
 April 1982 NOTES AND COMMiEN 000 0 : 579

 Ecology, 63(2), 1982, pp. 579-580

 ? 1982 by the Ecological Society of America

 FACTORS AFFECTING THE

 APPLICABILITY OF THE AET MODEL

 FOR DECOMPOSITION IN

 ARID ENVIRONMENTS

 Ned Z. Elkins, Yosef Steinberger,

 and W. G. Whitford2

 There is considerable interest in the applicability of

 the model developed by Meentemeyer (1978), which

 predicts decomposition as a function of actual evapo-

 transpiration (AET) and lignin, to environments other

 than forests. Whitford et al. (1981b) discussed excep-

 tions to the Meentemeyer AET model in deserts and
 clearcut forests and concluded that in these environ-

 ments, biological activity that is relatively independent

 of AET, such as activity of soil microarthropods and

 termites, accounts for the deviations (higher rates)
 from the model. We recently completed a study of

 decomposition in a semiarid desert-grassland transi-

 tional area that provides another independent test of

 the AET model.

 Our study was conducted at the site of the proposed

 nuclear waste isolation pilot plant 40 km east of Carls-

 bad, New Mexico, USA. Rainfall averages =260 mm/

 yr with most precipitation occurring in late summer

 and autumn, and in late spring. We used litter char-

 acteristic of three plant communities: creosotebush,
 Larrea tridentata, shinnery oak, Quercus harvardii,

 and a mixture of two grasses: black gramma, Boute-

 loua eripoda, and burrograss, Scleropogon brevifolia.

 The creosotebush community is on shallow, sandy-
 loam soils. The shinnery oak community is on deep,

 sandy, unstable soils which form dunes, and the grass

 community is on shallow, silty-loam soils. Forty bags
 of each litter type, containing 10 + 0.2 g of litter per
 bag, were placed on the soil surface in the plant com-
 munity from which the litter was collected. Litter bags

 were 20 x 20 cm fiberglass screen, 1.5-mm mesh size.
 Ten bags were collected at 1 mo, 3 mo, 6 mo, and 1
 yr; mineral soil was separated from the remaining lit-

 ter, and the litter was dried, weighed, and burned in
 a muffle furnace to obtain organic matter loss. Lignin
 content of samples of the original collections was es-
 timated by the Van Soest method (Van Soest 1963).

 We used rainfall data from the National Oceanic and
 Atmospheric Administration station at Potash Com-
 pany of America, 30 km northwest of the site, to es-
 timate actual evapotranspiration. The average lignin
 contents of the litter species were, Q. harvardii:
 10.8 + 0.5%; L. tridentata: 9.5 ? 0.7%; and mixed
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 FIG. 1. Comparison of organic matter loss of three litter
 types in semi-arid ecosystems in southeastern New Mexico.

 grasses: 7.26 + 0.4%. We compared the mass loss

 constant k for the three litter types, where -k =

 ln(Xt) - ln(X0) u t = yr, X( = original mass,
 usingt=IyrX,

 and X, = mean mass remaining at the end of 1 yr. The
 observed and predicted k's respectively, were: L. tri-
 dentata: -2.604 and -0.23; Q. harvardii: -0.23 and

 -0.22; mixed grasses: -0.24 and -0.19. The Meen-

 temeyer model predicted mass losses of 20.8% for L.
 tridentata, 20.54% for Q. harvardii, and 21.3% for the

 mixed grasses. The observed values, + I SD, were
 92.63 + 8.4%, 19.85 + 1.34%, and 17.38 + 1.53%,

 respectively. The pattern of mass losses from the litter
 bags shows that creosotebush litter disappeared ap-
 proximately at the rate predicted by the AET model

 only until autumn (Fig. 1).

 Although no litter bag sets were scheduled for col-
 lection and mass loss measurements in October 1979,

 we examined all litter bags for integrity of the mesh
 and for termite activity. Active groups of termites
 were observed in most of the creosotebush litter bags,

 but no termites were seen in the litter bags containing
 oak leaves or mixed grasses. When the litter bags were
 collected in January 1980, all of the creosotebush litter

 bags contained large quantities of termite gallery ma-
 terial. We therefore conclude that the extremely high
 loss of creosotebush litter was due to transport of the
 leaf material to the below-ground nests of the termites,
 Gnathamiterines tubiforinans. If we extrapolate the
 mass loss of creosotebush in the absence of termite

 feeding, we obtain an estimate of 17.5% at the end of
 1 yr. Fowler and Whitford (1980) reported that G. tub-
 iformans did not eat or harvest creosotebush litter

 from fiberglass mesh bags, but their study was con-
 ducted during a period of heavy rainfall and when large
 quantities of dead ephemerals and grasses were avail-
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 able. Data from this study demonstrate the importance

 of these termites as detritivores in the creosotebush

 habitats. The apparent lack of termite feeding on the

 shinnery oak leaves and mixed grasses may be due to

 the chemical nature of the material or to the low den-

 sities of termites in those habitats (D. T. Schaefer, Jr.
 and W. G. Whitford, personal observation).

 Except for the feeding of termites on the creosote-

 bush leaf litter, Meentemeyer's model provided an ex-

 cellent prediction of decomposition of the oak, Q. har-
 vardii, and predicted slightly higher decomposition of
 mixed grasses than observed. Why should the AET

 model work in these arid systems yet greatly under-

 estimate decomposition in other arid systems (Whit-

 ford et al. 1981b)? One factor that appears to be po-
 tentially important is the extremely low density of

 microarthropods in the heavy shallow soils in the creo-

 sotebush and grass habitats of the Carlsbad site and

 the virtual absence of oribatid mites in all of the soils

 of the Carlsbad site (N. Z. Elkins et al., personal ob-
 servation). The physical properties of the soil could

 affect not only the microarthropod fauna, but also

 deep moisture storage and water vapor movements.
 Water vapor movement has been suggested as a factor
 in the diurnal migration patterns of microarthropods,

 especially oribatids, into surface litter in dry desert
 soils (Whitford et al. 1981al). If these soil factors elim-
 inate the activity of detritivorous micro- and macroar-

 thropods, then mass loss would occur only via micro-
 bial activity, which happens only during periods when
 the litter and soil are moistened by rainfall (K. Sub-

 erkropp and T. Arsuffi, personal communication).
 Another variable to be considered is the quantity of

 litter per unit area. The data reported in Whitford et
 al. (1981b) are for 20 g of litter per bag, which pro-
 duced an accumulation (depth of litter) equivalent to

 2 cm. Whitford et al. (1980) have demonstrated that

 the decomposition of creosotebush litter varies as a

 function of initial litter quantity and that decomposi-

 tion is slow at low initial quantities. The 10 g quantities
 used in this study were probably insufficient to modify
 the microclimate of the soil litter interface. The ab-
 sence of a favorable microclimate would mitigate
 against activity of soil organisms except immediately
 following rain.

 Any combination of these factors is sufficient tc

 cause decomposition to proceed as a physical process

 which varies as a function of actual evapotranspira-
 tion. Deviations in decomposition of grasses from

 from that predicted by AET models could be the result
 of the silica content of the grasses, C:N ratio of this
 material, or other chemical characteristics of the sub-
 strate.

 This study clearly demonstrates that the Meente-

 meyer (1978) model does work in deserts or arid areas
 under certain conditions. Further, it supports the con-

 tention of Whitford et al. (1981b) that we need to know
 more about the factors that influence the activity of

 soil biota in arid ecosystems before we will be able to

 make general predictions about decomposition in such
 environments.
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