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Abstract: Since the middle of the 20th century, the peak snowpack in the Upper Rio Grande (URG) 
basin of United States has been decreasing. Warming influences snowpack characteristics such as 
snow cover, snow depth, and Snow Water Equivalent (SWE), which can affect runoff quantity and 
timing in snowmelt runoff-dominated river systems of the URG basin. The purpose of this research 
is to investigate which variables are most important in predicting naturalized streamflow and to 
explore variables’ relative importance for streamflow dynamics. We use long term remote sensing 
data for hydrologic analysis and deploy R algorithm for data processing and synthesizing. The data 
is analyzed on a monthly and baseflow/runoff basis for nineteen sub-watersheds in the URG. Vari-
able importance and influence on naturalized streamflow is identified using linear standard regres-
sion with multi-model inference based on the second-order Akaike information criterion (AICc) 
coupled with the intercept only model. Five predictor variables: temperature, precipitation, soil 
moisture, sublimation, and SWE are identified in order of relative importance for streamflow pre-
diction. The most influential variables for streamflow prediction vary temporally between baseflow 
and runoff conditions and spatially by watershed and mountain range. Despite the importance of 
temperature on streamflow, it is not consistently the most important factor in streamflow prediction 
across time and space. The dominance of precipitation over streamflow is more obvious during 
baseflow. The impact of precipitation, SWE, sublimation, and minimum temperature on streamflow 
is evident during the runoff season, but the results vary for different sub-watersheds. The associa-
tion between sublimation and streamflow is positive in the runoff season, which may relate to tem-
perature and requires further research. This research sheds light on the primary drivers and their 
spatial and temporal variability on streamflow generation. This work is critical for predicting how 
warming temperatures will impact water supplies serving society and ecosystems in a changing 
climate.  

Keywords: snowmelt runoff; second-order Akaike information criterion (AICc); streamflow dy-
namics; remotely sensed data; Upper Rio Grande 
 

1. Introduction 
The Rio Grande is deemed one of the most threatened rivers of the Western United 

States [1] and observed snowpack in the Upper Rio Grande (URG) basin is not producing 
the expected runoff per unit of snowpack volume [2]. Various sources have already cited 
drying of the URG [3,4]. The Rio Grande River is the main source of irrigation and mu-
nicipal water within the URG basin [5]. It supplies drinking water to more than 6 million 
people and irrigation water to 2 million acres of land [6]. 

The purpose of this study is to examine which mechanisms are most influential on 
streamflow dynamics in sub-watersheds of the URG basin. Increasing temperatures and 
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decreasing snowpack from heightened snow albedo are deemed as the main drivers re-
ducing streamflow. Regional climate change in the Southwestern US will likely continue 
[7] to affect streamflow dynamics, highlighting the need to better understand streamflow 
variables’ influences in the region.  

Understanding which variables control streamflow and when they are important is 
essential for accurately predicting streamflow. Rather than prediction, this study deter-
mines the relative importance of variables known to influence naturalized streamflow dy-
namics. We expect their relative importance to vary temporally and spatially between wa-
tersheds. 

This study explores the following research questions: (1) which are the most influen-
tial variables for streamflow dynamics? (2) What is the rank of each candidate variable as 
relative importance? Finally, (3) how does this relative importance change over the year 
for different watersheds? Using multiple linear regression models, we employed multi-
modal inference (MMI) based on the second-order Akaike Information Criterion (AICc) 
and computed model-averaged estimates to answer these questions.  

Previous studies explore various established approaches to evaluate variable influ-
ence in estimating runoff [2,5,8–18]; however, very few of these studies have addressed 
the dynamic nature of the influences from a statistical approach. Consequently, there is 
relatively little information available about the variability of variable influence on stream-
flow at a catchment scale, but it is also critical to understand the dynamics of parameters’ 
influence on runoff when focusing on improving prediction accuracy. Many studies over-
look this part while selecting models or assessing performances. We found no study ex-
clusively dedicated to exploring catchment-based variable importance. Thus, the novelty 
of this article is that it first advanced this investigation as an inquiry into variable im-
portance, ranked them, and analyzed the dynamics of influences on streamflow in the 
study area. Exploring the region-specific watershed parameters, the article produced a 
large amount of hydrologic information that can support the forecasting effort by filling 
out the information gap in the literature regarding variable importance.  

1.1. Estimating Streamflow: The Response Variable 
The Upper Rio Grande (URG) basin has been experiencing downward trends in peak 

snowpack from 1951 to 2015, but a consequential long-term decline was not observed in 
the streamflow record [2]. Streamflow has slightly declined in the snowmelt runoff season 
from April–July, but small increases in precipitation offset this trend in streamflow [2]. 
However, Lehner at al. (2017) showed a declining trend in the runoff ratio from the 1980s 
to recent date [8]. They also explained that very low runoff ratios are more likely to be 
associated with above-normal temperatures [8]. This is an indication of further runoff dec-
lination under a continuously warming climate.  

Different modeling groups use different variables and techniques when estimating 
runoff. NRCS uses statistical models that are based on multiple linear regressions, fitting 
a mathematical relationship between predictor variables and target variables, expressed 
through equations [9]. NRCS uses several predictor variables for the regression model 
used to predict seasonal streamflow volume [9,10]. Generally, these predictor variables 
are Snow Water Equivalent (SWE), precipitation, and antecedent streamflow [5,10]. Other 
variables, such as temperature, groundwater levels, and soil water content, are also con-
sidered [5]. Permafrost conditions and snow cover distributions are critical for the ecohy-
drological process of watershed, which is substantially connected to the water supply sys-
tem of the region. Studying several variables such as soil temperature, active-layer thick-
ness (alt), vegetation conditions, etc., at a landscape scale, Zhang et al. found that the fac-
tors influencing permafrost thaw spatially and seasonally vary. These parameters are sen-
sitive to the warming climate and have long-term hydrological and ecological implica-
tions [11]. Seasonal and temporal variation, along with the degrading pattern of perma-
frost, can influence runoff quantity and timing by influencing water release that contrib-
utes to the runoff pattern of the region. 
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However, persistent prediction errors were observed for spring and summer runoff 
in several watersheds in the Southwestern US [5]. These errors are mostly driven by de-
cadal precipitation trends and the effect of increasing temperatures [12]. Inclusion of sea-
sonal temperature forecasts from the Global Circulation Model (GCM) can sufficiently 
reduce forecast errors in the snowmelt-driven streamflow [12]. Likewise, the UA SWE tool 
(University of Arizona Snow Water Equivalent tool) provides better accuracy to estimate 
SWE because it considers projected temperature and precipitation along with the station-
based snow depth and SWE observed in various sites [13].  

The active radar-based sensors can play a significant role in monitoring variables’ 
variability in influencing the freeze–thaw of snow cover. Radar remote sensing has pow-
erful applications, such as synthetic aperture radar (SAR), that are adequately able to cap-
ture and monitor the spatial and temporal heterogeneity of the thawing pattern of perma-
frost [14]. Touzi’s (2006) new scattering vector model allows a polarization basis invariant 
for the representation of coherent target scattering, which is promising for wetland assess-
ment and classification [15]. Microwave radar is considered another reliable tool for mon-
itoring snow cover variability because it has an ability to address the dielectric properties 
of snow [16]. 

The advent of novel techniques in the domain of optical remote sensing (ORS) has 
enriched its ability to map snow cover and permafrost conditions; ORS is now capable of 
addressing the spatial and temporal variability of snow factors [14]. Theia Snow collection 
routinely generates some high-resolution maps where snow cover is accurately detected 
through Sentinel-2 and Landsat-8 observations. Theia Snow products have been success-
fully applied for the evaluation of MODIS snow products; Gascoin (2019) discussed its 
potential applications in permafrost distribution modeling, hydrologic modeling, and 
spatial modeling of ecosystems in mountain regions [17]. However, as an optical-based 
observation system, the Theia Snow collection can’t always adequately define high spatial 
variability of snowpack properties, because optical sensors (e.g., MODIS) can’t capture 
snow cover below the canopy. Kostsfinov at el. (2019) developed a lidar-based method to 
detect snow cover under the canopy by investigating fractional snow cover areas [18]. 

1.2. The Predictor Variables 
This study investigates various watershed factors affecting streamflow dynamics 

during runoff in a warming climate. These eight non-mutually exclusive variables include 
warming temperature, snow cover, snow depth, snow water equivalent, snow albedo, 
precipitation, soil moisture, and sublimation.  

Decreases in snowpack in the Southwestern United States (US) are coupled with sig-
nificant upward trends in temperature. The entire Southwest has been experiencing 
higher than average temperatures (i.e., 2 °F warmer than the long-term average in some 
areas) [19]. Warming can influence snowpack characteristics such as snow cover, snow 
depth, and Snow Water Equivalent (SWE), which can consequently impact runoff quan-
tity and timing in snowmelt runoff-dominated river systems of the URG basin [20]. Snow 
cover is one of the key drivers that influences water supplies in the snowmelt-dominated 
river system, and mapping snow cover is thereby critical for understanding the snowmelt 
runoff hydrology of the catchment [18]. Snow cover is affected by climate change; how-
ever, it also can affect the climate. Unlike other darker surfaces, the whiteness of snow 
reflects solar radiation back to the space, absorbing a small portion (10–20%) of energy 
[21]. That means, more snow cover reflects more energy back to the space, cooling the 
Earth’s surface, while less snow cover reflects less energy and heat up to the surface, ab-
sorbing more energy. Thus, snow cover influences the heating and cooling system of the 
Earth’s surface; spatial distribution of snow cover is quantified by snow depth [22].  

SWE is considered one of the critical factors used to enhance the prediction accuracy 
of snowmelt runoff and streamflow forecasting [23,24] because the spatial variability of 
SWE can largely influence the timing and amount of snowmelt runoff delivery to a 
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watershed [25]. Taking care of the variability of SWE in a hydrologic model can improve 
accuracy in simulating snowmelt runoff dynamics.  

Increasing desert dust changes snow albedo by allowing more absorption of solar 
radiation, which accelerates snowmelt rates and eventually shortens the duration of snow 
cover [26,27]. Changes in snow albedo and increasing temperature can facilitate more ab-
sorption of latent heat to the snowpack that triggers the rate of sublimation [28], which 
eventually causes snowpack reduction [29]. Earlier runoff occurs as a consequence, result-
ing in reduced water supplies post-runoff [26,27,30]. 

Reduced snowfall and simultaneously increased rainfall are a plausible cause of 
snowpack reduction, later affecting estimated runoff volume [2]. Soil moisture is also con-
sidered an important factor for streamflow dynamics, contributing moisture from snow-
melt runoff and precipitation [31]. Lapp et al. (2005) anticipated that increased sublima-
tion due to the upward trend in temperature and lower snow albedo from increased dust 
are the contributing factors to snowpack reduction, affecting runoff volume in the URG 
basin [28,29].  

2. Materials and Methods 
2.1. Study Area 

The Upper Rio Grande basin (Figure 1A) is located on the border of Southern Colo-
rado and Northern New Mexico, USA. Nineteen sub-watersheds are distributed among 3 
mountain groups: The Southern San Juan, The Central Sangre De Cristo, and The South-
ern Sangre De Cristo. In the following Figure 1, the ESRI’s ‘USA Detail Streams’ layer [32] 
was used to show the detailed rivers and streams. The Rio Grande flows from its source, 
the San Juan Mountains, and runs towards lower elevation to the southeast (Figure 1B). 
Many watersheds of the basin are intermittent by nature, and the flow varies accordingly 
(Appendix B). Del Norte, Rio Chama, and Conejos watersheds have the higher streamflow 
volume recorded through the year; all these three watersheds are located in the Southern 
San Juan mountain range. 

The nineteen sub-watersheds are delineated using existing USGS gauging stations 
and digital Elevation Models (DEM) (Table 1). To comprehensively analyze watershed 
variables, all the components’ underlying data must be acquired. We could acquire com-
plete information from the sources cited (Table 2) to adequately analyze the selected 19 
watersheds. Elevation data are extracted using ArcGIS 10.0 [33]; DEMs are downloaded 
from the National Elevation Dataset [34], produced and distributed by the USGS [35]. 
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(A) (B) 

Figure 1. (A) Study Region: The study watersheds and streamlines, (B) Elevation Map: The URG 
basin. 

Table 1. Nineteen sub-watersheds in the URG basin and their associated USGS gauging station 
number, basin area, and elevation range. 

 
USGS Gauging 

Station Basin Area (sq-km) 
Elevation Range 

(m.a.s.l) 
Alamosa 08236000 274 2624–4036 
Conejos 08246500 729 2524–4005 
Costilla Creek 08255500 566 2409–3941 
Culebra 08250000 649 2428–4265 
Del Norte 08220000 3396 2436–4222 
Embudo Creek 08279000 828 1787–3912 
La Jara 08238000 266 2464–3632 
Los Pinos 08248000 395 2454–3716 
Red River below Fish Hatchery near 
Questa 

08266820 290 2276–3988 

Rio Chama below el Vado dam 08285500 1222 2159–3886 
Rio Hondo 08267500 96 2349–3992 
Rio Lucero 08271000 43 2472–3976 
Rio Pueblo de Taos 08269000 150 2262–3892 
Saguache Creek 08227000 1340 2448–4229 
San Antonio-Ortiz 08247500 298 2437–3327 
Santa Cruz 08291000 239 1974–3972 
Santa Fe River 08316000 47 2368–3757 
Trinchera 08240500 137 2601–4113 
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Ute Creek 08242500 104 2459–4351 

Table 2. Variables used in the study and their respective data format and sources. 

Variables Type of Data Unit Source/Organization 

Snow-water 
Equivalent (SWE) 

Raster: monthly 
mean Kg/m2 

Goddard Earth Sciences Data and Information Services Center, or 
GES DISC—National Aeronautics and Space Administration 

(NASA) [36]  

Snow cover 
Raster: monthly 

mean Fraction 
Moderate Resolution Imaging Spectroradiometer (MODIS)—Na-

tional Aeronautics and Space Administration (NASA) [37] 

Temperature 
Raster: monthly 

mean and  
minimum 

Celsius 
(°C) 

Parameter-elevation Regression on Independent Slopes Model 
(PRISM) [38] 

Precipitation Raster: monthly 
mean mm Parameter-elevation Regression on Independent Slopes Model 

(PRISM) [38] 

Sublimation Raster: monthly Watt/m2 
Goddard Earth Sciences Data and Information Services Center, or 

GES DISC—National Aeronautics and Space Administration 
(NASA) [39,40] 

 Naturalized 
Streamflow   

Hydrograph 
Monthly Vol-

ume 
Ac-ft Natural Resources Conservation Service (NRCS) [41] 

Soil Moisture Raster: monthly Kg/m2 
Center for Earth and Environmental Studies, Texas A & M Inter-

national University [39] 

Snow Depth Raster: monthly 
Meter 

(m) 

Goddard Earth Sciences Data and Information Services Center, or 
GES DISC—National Aeronautics and Space Administration 

(NASA) [39,40] 

Snow Albedo Raster Monthly % 
Goddard Earth Sciences Data and Information Services Center, or 

GES DISC—National Aeronautics and Space Administration 
(NASA) [39,42] 

Stream Layer Feature N/A ESRI—Environmental Systems Research Institute [32] 

Basin Boundary Feature N/A USDA Southwest Climate Hub, Jornada Experimental Range 
(JER) [43] 

2.2. Data Description 
Eight predictor variables are considered in this study: temperature, SWE, snow cover, 

snow depth, snow albedo, precipitation, soil moisture, and sublimation. We collected monthly 
time step predictor and response variable data from various sources (Table 2) for a 39-year 
period (August 1980 to July 2019) for 19 sub-watersheds of the URG basin.  

Data Processing 
This study deploys R studio [44] for data processing and statistical analysis. We chose 

to use R to clip raster data for its ability to incorporate watershed border cells, a feature 
which ArcMap lacks (Figure 2). For each sub-watershed, we disaggregated original 
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monthly raster cells to 30 × 30 m cells to be clipped to sub-watershed boundaries. Monthly 
responses for the sub-watersheds are calculated as the average of the disaggregated pix-
els; centroids were within the watershed boundary.  

 
Figure 2. Clipped area in ArcMap (upper right) and R (lower right). 

We used NRCS-adjusted naturalized streamflow data (monthly volume) in the anal-
yses (Appendix A); the naturalized streamflow occasionally has some negative flow val-
ues. The negative values are a result of the naturalization process that NRCS uses for their 
streamflow datasets. The basins have significant regulation though reservoir storage or 
direct diversion, and NRCS adjusted the volume observed at the stream gage to account 
for this regulation when the data are available. Unfortunately, not all extractions ac-
counted for lack of precision. This can lead to negative values in some cases during very 
dry years or low flow months. The streamflow values should be either zero or positive 
and these negative values are the error of the system. This error especially occurs in some 
cases during a very dry year period or low flow period. Moreover, most of our nineteen 
watersheds are intermittent by nature (Appendix A) [45,46]. Therefore, we treated these 
negative streamflow values as zero in our analyses. 

2.3. AICcmodavg’ Package and Second-Order Akaike Information Criterion (AICc) 
The ‘AICcmodavg’ package uses applications for model selection and multimodal 

inference (classic model averaging) for various types of models based on different infor-
mation criteria i.e., Akaike information criterion (AIC), second-order AIC (AICc), QAIC, 
QAICc, and BIC (Bayesian). It has certain types of goodness-of-fit statistics; the package 
also includes features to compute relative variable importance, evidence ratios, and con-
fidence sets for the top model [47,48].  

AICc is particularly suitable for assessing relative variable importance in candidate 
models [47,48]. AICc is a modified version of the more well-known AIC that is adjusted 
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for small sample size (>~30) [49]. Unlike Bayesian Information Criteria (BIC), AICc does 
not assume that the “true” model exists in the candidate model set [50]. Following Cade 
(2015), this method standardizes the predictor variables and streamflow values prior to 
performing regressions [51]. This changes the interpretation of the regression coefficients; 
for example, a predictor variable with a standardized regression coefficient of 0.5 implies 
that an increase in the variable by one standard deviation would result in an increase in 
streamflow by 0.5 standard deviations. This enables AICc-weighted model averaging, but 
interpretations must be informed by acknowledging the distributional differences over 
time. For example, in the Rio Chama sub-watershed, one standard deviation of stream-
flow in January is 1,952-acre feet and increases to 59,117-acre feet in May, while the corre-
sponding standard deviations of minimum temperature are 2.02 and 0.976 degrees Cel-
sius, respectively. 

2.4. Analytical Procedure 
Data for each variable are proportioned into the months of the year for each year on 

record, so that each variable is categorized by a given month from 1980 to 2020. We first 
determined the collinearity of the eight collected variables through Pearson’s correlation 
coefficient to retain variables that are not collinear. Five predictor variables are retained 
for monthly and annual response analyses. These predictor variables are sublimation, 
SWE, soil moisture, minimum temperature, and precipitation.  

Next, Pearson’s correlation coefficients are calculated between streamflow and the 
retained variables for each month of the year to observe relationship changes over the 
year. For the annual responses, we use the operational water year which begins in August 
and ends in July of the next year. Linear regression analyses are conducted at monthly 
and annual base flow and runoff period temporal scales for each sub-watershed. Base flow 
is from August to February and runoff is from March to July.  

Rather than developing a different conceptual model for each sub-watershed and 
temporal scale, we construct a candidate model set of all possible combinations of the five 
variables, yielding 25 − 1 = 31 possible models for each sub-watershed. We then examined 
each temporal scale combination for each sub-watershed using AICc-based multimodal 
inferences to determine variable importance. In addition to the 31 possible models, we 
also include an intercept-only model to account for model uncertainty. After fitting all 
models in each model set, we rank them by order of increasing AICc. In cases where the 
intercept-only model is within two AICc units of the best fitting model we conclude that 
none of the predictor models naturalized streamflow effectively. When the intercept-only 
model is not within two AICc units of the best-fitting model, we use the ‘AICcmodavg’ 
package to compute AICc-weighted model-averaged estimates of each predictor [36,37].  

AICc cannot accurately assess model uncertainty when there is multicollinearity 
among the predictor variables [51]. To account for this, we also assess bivariate Pearson 
correlations between variables in each model set and remove one of the variables in cases 
where the correlation was greater than ± 0.4, resulting in a smaller number of candidate 
variables and therefore a smaller candidate model set. It is necessary to implement a rank-
ing method to decide which variable to remove in each case where correlation exceeded 
the ±0.4 threshold. Since we observed that different rankings changed the results (an in-
teresting finding on its own), we conclude that limiting the process to a single ranked set 
of variables would reveal only a part of the entire picture. Therefore, we repeated the 
process for the 5! /(5 – 5)! = 120 permutations of different possible rankings of the five 
variables, calculating the AICc-weighted model-averaged estimates for each of the 120 
possible orders to accommodate all the possible rankings. We then averaged over the 120 
permutations to produce an overall model-averaged estimate. This analytical strategy has 
never been documented as an approach to explore variable influence in watersheds. Fol-
lowing is the procedural flowchart (Figure 3) for the study. 
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Figure 3. Procedural Flowchart of the analytical process. 

3. Results 
Of the eight initial variables, five noncollinear variables were initially selected, and 

then the study investigated how these variables affect normalized streamflow in 19 sub-
watersheds on a monthly and seasonal basis. Our results indicate that several variables 
are significantly associated with naturalized streamflow in the Upper Rio Grande basin; 
however, the association varies both temporally and spatially. Temperature and 
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precipitation are the most influential factors affecting naturalized streamflow in the URG 
sub-watersheds. The combination of variables impacting streamflow is not consistent, 
varying over time and by sub-watershed. 

3.1. Predictor and Response Variable Colinearity 
The study calculated Pearson’s coefficients of correlation (r) among all the variables 

for each sub-watershed (see supplementary materials). Albedo and snow cover were per-
fectly correlated. Likewise, snow depth and SWE were perfectly correlated. Among the 
eight candidate variables, the results presented that snow cover, snow depth, albedo, and 
SWE have a very high degree of correlation with each other (usually > 0.80). We should 
use no more than one of these four variables; the authors chose to retain SWE and elimi-
nated the other three variables, which reduced candidate predictor variables to five. All 
other remaining variables had lower to moderate (0 ≤ r ≤ 0.59) correlation values [52] for 
different watersheds. Temperature tends to be highly correlated with both albedo and 
snow cover. Thus, five non-collinear predictor variables—temperature, precipitation, soil 
moisture, sublimation, and Snow Water Equivalent (SWE) were selected for further anal-
yses.  

3.2. Predictor Variable Ranking Model 
We evaluated Pearson’s correlation coefficients between streamflow and five predic-

tor variables to identify which variables are strongly correlated with monthly streamflow 
volumes (Appendix C). The results indicate that soil moisture has the strongest correlation 
with streamflow in most sub-watersheds within the URG basin. Precipitation and SWE 
are the next most influential variables that have strong correlations with streamflow, 
though this relationship varies spatially between sub-watersheds.  

We retain important variables for streamflow through AICc-weighted standardized 
parameter estimates and model averaging parameter estimates. The equations are gener-
ated through Multiple Linear Regression (MLR). The higher the absolute value of the 
standardized regression coefficients, the stronger the effect a predictor has on streamflow. 
Figures 4 and 5 illustrate parameter estimates by month with two distinct priority rank-
ings. The initial priority ranking is: (1) Precipitation (PPT), (2) Soil Moisture, (3) Sublima-
tion, (4) SWE, (5) Minimum Temperature. The second priority ranking is: (1) Soil Mois-
ture, (2) Precipitation, (3) Minimum Temperature, (4) SWE, and (5) Sublimation. The rank 
is based on the likelihood of the effect; we also change the rank to evaluate the variations 
in results for different ranks. If a variable is included in the candidate model sets, it ap-
pears in the plots, if only as a faint line at zero. If there is no bar/line, the predictor is 
removed either because it has too many zeros (sublimation and SWE in warmer months), 
it is highly correlated with a more prioritized predictor variable, or it is from a month and 
basin where the intercept-only model was a top performer. The top row is the top ranked 
variable; the second row is the second ranked variable, etc. 
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Figure 4. AICc-weighted standardized parameter estimates based on ± 0.4 bivariate correlation cut-
off, adjusted for intercept-only model. The priority ranking is: 1. Precipitation, 2. Soil Moisture, 3. 
Sublimation, 4. SWE, and 5. Minimum Temperature. 

 
Figure 5. AICc-weighted standardized parameter estimates based on ± 0.4 bivariate correlation cut 
off, adjusted for intercept-only model. The priority ranking is: 1. Soil Moisture, 2. Precipitation, 3. 
Minimum Temperature, 4. SWE, and 5. Sublimation. 

Soil moisture is the least important variable for each sub-watershed (Figures 4 and 
5). By prioritizing soil moisture over precipitation, the large positive effect of precipitation 
on streamflow from August to November is masked. The magnitude of the precipitation 
effect in the initial priority ranking is much larger than the magnitude of soil moisture in 
the second ranking, implying that precipitation has a stronger effect on streamflow than 
soil moisture does.  
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Intercept-Only Model 
It is useful to identify which month(s) and watershed(s) cannot be effectively mod-

eled by the candidate variables. Figure 6 shows “intercept-only” month and watershed 
combinations where the intercept-only model (flat line regression model) is among the 
best-fitting models.  

 
Figure 6. “Intercept-only” model for month and watershed combinations. 

The intercept-only model is never among the best fitting models for the Santa Fe 
River, Embudo, Del Norte, and Chama sub-watersheds. However, for the La Jara sub wa-
tershed, it is the best fitting model for the majority of months of the year, and for the 
Trinchera, the intercept-only model is the best fitting for half of the year. 

3.3. Model with 120 Different Orders 
Since changing the priority order ranking influences the results, we ran models for a 

total of 120 possible orders to accommodate new rankings of the five variables and aver-
aged the results (Figure 7).  
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Figure 7. AICc-weighted standardized parameter estimates, adjusted with intercept-only models. 

There are several combinations of months and basins where SWE and sublimation 
are omitted because they have too many zeros. Therefore, the permutations of the rank-
ings are excluded when SWE or sublimation was the top variable. Some parameter 
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estimates are removed where the intercept-only model is one of the top models. SWE is 
the most influential predictor variable, followed by minimum temperature, precipitation, 
sublimation, and then soil moisture.  

3.4. Interpretation  
3.4.1. Interpretation by Predictor Variables  

Precipitation—From January to April, the influence of precipitation is highly variable 
between watersheds. In May, it becomes positively related to streamflow for most of the 
watersheds, but this relationship is diminished in June and July when the influence of 
minimum temperature becomes more important. Precipitation has the strongest influence 
on streamflow in August, September, and November. This influence is mitigated some-
what in October (and September for some watersheds) by minimum temperature, likely 
due to the onset of freezing conditions. In May, precipitation is positively correlated with 
streamflow for most of the watersheds, but this relationship gradually diminishes in June 
and July when the influence of minimum temperature is more important. A few anomalies 
are identified in the results which are difficult to interpret. For instance, a very strong 
effect of precipitation was found from August to November. It is positively correlated in 
August and September, becomes negative in some sub-watersheds (Trinchera and Rio 
Lucero) in October, and returns to positive in November (Figure 7).  

Soil Moisture—The relationship of soil moisture with streamflow is positive for the 
entire year but is relatively small compared to other variables. 

Sublimation—The effect of sublimation gradually transitions from zero from July to 
December. However, there is some variability in effect between watersheds in the remain-
ing months. In March, sublimation starts to have a negative relationship with streamflow; 
however, it becomes positive in some watersheds in May and June. The effect of sublima-
tion in summer months is separately shown in Appendix B.  

SWE—The influence of SWE is uniformly positive but is missing for several water-
sheds in many months. Lower elevation may account for this. The influence of SWE in 
summer months are illustrated in Appendix B. 

Minimum Temperature—Temperature has the most interesting pattern. Warmer 
conditions in February and March tend to produce more streamflow, whereas warmer 
conditions in June, July, and October produce less streamflow. Its importance in August 
and September is mitigated by precipitation at the height of the monsoon. 

3.4.2. Interpretation by Mountain Range 
Figure 8 illustrates correlations of the predictor variables with streamflow in three 

different mountain ranges (Southern San Juan, Central Sangre De Cristo, and Southern 
Sangre De Cristo). 
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Figure 8. Line plots of monthly correlation of the variables with streamflow. 

Precipitation is positively correlated with streamflow for the entire year for the Cen-
tral Sangre De Cristo Mountain range and varies for the other mountain ranges. SWE also 
shows variability between the mountain ranges. SWE has no association with streamflow 
in the warming period between July and September for the Central Sangre De Cristo and 
the Southern Sangre De Cristo. SWE shows some association with streamflow during the 
warming period in the Southern San Juan range. This can be attributed to the altitude and 
geographic location of the Southern San Juan Mountain range.  

3.5. Estimation of Parameters by Period 
We also calculate annual responses as the mean (soil moisture, minimum tempera-

ture), sum (precipitation, sublimation), and maximum (SWE) of the monthly responses. 
We evaluate the responses for runoff and base flow period. The following Table 3 de-
scribed the aggregation method against each predictor variable. 

Table 3. The data aggregation method for seasonal analysis. 

Variable Aggregation Method 
Naturalized Streamflow Summation of each month of the season 

Snow Water Equivalent (SWE) Monthly Maximum for the season 
Soil Moisture Seasonal average  
Precipitation Summation of each month of the season 
Sublimation Summation of each month of the season 

Minimum Temperature  Seasonal average  
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Next, we run Pearson’s correlation with naturalized streamflow (Figure 9).  

 
Figure 9. Pearson’s correlation coefficients with naturalized streamflow for subbasins of the Upper 
Rio Grande. Outline indicates significance at p = 0.05, color indicates positive or negative correlation, 
and shade corresponds with x. 

Figure 9 indicates a strong correlation between soil moisture and naturalized stream-
flow in the runoff season. The impact of precipitation on the naturalized streamflow is 
evident during base flow conditions. The associations with other variables such as subli-
mation, SWE, and minimum temperature vary by sub-watershed in both seasons. The as-
sociation between mean minimum temperature and streamflow is negative for all water-
sheds during runoff season, whereas it is positive or statistically less during the baseflow 
period.  

3.5.1. Interpretation by Variables and Watershed 
Important variables are further investigated for annual streamflow estimation by 

generating regression equations and analyzing the goodness of fit using AICc-weighted 
standardized parameter estimates based on a 0.4 bivariate correlation cut off, adjusted for 
intercept-only model (taking the overall average). Figure 10 shows the relative influence 
of the predictor five variables on streamflow. We reported those variables which have 
clear line/bar, and we excluded the zero or faint line. 
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Figure 10. Overall average of estimation of parameter by period, with AICc-weighted standardized 
parameter estimates. 

Similar to monthly estimation, important variables are further investigated for an-
nual streamflow estimation through generating regression equations and analyzing good-
ness of fit (i.e., AICc-weighted standardized parameter estimates based on a 0.4 bivariate 
correlation cut off, adjusted for intercept only model, taking overall average). The goal of 
the “overall average” (Figure 10) was to show the relative importance of the five variables 
when explored together on influencing streamflow. 

Precipitation is the most influential variable for normalized streamflow. SWE, tem-
perature, and sublimation are also influential for normalized streamflow, especially dur-
ing the runoff season, but they exhibit more temporal and spatial variability (Figure 10). 
The impact of precipitation on streamflow is consistent in each period for all watersheds 
across the basin. This trend is even more evident during the base flow period from August 
to February. Mean soil moisture is the least influential variable. It has a correlation coeffi-
cient greater than 0.4 with at least one of the other variables in each period for all water-
sheds. Therefore, we discarded this variable from the candidate model set in the periodical 
analysis. Mean minimum temperature is negatively correlated with streamflow during 
the runoff season. Mean minimum temperature varies for different sub-watersheds dur-
ing the base flow period. Higher streamflow is observed with lower minimum tempera-
tures from March to July for all watersheds. This occurrence might be due to less evapo-
transpiration with lower temperatures.  

Maximum SWE is an influential variable during the runoff period. The influence of 
SWE varies for different watersheds in the baseflow period. Total Sublimation demon-
strates a positive association with total stream flow within most sub-watersheds in the 
runoff season. A possible explanation may be that increasing concentrations of dust and 
dry and warm weather conditions accelerate sublimation and snowmelt runoff in the wa-
tersheds. Parameters are tabulated (Table 4) using their priority rank (1–4). Rank 1 
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indicates the most influential variable. For example, the most influential variable for Rio 
Chama during Baseflow is total precipitation. Different colors indicate different mountain 
ranges: Southern San Juan (blue), Central Sangre De Cristo (orange), and Southern Sangre 
De Cristo (green) in the Table 4. 

Table 4. Important Parameters along with their ranks for each of the 19 watersheds. 

 
Important Variables 

Rank of the Parameters: Baseflow Period Rank of the Parameters: Runoff Period 
Rank1  Rank2 Rank3 Rank4 Rank1  Rank2 Rank3 Rank 4 

Rio Chama 
Total Precipita-
tion 

Mean Min. 
Temp. 

Total Subli-
mation 

 
Maximum 
SWE 

Total Sublimation 
Mean Min. 
Temp. 

Total Precipi-
tation 

San Anto-
nio 

Total Precipita-
tion 

Total Subli-
mation 

Maximum 
SWE 

Mean Min. 
Temp. 

Total Subli-
mation 

Maximum SWE 
Mean Min. 
Temp. 

Total Precipi-
tation 

La Jara 
Total Precipita-
tion 

Mean Min. 
Temp. 

Total Subli-
mation 

 
Total Subli-
mation 

Maximum SWE 
Mean Min. 
Temp. 

Total Precipi-
tation 

Los Pinos 
Total Precipita-
tion 

Mean Min. 
Temp. 

 Max. SWE 
Total Subli-
mation 

Maximum SWE 
Mean Min. 
Temp. 

Total Precipi-
tation 

Saguache 
Creek 

Total Precipita-
tion 

Max. SWE 
Mean Min. 
Temp. 

 
Total Pre-
cipitation 

Maximum SWE 
Total Subli-
mation 

Mean Min. 
Temp. 

Conejos 
Total Precipita-
tion 

Mean Min. 
Temp. 

Total Subli-
mation 

 
Maximum 
SWE 

Total Precipita-
tion 

Mean Min. 
Temp. 

Total Sublima-
tion 

Del Norte 
Total Precipita-
tion 

Max. SWE 
Total Subli-
mation 

Mean Min. 
Temp. 

Maximum 
SWE 

Total Precipita-
tion 

Mean Min. 
Temp. 

 

Alamosa 
Total Precipita-
tion 

Total Subli-
mation 

Mean Min. 
Temp. 

 
Maximum 
SWE 

Total Precipita-
tion 

Total Subli-
mation 

Mean Min. 
Temp. 

Embudo 
Creek 

Total Precipita-
tion 

Mean Min. 
Temp. 

Total Subli-
mation 

 
Total Pre-
cipitation 

Maximum SWE 
Total Subli-
mation 

Mean Min. 
Temp. 

Santa Cruz 
Total Precipita-
tion 

   
Total Subli-
mation 

Maximum SWE 
Total Precipi-
tation 

Mean Min. 
Temp. 

Santa Fe 
River 

Total Precipita-
tion 

   
Total Subli-
mation 

Maximum SWE 
Total Precipi-
tation 

Mean Min. 
Temp. 

Rio Pueblo 
de_taos 

No variable    
Total Pre-
cipitation 

Total Sublimation 
Maximum 
SWE 

Mean Min. 
Temp. 

Red River 
Total Precipita-
tion 

   
Total Pre-
cipitation 

Total Sublimation 
Maximum 
SWE 

Mean Min. 
Temp. 

Culebra 
Total Precipita-
tion 

   
Total Pre-
cipitation 

Maximum SWE 
Mean Min. 
Temp. 

Total Sublima-
tion 

Costilla 
Creek 

Total Precipita-
tion 

   
Total Pre-
cipitation 

Maximum SWE 
Mean Min. 
Temp. 

Total Sublima-
tion 

Ute Creek 
Total Precipita-
tion 

   
Total Pre-
cipitation 

Maximum SWE 
Mean Min. 
Temp. 

Total Sublima-
tion 

Rio Hondo 
Total Precipita-
tion 

   
Maximum 
SWE 

Total Precipita-
tion 

Total Subli-
mation 

Mean Min. 
Temp. 

Trinchera 
Total Precipita-
tion 

   
Maximum 
SWE 

Total Sublimation 
Total Precipi-
tation 

Mean Min. 
Temp. 

 
Total Precipita-
tion 

   
Maximum 
SWE 

Total Sublimation 
Total Precipi-
tation 

Mean Min. 
Temp. 

3.5.2. Interpretation by Mountain Range and Season 
Stream flow is largely dependent upon precipitation for all mountain groups 

throughout the year. During baseflow, precipitation is the most influential variable, with 
minimal influence from other variables. Precipitation, SWE, sublimation, and minimum 
temperature are all influential on streamflow during the runoff season for all mountain 
ranges.  
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SWE, sublimation, and minimum temperature have some influence on streamflow 
during baseflow in the Southern San Juan Mountains. This is due in part to the higher 
elevation of the mountain range in the northern part of the study area. SWE, sublimation, 
and minimum temperature have no influence on streamflow during baseflow in the 
Southern Sangre de Cristo Mountains. The exception is the Rio Lucero sub-watershed 
which is located at the highest elevation in the Southern Sangre de Cristo Mountains. Pre-
cipitation is the dominant influence on stream flow in the Central Sangre de Cristo Moun-
tains. SWE and minimum temperature have minimal to nominal influence on streamflow 
in the Central Sangre de Cristo Mountains. 

3.6. Discussion 
An exploratory approach was taken in this article; we framed the analysis as an in-

quiry into variable influence ranking. Five predictor variables were primarily identified 
in order of relative importance as influential for streamflow prediction. The entire study 
was conducted from two different temporal angles, i.e., monthly analysis and seasonally 
by baseflow/runoff period. We retained important variables for streamflow through 
AICc-weighted standardized parameter estimates and model averaging parameter esti-
mates based on ±0.4 bivariate correlation cut off; the equations were generated through 
multiple linear regression (MLR). We accounted for model uncertainty by employing an 
intercept-only model in each candidate model set.  

The results can be reproduced by integrating future hydrologic data of the study 
area; variable influences can be monitored from time to time under regional climate 
change scenarios. This methodology can be replicated in other snowmelt-dominated re-
gions for watershed monitoring and assessment. 

4. Conclusions 
This study explores the influence of candidate predictor variables on naturalized 

streamflow in nineteen sub-watersheds of the URG basin. Our results indicate that the 
predictor variables have variable influences on streamflow, including temporally between 
months and river periods and spatially between sub-watersheds and mountain ranges. 
Despite the importance of temperature on streamflow, it is not consistently the most im-
portant factor in streamflow prediction across time and space. The dominance of precipi-
tation over streamflow is more obvious during baseflow. The impact of precipitation, 
SWE, sublimation, and minimum temperature on streamflow is evident during the runoff 
season, but the results vary for different sub-watersheds. The association between subli-
mation and streamflow is positive in the runoff season, which may relate to temperature 
and requires further research. 

We explore variables fundamental to streamflow generation, leading to a variety of 
local water management implications i.e., modeling, monitoring, etc., in the face of climate 
change in the Upper Rio Grande. The research sheds light on the primary drivers and their 
spatial and temporal variability on streamflow generation. This research on surface water 
hydrology in the URG basin describes various statistics of parameter importance, identi-
fying the main drivers in variable naturalized streamflow. This work is critical for pre-
dicting how warming temperatures will impact water supplies serving society and eco-
systems in a changing climate. This research holds implications for better understanding 
a natural resource critical to the needs of society and a range of ecosystem services. 
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Appendix A. Monthly Mean Naturalized Streamflow for Each Sub Basin 
We generated naturalized streamflow curves for each sub basin with the same y scale 

for each month in the following figure: it not only shows how naturalized stream flow 
varies monthly in watersheds but also it gives an idea over the volumetric distribution of 
the flow across the basin.  

 
Figure A1. Monthly Mean Naturalized Streamflow. 

Appendix B. SWE and Sublimation in Summer Months 
Here are two figures of SWE and sublimation that show annual patterns for each 

watershed. For reference, there are vertical lines in May and September. The months’ 
trends are not the same for each watershed. For example, the Santa Fe River tends to reach 
zero by May, while the Del Norte takes another month or two. 
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Figure A2. SWE in summer months. 
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Figure A3. Sublimation in summer months. 
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Appendix C. Pearson’s Correlation Coefficients with Naturalized Streamflow by 
Month 

We calculated correlation coefficients particularly for each month to investigate how 
the relationships vary monthly. We estimated important parameters for the streamflow 
by separately exploring statistical models for monthly analysis. 

 
Figure A4. Monthly correlation by sub watersheds of the URG basin. 
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