y).

 The new axis A has a mean (Aa) of zero and standard devi-
 ation of

 Ecology, Vol. 72, No. 6

 (A,- Ay)2

 SD = SD,, N- 1

 Points at locations of + 1 standard deviation from the grand
 centroid along axis A have positions in the original XY co-
 ordinate system of

 X, = X + (cos a SD) and Y4,y = Y + (sin a-SDj).

 If the A axis is rotated at 5° intervals for 180°, and the cal-
 culations given above are repeated at each new axis position,
 a 1 standard deviation concentration contour is defined around

 the grand centroid of the set of points.

This content downloaded from 128.123.176.43 on Fri, 06 Dec 2019 19:01:16 UTC
All use subject to https://about.jstor.org/terms


	Contents
	2057
	2058
	2059
	2060
	2061
	2062
	2063
	2064
	2065
	2066
	2067
	2068
	2069
	2070

	Issue Table of Contents
	Ecology, Vol. 72, No. 6 (Dec., 1991), pp. 1917-2330
	Volume Information [pp. 2313-2330]
	Front Matter
	Special Feature: Remote Sensing in Ecological Studies
	Special Feature: The Future of Remote Sensing in Ecological Studies [p. 1917]
	What Does Remote Sensing Do For Ecology? [pp. 1918-1922]
	Mission to Planet Earth: The Ecological Perspective [pp. 1923-1933]
	Opportunities for Using the Eos Imaging Spectrometers and Synthetic Aperture Radar in Ecological Models [pp. 1934-1945]

	Competition Among Plants Sharing Hummingbird Pollinators: Laboratory Experiments on a Mechanism [pp. 1946-1952]
	Do Tropical Bird-Pollinated Plants Exhibit Density-Dependent Interactions? Field Experiments [pp. 1953-1963]
	Conditions for a Species to Gain Advantage from the Presence of Competitors [pp. 1964-1972]
	Maternal Effects of Temperature on Metabolism in the C_4 Weed Echinochloa Crus-Galli [pp. 1973-1979]
	The Influence of Island and Mainland Lakeshore Landscapes on Boreal Forest Fire Regimes [pp. 1980-1992]
	Fire Intensity Effects on Germination of Shrubs and Herbs in Southern California Chaparral [pp. 1993-2004]
	Structural Stability and Architecture of Vines vs. Shrubs of Poison Oak, Toxicodendron Diversilobum [pp. 2005-2015]
	Nitrogen and Phosphorus Effects on Secondary Succession Dynamics on a Semi-Arid Sagebrush Site [pp. 2016-2024]
	Influences on the Distribution of Carex Exilis: An Experimental Approach [pp. 2025-2037]
	Vegetation and Climate Change in Eastern North America Since the Last Glacial Maximum [pp. 2038-2056]
	On Determining the Statistical Significance of Discontinuities with Ordered Ecological Data [pp. 2057-2070]
	Fine Litter Dynamics within the Tree Canopy of a Tropical Cloud Forest [pp. 2071-2082]
	Phosphorus Availability in Acid Organic Soils of the Lower North Carolina Coastal Plain [pp. 2083-2100]
	Soil, Nitrogen, Phosphorus, and Organic Matter Processing by Earthworms in Tallgrass Prairie [pp. 2101-2109]
	Lifetime Fitness and Evolution of Reproductive Pattern in the Herbivorous Lady Beetle [pp. 2110-2122]
	The Influence of Starvation and Predators on the Mating Behavior of a Semiaquatic Insect [pp. 2123-2136]
	When Do Treatment Differences in Movement Behaviors Produce Observable Differences in Long-Term Displacements? [pp. 2137-2142]
	Does Spatial Scale Affect the Incidence of Density Dependence? A Field Test with Insect Parasitoids [pp. 2143-2154]
	Complex Predator-Prey Interactions within an Estuarine Benthic Community [pp. 2155-2169]
	The Impact of a Stream-Dwelling Harpacticoid Copepod Upon Detritally Associated Bacteria [pp. 2170-2180]
	Habitat Use and Community Structure in an Assemblage of Cottid Fishes [pp. 2181-2192]
	Group Membership Facilitates Feeding of The Herbivorous Sea Slug Placida Dendritica [pp. 2193-2203]
	Age-Specific Weaning Success of Northern Elephant Seals in Relation to Previous Breeding Experience [pp. 2204-2217]
	Life History and Demography of the Common Mud Turtle Kinosternon Subrubrum in South Carolina, USA [pp. 2218-2231]
	The Effect of Ontogeny on Interspecific Interactions in Larval Amphibians [pp. 2232-2239]
	Environmental Causes of Correlations between Age and Size at Metamorphosis in Scaphiopus Multiplicatus [pp. 2240-2248]
	Factors Affecting Gerbil Foraging Behavior and Rates of Owl Predation [pp. 2249-2260]
	Direct Observations of Owls and Heteromyid Rodents: Can Predation Risk Explain Microhabitat Use? [pp. 2261-2273]
	Temperature and The Northern Distributions of Wintering Birds [pp. 2274-2285]
	Notes and Comments
	A Re-Examination of the Use of Interpoint Distances and Least Squares in Mapping Forest Trees [pp. 2286-2289]
	Comparison of Survivorship by the Logrank Test: Criticisms and Alternatives [pp. 2290-2293]
	Stable Isotope Diagrams of Freshwater Food Webs [pp. 2293-2297]

	Reviews
	Review: Saltmarsh Plant Ecology: A Global View? [p. 2298]
	Review: Pristine Neotropics: The Way It Ought to Be (but Isn't) [pp. 2299-2300]
	Review: Plant Community History [pp. 2300-2301]
	Review: Help for Nature Reserve Designers [pp. 2301-2302]
	Review: Biophysical Reductionism Evolving [p. 2302]
	Review: Books and Monographs Received Through July 1991 [pp. 2303-2305]

	Ad Hoc Editors of Manuscripts [p. 2306]
	Reviewers of Manuscripts [pp. 2306-2312]
	Back Matter





