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 EXCEPTIONS TO THE AET MODEL.

 DESERTS AND CLEAR-CUT FOREST'

 W. G. Whitford2, V. Meentemeyer:3, T. R. Seastedt4, K. Cro-
 mack, Jr.5, D. A. Crossley, Jr.4, P. Santos27, R. L. Todd4,
 and J. B. Waide 6

 Meentemeyer (1978) developed a model for de-

 composition of litter as a function of actual evapo-
 transpiration (AET) and lignin content. This model is

 a series of linear relationships differentiated by lignin
 content. Meentemeyer tested this model with existing
 data from a number of temperate and boreal forest
 sites. However, in his discussion of the model, Meen-

 temeyer (1978) suggested that these relationships
 might not apply in deserts. Here, we show that the

 attractive correlation between AET and decomposi-
 tion does not necessarily apply to all vegetation types
 nor to severely disturbed sites. Decomposition is

 higher than predicted by the AET model in deserts

 where AET is low, and lower than predicted for a me-

 sic clear-cut forest where AET values are higher than

 uncut forests. We suggest that the attractive simplicity
 of the AET decomposition relationship fails in these

 systems because it does not account for marked

 changes in microclimate produced by ecosystem
 perturbation like clear-cutting, or for biotic adapta-
 tions in desert ecosystems.

 Decomposition Rates on Clear-cut and Hardwood

 Forests at Coweeta

 Decomposition rates of forest litter have previously
 been studied at the Coweeta Hydrologic Laboratory

 in the southern Appalachian Mountains in North Car-

 olina, USA (Cromack and Monk 1975). Those data
 were previously used in development of the AET mod-

 el. In 1977, a hardwood watershed (WS 7) was cable
 logged and clear-cut, and litter decomposition rates

 were measured in 1978 using litter bags. Decompo-
 sition rates were concurrently measured on an adja-

 cent hardwood watershed (WS 2). AET was calculat-

 ed using the Thornwaite method from temperature

 and precipitation data collected on the clear-cut wa-
 tershed. These AET values were then compared with
 decomposition rates of two species of litter measured
 in 1978 and earlier (Table 1). Dogwood (Cornus flor-
 ida) leaf litter with 4.9% lignin and chestnut oak

 (Quercus prinus) leaf litter with 25.5% lignin were
 selected because of differences in lignin content
 (Cromack and Monk 1975). While lignin content ap-
 pears strongly to influence decomposition rates, be-
 tween-year differences should be predictable on the
 basis of differences in AET. The AET model predicted
 lower decomposition rates on WS 2 in 1978 due pri-

 marily to reduced rainfall, and was validated by lower

 measured rates of decomposition. However, the mod-

 el predicted higher decomposition rates on WS 7 fol-
 lowing clear-cutting, primarily because of higher tem-
 peratures, but the measured rates were substantially
 lower than predicted. (The AET value used here is a

 modeled value, and may differ from the AET mea-

 sured by the United States Forest Service for entire
 watersheds at Coweeta.) Summer average maximum
 temperatures at the litter-soil interface on WS 7 in
 1978 were about 400C (R. L. Todd and J. B. Waide,

 personal observation). These high temperatures ad-
 versely affected faunal densities (Seastedt and
 Crossley 1981).

 R. L. Todd and J. B. Waide (personal observation)
 measured CO2 evolution and ATP amounts in litter

 and soil as indicators of microbial activity on WS 7
 before and after clear-cutting. They did not find any

 significant changes resulting from the perturbation,
 suggesting that the rate of decomposition of organic
 matter in the entire soil profile was not appreciably
 altered. However, we suspect that microbial activity
 in the uppermost litter horizons where the litter bags
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 TABLE 1. Actual and predicted annual mass loss (%) of dogwood and chestnut oak litter on various Coweeta watersheds

 based on the AET model (derived from Meentemeyer 1978: Fig. 3).

 Percent mass loss after one year

 Dogwood Chestnut oak AET value

 Site Actual Predicted Actual Predicted (mm)

 WS 18 (Hardwood forest,
 2-yr average, 1969-1971) 71.6 62.8 45.4 40.9 713

 WS 2 (Hardwood forest,
 1977-1978) 47.1 56.6 26.9 36.7 647

 WS 7 (Clear-cut forest,
 1977-1978) 42.0 65.4 19.4 42.6 741

 were located was adversely affected by diurnal and
 longer term wetting and drying cycles that occurred

 on the clear-cut watershed (Witkamp and Frank
 1970). Thus, reduced decomposition rates of the litter

 were attributed to reduced faunal comminution and,

 perhaps, to reduced microfloral respiration activity.
 Certainly the clear-cut watershed experienced pulses

 of extreme temperatures and moisture.

 Decomposition Rates in Deserts

 In desert ecosystems there are many factors which

 affect decomposition rates which cannot be predict-
 ed using the AET model alone. The clear-cut wa-
 tershed at Coweeta is in several respects similar to

 a desert ecosystem. Low leaf area and surface tem-

 perature extremes are notable similarities, yet there
 are many differences. In deserts a portion of the an-
 nual litter fall is buried via interactions between ani-
 mal activities, wind and water. Litter buried in the soil
 has been displaced to a new environment and should

 therefore have a different fate and different rate of
 decomposition than does surface litter (Santos and
 Whitford 1981).

 Santos found that rainfall and soil temperature ac-

 counted for <50% of the variation in mass loss of
 buried creosotebush leaf litter. When arthropods were

 TABLE 2. Percent mass loss of surface litter bags (N = 10
 for each date) placed on gypsum dunes at White Sands
 National Monument, Otero County, New Mexico, in rela-
 tion to AET values. Each bag contained thirty grams of
 oven-dried litter composed of equal portions of green
 stems of Mormon tea (Ephedra trifurca) leaves and small
 twigs of skunkbush sumac (Rhus trilobata) and green
 stems of rabbit brush (Chrysothamnus nauseosus).

 Loss of AET
 Duration of experiment mass (%) (mm)

 January-February (59 d) 19.6 32.0
 March-April (61 d) 25.5 5.4
 June-July (61 d) 30.4 39.0
 15 July-October (102 d) 38.7 93.4
 November-February (120 d) 30.1 102.6

 272.4

 excluded, precipitation and air temperature ex-
 plained 90% of the variation. Santos and Whitford

 (1981) also found that >50% of the surface organic
 matter disappeared during the growing season

 (April-October), over which total rainfall amounted to
 137 mm. Between August and October, 57.4 + 7.7%

 of litter in surface bags disappeared, with a total AET
 for that period of 33 mm. Much of that loss was at-
 tributed to foraging subterranean termites.

 Short-term litter bag studies indicate that mixed lit-

 ter in a desert ecosystem decomposes at a rate equal
 to or greater than that observed over a comparable
 time interval for litter in Southeastern forest ecosys-
 tems (Table 2). Using the annual AET from the White
 Sands Monument (272.4 mm) (Table 2) and lignin val-
 ues of 10% and 50%, Meentemeyer's (1978) model
 predicts percent litter mass loss of 14.21% to 18.23%
 in this desert. Percent mass losses during the summer
 months were double this figure and only the winter

 mass losses approached the annual predicted mass

 loss based on AET and lignin content.
 In the Chihuahuan and Sonoran deserts, activity by

 the surface foraging subterranean termites of the

 genus Gnathamitermes varies as a function of soil
 temperature and moisture (Johnson and Whitford
 1975, La Fage et al. 1976). W. G. Whitford (personal

 observation) found that from mid-August through Oc-
 tober (1979) percent mass losses of a perennial grass,

 fluff-grass, Erioneuron pulchellum, and an annual,
 Lepidium lasiocarpum, on plots with termites elimi-
 nated were 26.05 + 5.75% and 24.4 + 10.05%, re-

 spectively. Where termites were present, 75.79 +
 2.20% and 63.95 + 18.8% of the mass disap-
 peared. This is a 2.9- and 2.6-fold greater rate with
 termites present. Interestingly, this is almost exactly
 the magnitude by which the AET model underesti-
 mates the reported rates for deserts. In the natural litter,
 which was primarily creosotebush leaves and stems
 plus grass and forb fragments, etc., termites removed
 20% more material than disappeared in the absence of
 termites.

 Why should AET be a good predictor of organic
 matter loss in forests but not in deserts? Preliminary
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 studies by W. G. Whitford and his co-workers (per-

 sonal observation) have shown that mean soil tem-

 perature at 10-cm depth explained approximately
 50% of the variation in organic matter loss. However,
 their data are only for short-term studies and losses
 in mass from creosotebush litter are initially high. Soil

 surface temperatures in midsummer reach 60-650C
 and remain there for 3-5 h/d. High temperatures and
 intense radiation could cause breakdown and vola-
 tilization of breakdown products, especially of the wax
 layers and resins on the leaves of desert plants like

 creosotebush, but would also cause intense drying
 and a harsh environment for microarthropods.

 In another study, W. G. Whitford and co-workers

 (personal observation) found that, in July, surface lit-
 ter moisture content (by mass) increased during the
 night and by 2 h after sunrise was 6%. By midday the

 moisture content was a fraction of 1%. They found
 significant populations of oribatids and other mi-

 croarthropods in the litter at 0800 but not at midday

 nor in the evening. It needs to be emphasized here
 that soil biota live where humidities of 90% or greater

 persist even in very dry soil. Also soil organisms can
 migrate vertically and can go into and out of anhy-
 drobiosis to escape harsh surface conditions. Even
 in deserts, in summer, there are "windows" of mod-
 erate surface microclimates in litter, of 2-4 h duration,
 when organisms like oribatids, collembola, etc. can
 feed rapidly and transport quantities of material into
 lower soil for digestion and excretion. The nature and
 causes of these "windows" needs additional re-
 search. Vapor movement upward from warm soil to
 surface litter cooled at night, a process called distil-
 lation, causes, with dew, the condensation of mois-
 ture on litter. Intense biological activity is thereby
 possible daily, but not for all soil organisms.

 Conclusions

 Meentemeyer (1978) recognized that AET was only
 a correlate of some of the actual regulators of decom-
 position processes. Clearly, these regulators are mi-
 crobial activity, faunal consumption, and interactions
 between microbes and fauna that stimulate both biot-
 ic and physical breakdown of litter (e.g., Witkamp and
 Crossley 1966, Witkamp 1969, Vossbrink et al. 1979).
 When temperatures exceed the tolerance limits of the
 forest biota, as likely occurred on the clear-cut wa-
 tershed, then decomposition rates are slowed. In en-
 vironmentally harsh systems such as deserts, the bio-
 ta have evolved mechanisms that ameliorate
 environmental restraints on feeding activity, resulting
 in decomposition rates greater than predicted by the
 AET model. AET is generally a good predictor of de-
 composition rates because it is strongly correlated

 with biotic decomposition processes within a given
 range of temperature and moisture values. If these
 values are exceeded, or if behavioral adaptations of

 the biota circumvent abiotic constraints, then the re-
 lationship between AET and decomposition no longer
 holds.
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