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Soil loss and PM10 emissions from 
agricultural fields in the Junggar Basin over 
the past six decades
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Abstract: The Junggar Basin in north Xinjiang Province is regarded as one of the important 
dust sources in China. There is, however, a lack of information on long-term dust emissions 
originating from the basin. In these largely agricultural communities, wind erosion is a major 
concern that results in a threat to sustainable agriculture and environmental quality. This study 
assesses dust emissions from the agricultural community of the Junggar Basin in north Xinjiang 
based on soil and land use types extracted from remote sensing data in response to weather and 
climate over the past six decades. The Wind Erosion Prediction System (WEPS) was used to 
simulate annual soil loss and PM10 (particulate matter ≤10 μm in aerodynamic diameter) emis-
sions at 11 meteorological stations across the Junggar Basin. From 1958 to 2018, annual soil loss 
and PM10 emissions significantly decreased 3.65 and 0.2 kg m–2 y–1, respectively. This decrease 
was likely due to decreasing wind speed, but also associated with increased precipitation and 
temperature, and decreased solar radiation. Wind erosion occurred most frequently during April 
and May, accounting for 39% of the annual soil loss and 40% of the annual PM10 emission. In 
contrast, no erosion occurred in January, February, and December as a result of low tempera-
ture (<–8.6°C), frozen soil conditions, and snow cover. Wind erosion risk appeared to decrease 
during the past six decades in response to observed climate change across the basin; however 
the southeast part of the basin experienced increasing wind erosion risk over the six decades. 
Projects to control wind erosion risk and combat dust emission should be given priority in 
the southeast part of the basin. Frequency of dust events was compared to simulated erosion; 
a strong linkage was found between simulated soil loss and frequency of dust storms based on 
regression analysis. This demonstrated that the modelling was acceptable in the conditions of 
this study and the results were prone to be reliable.
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The Junggar Basin is a large endorheic 
basin occupying an area of 0.38 million 
km2 in north Xinjiang Province of north-
western China. The basin is characterized by 
a dry climate and scarce water sources due to 
the long distance from the sea. The region is 
surrounded by the Tarbagata mountain range 
to the northwest, Altai mountain range to 
the northeast, and Tian Shan mountain range 
to the south. These tall mountains typically 
intercept most atmospheric moisture trans-
ported toward the basin by prevailing westerly 
winds and greatly influence the atmospheric 
circulation across the region. Due to the 

influence of these tall mountains, the basin 
therefore is characterized by a desert envi-
ronment. Nonetheless, gaps in the Altay and 
Tarbagata mountains in the northwestern part 
of the basin allow the intrusion of air masses 
by prevailing westerly winds. This intrusion of 
air results in a relatively cool and wet environ-
ment in the northwest part of the basin and 
contrasts with the relatively desert environ-
ment in the southwestern part of the basin.

About 37% of the Junggar Basin is covered 
by the Gurbantunggut Desert, which is the 
second largest desert in China. Aeolian loess 
is widely distributed on flat slopes between 

the Gurbantunggut Desert and the moun-
tains around the basin (Fang et al. 2002). 
Agriculture is one of the dominant industries 
in the region. Most of the agricultural fields 
are irrigated to support cropping systems, 
although snowfall and snowmelt dominate 
hydrological processes in the region (Guo and 
Li 2015). Wind erosion is a major concern in 
the basin due to the excessive land exploita-
tion within the semiarid environment (Qian 
et al. 2007; Shao and Dong 2006; Feng et 
al. 2011). Land management activities such as 
crop cultivation can have profound impacts 
on wind erosion processes (Webb and Pierre 
2017). Wind erosion removes the most fertile 
part of the topsoil and causes land degra-
dation and fugitive dust emissions, which 
threaten human and environmental health. 
In addition, wind erosion can negatively 
affect agricultural sustainability and com-
merce by reducing the productive potential 
of soils, as well as impact carbon (C) cycling 
and C stocks, reducing the potential benefits 
of adaptation strategies (Webb et al. 2017).

Severe wind erosion not only occurs in 
the desert environment of the basin, but also 
in agricultural communities. Soil properties 
in agricultural communities are finer as com-
pared to desert environments. For example, 
sand fraction and the mean particle diameter 
are 72% and 366 μm, respectively, at a site 
in the center of the Gurbantunggut Desert 
(Yang et al. 2016). In contrast, sand fraction 
and the mean particle diameter are 32% and 
35 μm, respectively, at an agricultural site on 
the southern edge of the Junggar Basin (Liu 
et al. 2012). In fact, dust emissions occurring 
from agricultural communities as compared 
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to desert environments have a greater impact 
on air quality and land management because 
dust emitted from agricultural lands is finer 
and can be suspended longer in the atmo-
sphere. Evidence from previous studies (Liu 
1985; Pécsi 1990; Ding et al. 1998) indicate 
that the Chinese Loess Plateau was derived 
from wind-blown silt deposits after millions 
of years of accumulation, and the Junggar 
Basin was one of their most important dust 
sources (Liu 1985). The primary soil particle 
size (i.e., 0.005 to 0.05 mm) found in the 
Loess Plateau suggests that sediment of the 
plateau primarily derived from land surface 
features with fine soil texture such as bare 
land currently used for agricultural produc-
tion, degraded meadows, and weathering of 
rocks, rather than desert environments (Liu 
1985; Li et al. 2020c). Assessing wind erosion 
and dust emission in the Junggar Basin may 
be beneficial to understand the deposition of 
the Loess Plateau. The Chinese Loess Plateau 
is a large endorheic plateau (0.64 million 
km2) extending into seven provinces located 
in north China. The plateau is important to 
Chinese history as a result of the early cra-
dles of Chinese civilization and main ancient 
agricultural area. 

Recent studies indicated that Xinjiang 
Province has undergone an “unequivocal” 
change in climate (IPCC 2007; Scott et 
al. 2016; Fu et al. 2013; Deng et al. 2015). 
Precipitation and temperature have increased 
over the last 50 years at rates of 1.325 mm 
y–1 and 0.035°C y–1, respectively (He et al. 
2020). Climate change significantly impacts 
agricultural production, and soil wind 
erosion associated with land degradation 
threatens agroecosystems and increases their 
vulnerability to climate change in a cyclical 
pattern (Webb et al. 2017; Li et al. 2020a). 
Unfortunately, these interactions have largely 
been omitted from assessments of climate 
change impacting agricultural land man-
agement. It is necessary to know whether 
climate change impacts wind erosion in 
agricultural land and can be mitigated by 
adaptive management. Soil wind erosion is 
of particular importance in north Xinjiang 
Province as a result of this region being one 
of the most important sources of Asian dust. 
Quantifying soil loss and PM10 emission and 
interpreting likely responses to management 
is vital for identifying lands susceptible to 
wind erosion and identifying conservation 
practices to mitigate these hazards (Van Pelt 
et al. 2017). 

The lack of long-term continuous obser-
vations of soil loss and PM10 emission has 
precluded assessing the intensity of aeolian 
processes and related wind erosion risk in 
the Junggar Basin response to long-term cli-
mate changes. There is little published work 
documenting windblown soil and PM10 
loss for the Junggar Basin. Song et al. (2016) 
used the integrated wind-erosion modelling 
system (IWEMS) to simulate dust emis-
sions in northern China (including Xinjiang 
Province) over the last 30 years and found the 
dust emissions decreased at the regional scale. 
However, their simulations were restricted 
to spring. Zhang et al. (2019) reported that 
dust emissions in northern China have been 
declining over recent decades, based on sim-
ulations using the Revised Wind Erosion 
Equation Model (RWEQ). In contrast, an 
increase in sand and dust emissions in the 
basin has been reported by Du et al. (2018) 
under more recent climate scenarios based 
on the simulation of IWEMS.

The Wind Erosion Prediction System 
(WEPS) was developed by the USDA 
Agricultural Research Service to specifically 
assess soil wind erosion from agricultural 
lands based on temporal changes in sur-
face parameters (Wagner 2013). The WEPS 
is a continuous, daily time-step and pro-
cess-based model that simulates wind erosion 
of agricultural lands on the basis of seven 
submodels. These submodels include Soil, 
Crop, Hydrology, Residue Decomposition, 
Management, Weather, and Erosion (USDA 
ARS 2020). Prior to the Erosion sub-
model calculating soil loss and deposition, 
the other six submodels simulate changes 
in agricultural land characteristics. These 
characteristics provide the necessary param-
eters required by the Erosion submodel. 
The Erosion submodel is initiated when the 
wind speed exceeds the threshold speed for 
the simulated soil and biomass condition. 
WEPS model simulates spatial and tempo-
ral variability of field conditions and related 
soil loss/deposition within a field. In addi-
tion, the WEPS is the only model to simulate 
process-based PM10 emissions from agricul-
tural land. The WEPS has been used to assess 
wind erosion risk for single wind events or 
discrete wind periods (Hagen 2004; Funk et 
al. 2004), continuous high wind events (Feng 
and Sharratt 2009), single year (Chen et al. 
2014), and future climate scenarios (Sharratt 
et al. 2015).

The WEPS was developed according to 
crop, soil, and weather conditions of the 
United States. As such, the WEPS utilizes 
databases developed in the United States. 
Few crop, soil, and weather databases exist 
outside the United States, limiting the 
application of WEPS at a regional scale 
in China (Pi et al. 2019). Using measured 
data from other countries or simulated data 
from other models and regions to expand 
the initial WEPS databases and thus apply-
ing the WEPS outside the United States is 
an important progress to extend the model 
(Wagner 2013).

We are not aware of any studies that have 
quantified the long-term continuous soil loss 
and PM10 emissions from agricultural lands 
in the Junggar Basin of northwest China. 
Human activities such as tillage and irrigation 
may accelerate or decelerate wind erosion 
intensity and influence wind erosion risk in 
terms of air pollution and land degradation 
under climate change scenario. The objective 
of this study was therefore to assess the tem-
poral and spatial variability in windblown 
soil loss and PM10 emissions from agricul-
tural lands in response to climate during the 
past six decades for locations throughout the 
Junggar Basin of northwest China.

 
Materials and Methods
Climate and weather are necessary data 
required to drive wind erosion models 
(Skidmore 1986). Climate and weather data 
were collected for 11 meteorological stations 
in Junggar Basin of north Xinjiang from 
1958 to 2018 based upon observations taken 
by China Meteorological Data Network 
(CMDN) (http://data.cma.cn/site/index.
html) (figure 1 and table 1). Although the 
network acquires data from 37 automated 
weather stations located in the basin, the 11 
meteorological stations featured in this study 
were chosen based on continuity of weather 
and climate data over the six last decades 
as well as soil and crop types correspond-
ing with the WEPS soil and crop databases. 
Due to the desert environment of the basin, 
human activity relies greatly on snow/glacier 
meltwater from these mountains; as a result, 
agricultural land is distributed along the nar-
row plain between mountains and desert 
(Cheng et al. 2009). All the meteorological 
stations are distributed within the narrow 
low-altitude plain except for Mulei, where 
the topography is a mid-altitude plain (figure 
1 and table 1). These meteorological stations 
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adjacent to or within the plain thus represent 
the typical climate, crop, and soil characters 
of agricultural lands in the basin.

Land surface roughness (e.g., crop cover 
and soil roughness) is one of the most import-
ant factors influencing wind erosion because 
of its essential role in adsorbing momen-
tum from airflow. In the WEPS, absorption 
of momentum modifies the threshold fric-
tion velocity (u*t), friction velocity (u*), 
and aerodynamic roughness (z0) (Shao 
2008; USDA ARS 2020) of surfaces. Crop 
types grown in northern Xinjiang Province 
were downloaded from the Cold and Arid 
Regions Science Data Center, National 
Natural Science Foundation of China 
(http://westdc.westgis.ac.cn) (figure 2a).

Soil type is another essential factor influ-
encing soil wind erosion in WEPS as a result 
of its role in determining soil roughness, 
crust, and aggregate properties. In addition, 
soil type influences the amount of soil par-
ticles potentially available for emissions. 

Figure 1 
Geomorphic features of Junggar Basin in north Xinjiang and locations of the 11 selected meteoro-
logical stations. Station symbols are provided in table 1.
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Table 1 
Geographic location, soil type, and land use characteristics of 11 meteorological stations across the Junggar Basin of Xinjiang Province.

 Meteorological station

 Aletai Bole Caijiahu Tacheng Manasi Mosuowan Mulei Qitai Shihezi Urumqi Wulanwusu
Characteristic (ALT) (BL) (CJH) (TC) (MNS) (MSW) (ML) (QT) (SHZ) (URMQ) (WLWS)

Longitude (°E) 88°05′ 82°04′ 87°32′ 83°00′ 86°12′ 86°06′ 90°17′ 89°34′ 86°03′ 87°39′ 85°49′
Latitude (°N) 47°44′ 44°54′ 44°12′ 46°44′ 44°19′ 45°01′ 43°50′ 44°01′ 44°19′ 43°47′ 44°17′
Elevation (m) 737 533 441 536 315 347 1,272 794 444 936 469
Soil type Meadow  Humus  Humus  Calcimorphic Humus  Saline  Calcimorphic  Fluvo-aquic  Desert  Calcimorphic  Desert
       +stony
USDA soil  Sandy Loamy Loamy Sandy Loamy Loamy Loamy Sandy Sand Sandy Sand
classification* loam sand sand loam sand sand sand clay loam  loam
Land use type Wheat Cotton Cotton Wheat Cotton Cotton Cotton Cotton Cotton Cotton Cotton
Geomorphic  Low- Low- Low- Low- Low- Low- Mid- Low- Low- Low- Low-
features altitude altitude altitude altitude altitude altitude altitude altitude altitude altitude altitude
 plain plain plain plain plain plain plain plain plain plain plain
Sand (g g–1) (0.05  0.854 0.888 0.888 0.608 0.888 0.896 0.918 0.551 0.937 0.608 0.937
to 2.0 mm)
Very fine sand  0.337 0.458 0.458 0.438 0.458 0.421 0.438 0.194 0.747 0.438 0.747
fraction (g g–1) 
(0.05 to 0.1 mm)
Silt (g g–1) (0.002  0.064 0.112 0.112 0.257 0.112 0.070 0.048 0.194 0.024 0.257 0.024
to 0.05 mm)
Clay (g g–1)  0.082 0 0 0.135 0 0.034 0.034 0.255 0.039 0.135 0.039
(<0.002 mm)
Suspension  0.483 0.57 0.57 0.83 0.57 0.525 0.52 0.643 0.81 0.83 0.81
fraction (g g–1) 
(<0.1 mm)†
*USDA soil classification was determined based on the Harmonized World Soil Database.
†Soil particles less than 0.1 mm in diameter are considered to be components of suspension. The suspension content of these soils thus included very 
fine sand, silt, and clay content.
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For example, soil particles <2 mm are the 
component potentially available for imme-
diate erosion, and soil particles >2 mm are 
nonerodible (USDA ARS 2020). The WEPS 
defines wind erosion processes according to 
the transport of soil particles by creep (0.84 
to 2.0 mm), saltation (0.1 to 0.84 mm), sus-
pension (<0.1 mm), and PM10 (<0.01 mm). 
Soil types were downloaded from the Cold 
and Arid Regions Science Data Center, 
National Natural Science Foundation of 

China (figure 2b). These seven soils represent 
45% of the area of the basin.

Climate and Weather Inputs. The WEPS 
model requires climate and weather inputs, 
including monthly and daily average maxi-
mum and minimum temperature (°C), solar 
radiation (Langleys d–1), dew point tempera-
ture (°C), and daily precipitation (mm), and 
the corresponding peak intensity (mm h–1), 
duration (h), and time to peak (h) in pre-
cipitation, as well as hourly wind data. The 

CMDN monitors maximum and minimum 
temperature, daily precipitation, and max-
imum hourly precipitation at 2 m height 
(Peng et al. 2019), but not solar radiation, 
dew point temperature, precipitation inten-
sity, duration, and time to peak. 

Solar radiation influences evapotranspira-
tion and plant productivity, thus potentially 
impacting soil and soil surface properties. 
Solar radiation was estimated by an empiri-
cal linear relationship between solar radiation 
and measured sunshine duration as reported 
by Chen et al. (2005) in Xinjiang Province. 
Dew point temperature was calculated 
from the measured temperature and relative 
humidity using the method of Lawrence 
(2005). Precipitation duration (h) was esti-
mated by dividing daily precipitation (mm) 
by hourly mean precipitation (mm h–1), 
which was estimated based on maximum 
and minimum hourly precipitation (mm 
h–1). The time to peak precipitation intensity 
was assumed to occur halfway through the 
precipitation event (half of the precipitation 
duration). These methods were previously 
used to estimate precipitation duration and 
time to peak by Pi et al. (2019). Pi et al. 
(2019) found that WEPS was insensitive to 
precipitation duration and time to peak pre-
cipitation as a 60% change in time of peak 
intensity resulted in <1% change in soil loss 
by wind erosion in a desert environment 
because precipitation is rare. Precipitation 
duration and time to peak precipitation are 
highly sensitive parameters to soil water ero-
sion in the Water Erosion Prediction Project 
(WEPP) model (Nearing et al. 1990), but not 
in the WEPS (Feng and Sharratt 2005).

The wind inputs required by WEPS 
includes hourly wind speed and daily wind 
direction at a height of 10 m. However, 
hourly wind speed was not continuous from 
1958 to 2018. Missing hourly wind speed 
was estimated using the WEPS weather 
submodel and measured daily average wind 
speed and average maximum wind speed at 
10 m height (equation 1):

U(I) = (umax + umin)/2 + 0.5 × (umax  (1) 
– umin) × cos[2π(24 – hrmax + I)/24] ,

where U(I) is wind speed (m s–1) for the 
Ith hour of the day, umax and umin are daily 
maximum and minimum wind speed (m s–1), 
and hrmax is the hour of the day when wind 
speed is maximum (USDA ARS 2020). Wind 
speeds are generally close to a Weibull dis-

Figure 2 
(a) Land use type and annual mean loss of soil loss, and (b) soil type and annual mean PM10 
emissions from 1958 to 2018 across 11 meteorological stations within the Junggar Basin of north 
Xinjiang. Station symbols are provided in table 1.
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tribution with time (Skidmore and Tatarko 
1990). Since hrmax and umin were not avail-
able for any station, we assumed hrmax was 
12 and the daily umin was 0 m s–1 (USDA 
ARS 2020). The WEPS erosion submodel 
is initiated when the wind speed exceeds 
the threshold speed. The WEPS assumes the 
minimum threshold wind speed to be 5 m 
s–1 at a height of 10 m. When the maximum 
or average wind speed exceeded 5 m s–1, the 

model begins to simulate erosion (USDA 
ARS 2020).

 Threshold wind speed in WEPS is a 
dynamic parameter, with adjustments above 
this minimum threshold made as a result 
of changing plant, crust, and soil aggregate 
properties over time. The Junggar Basin is 
dominated by westerly winds (Pi et al. 2014), 
which originate from gaps in the mountains 
located northwest of the basin. These gaps 
in the mountains allow intrusion of con-

tinental air masses (westerly winds) to the 
Junggar Basin (Pi et al. 2017b; Dong et al. 
2000). However, the Tianshan Mountains 
located south of the Junggar Basin constrain 
atmospheric circulation within the basin 
and result in southwesterly winds at selected 
weather stations (table 2).

Soil, Crop, and Management Inputs. The 
soil, crop types, and corresponding agricul-
tural management practices at the selected 
meteorological stations must match the 

Table 2 
Time series trends in the annual precipitation, solar radiation, average air temperature, average relative humidity, average wind speed, simulated soil 
loss, and PM10 emission from 1958 to 2018 in the Junggar Basin.

  Meteorological station

Parameters  Aletai  Tacheng  Bole  Mosuowan  Shihezi Wulanwusu  Manasi  Caijiahu  Qitai  Urumqi Mulei  Mean

Annual  Mean 198.4 293.6 198.4 141.5 212.7 203.8 176.0 144.2 195.3 262.1 309.5 212.3
precipitation  Trend rate* 1.266 0.614 0.904 1.389 0.390 1.499 1.070 0.646 1.029 1.070 0.316 0.93
(mm) Significance  99 No 95 99 No 99 No 95 99 95 99 99
 level (%)
Annual solar  Mean 125,424 122,487 113,396 115,209 113,578 120,704 109,436 118,985 123,535 112,444 125,989 118,289
radiation  Trend rate 382.3 –72.1 –237.9 –48.7 –212.3 –52.9 346.4 –125.9 –295.4 –62.3 –284.7 –16.3
(Langleys) Significance No 95 99 No 99 No 99 99 99 90 90 99
 level (%)
Annual  Mean 4.63 7.24 6.49 7.00 7.62 7.28 6.97 6.36 5.35 7.30 5.61 6.5
temperature  Trend rate 0.032 0.050 0.040 0.044 0.036 0.024 0.054 0.031 0.023 0.026 0.032 0.03
(°C) Significance 99 99 99 99 99 99 99 99 99 99 99 99
 level (%)
Annual  Mean 58.3 59.4 65.9 60.2 63.6 64.7 59.7 60.4 60.7 57.5 54.8 60.5
relative  Trend rate 0.242 –0.120 –0.080 –0.042 –0.078 0.000 0.302 0.018 0.006 –0.043 0.056 0.04
humidity (%) Significance 99 99 99 90 99 No 95 No No 90 99 No
 level (%)
Annual wind  Mean 2.26 2.30 1.69 1.74 1.47 1.66 1.98 1.85 2.93 2.43 3.63 2.2
speed (m s–1) Trend rate –0.009 –0.011 –0.015 –0.007 –0.007 –0.013 –0.011 –0.010 –0.024 –0.009 –0.025 –0.01
 Significance 99 99 99 99 99 99 99 99 99 99 99 99
 level (%)
Annual max.  Mean 5.80 5.85 4.14 4.22 4.10 4.27 5.84 4.63 6.05 5.51 6.53 5.2
wind speed  Trend rate –0.017 –0.057 –0.029 –0.022 –0.012 –0.026 –0.012 –0.020 –0.039 –0.014 –0.057 –0.03
(m s–1) Significance 99 99 99 99 99 99 99 99 99 99 95 99
 level (%)
Annual wind  Mean 145.65 196.16 206.33 180.22 181.77 208.86 191.78 188.08 222.22 222.52 236.05 198.14
direction  Trend rate 0.92 0.37 –1.34 0.12 1.47 1.44 0.29 1.0 –0.15 –0.89 –0.33 1.0
(degrees) Significance 99 No No No 99 No 99 95 No 99 95 No
 level (%)
Annual total  Mean 41.5  9.0  0.02  98.4  7.8  22.6  252.5  105.9  138.4  105.1  344.5  102.3
soil loss  Trend rate –4.83  –1.53  No  –7.19  –4.11  –6.26  –5.15  –4.70  –6.98  –4.97  –6.10  –3.65
(kg m–2 y–1) Significance 99 90 No 99 99 99 99 99 99 99 99 99
 level (%)
Annual PM10  Mean 3.6  0.6  0.001  5.0  0.5  1.8  13.0  5.4  7.0  5.5  18.0  5.5
loss  Trend rate –4.83  –1.53  No  –7.14  –4.08  –6.24  –5.24  –4.72  –6.98  –4.93  –5.91  –0.0248
(kg m–2 y–1) Significance 99 90 No 99 99 99 99 99 99 99 99 99
 level (%)
Daily soil  Mean 6.33 5.07 1.21 6.81 5.92 5.65 7.07 6.58 5.66 7.29 8.21 5.98
loss†  Standard 2.01 5.68 0 11.14 6.53 7.21 9.58 7.11 7.40 13.72 9.98 7.03
(kg m–2 d–1) deviation
*Time series trends in the annual precipitation, solar radiation, average air temperature, average relative humidity, average wind speed, soil, and PM10 
loss from 1958 to 2018 in the Junggar Basin were based on the Mann-Kendall trend test. 
†Daily soil loss was from the day when the simulated erosion was not zero.

C
opyright ©

 2021 Soil and W
ater C

onservation Society. A
ll rights reserved.

 
w

w
w

.sw
cs.org

 (): 
Journal of Soil and W

ater C
onservation

http://www.swcs.org


6 JOURNAL OF SOIL AND WATER CONSERVATIONPI ET AL.

WEPS soil and crop databases when sim-
ulating wind erosion. The WEPS soil and 
crop submodels use the WEPS soil and crop 
databases to estimate changes in soil wind 
erodibility and plant growth, both of which 
directly influence wind erosion parameters 
such as the soil particle size distribution, 
organic matter, and crop leaf and stem area 
index and height (USDA ARS 2020). The 
WEPS databases include files for over 1,000 
soil types and 111 crop management practices. 
For each crop type, WEPS crop management 
practices provide a series of field practices 
such as seeding, tillage, break crust, or flat-
ten standing biomass and bury flat biomass 
(USDA ARS 2020). For this study, default 
WEPS files were selected according to char-
acteristic soil and crop types at each of the 11 
stations (table 1). There were six observed soil 
types and two crop types (wheat [Tritcum aes-
tivum L.] and cotton [Gossypium hirsutum L.]) 
that corresponded with the WEPS soil and 
crop databases across the 11 stations. Cotton 
is a very common crop in north Xinjiang. 
Cotton production in Xinjiang accounts for 
54% of the total in China (Li et al. 2020a). 
The Junggar Basin is characterized by a desert 
environment; most of the agricultural fields 
are irrigated. However, no irrigation regime 
could be referred at the 11 stations. Based on 
several interviews to examine farmers’ irri-
gation decisions with respect to their choice 
of irrigation regime, amount, and time, we 
subjectively used three irrigations (51 mm, 
Border, Furrow) before and after seeding in 
these crop management practices. Crop row 
direction was subjectively considered to be 0 
degrees based on several fields’ observations.

Confidence in using WEPS to Simulate 
Soil Loss and PM10 Emissions. The lack 
of long-term continuous observations of 
soil loss and PM10 emissions has precluded 
validating and improving wind erosion mod-
els, particularly in Asian dust source regions 
(Shao and Dong 2006; Shao 2008; Pi et al. 
2019). Measuring long-term wind erosion is 
generally costly and time consuming (Raei 
et al. 2021). We are not aware of any long-
term wind erosion measurements in north 
Xinjiang Province. In addition, there is lim-
ited data available on dust concentrations 
in Xinjiang Province for model validation 
(Shao and Dong 2006). To overcome this 
limitation, we used dust event frequency at 
meteorological stations to associate the sim-
ulated soil loss and PM10 emission, although 
the comparison was limited. Based on 

observed visibility, dust events were divided 
into floating dust (<10 km), blowing dust 
(0.1 to 10 km), and dust storm (<0.1 km) 
(Pi et al. 2017b). Dust frequencies and asso-
ciated dust visibilities and concentrations 
are strongly related to soil wind erosion, 
because dust emissions due to wind erosion 
contributed most of the dust concentrations. 
Dust event data were obtained from the 
National Climatic Centre of China, China 
Meteorological Administration (http://data.
cma.cn/site/index.html).

Dust climatology in terms of dust storm 
frequency and seasonal variations in Xinjiang 
Province have been described by Piet al. 
(2017a). For this study, we simulated annual 
soil loss and PM10 emissions each year at 11 
meteorological stations from 1958 to 2018 
because those stations represented the long-
term average in number of dust storms across 
the region. Our long-term simulation of soil 
loss and PM10 emissions sought to provide 
insights to annual dust emissions that might 
be expected for various crop and soil types in 
north Xinjiang.

Statistical Analysis and Model Validation. 
The Mann-Kendall trend test was used to 
examine whether time series trends have a 
monotonic upward or downward trend in 
meteorological parameters, simulated soil 
loss, and PM10 emissions from 1958 to 2018. 
Trends were based on averages of simulated 
soil loss, measured precipitation, and wind 
speed across all stations within a region. The 
application of the test requires the elements 
of a time series (x1, x2, x3,…,xn) be replaced 
by their ranks (R1, R2, R3,…, Rn). The time 
series is evaluated using test statistic S, which 
is expressed as equation 2:

S = sgn(xj – xi)
n–1

n

i=1 j=i+1∑ ∑  , (2)

where

sgn(xj – xi) =

+1    if (xj – xi) > 0

–1    if (xj – xi) < 0
0    if (xj – xi) = 0





  

, (3)

where sgn is the sign function or signum 
function. A negative S indicates a negative 
trend in the time series and a positive S 
indicates a positive trend in the time series. 
The test statistic S is assumed to be normally 
distributed with a mean zero and variance 
(Var[s]) equal to n(n – 1)(2n + 5)/18 (Hamed 
2008). The standard normal variate Z was 

used to assess the significance of the time 
series according to equation 4:

Z =

s > 0
s – 1

0
s + 1

s < 0
s = 0





Var(s)√

Var(s)√

 
 (4)

                             .

Regression analysis was also used to set up 
the relationship between simulated erosion 
and meteorological parameter to examine 
how climate-change can influence land deg-
radation and soil wind erosion. Regression 
analysis also was used to examine the rela-
tionship between simulated erosion and 
frequency of dust events to assess these sim-
ulated results. 

Results and Discussion
Spatial Distribution and Temporal Trends 
of Meteorological Parameters. Significant 
monotonic upward or downward trends 
(figure 3) were found in all major meteoro-
logical parameters across stations as the time 
series trend at the 99% level of confidence 
based on the Mann-Kendall nonparametric 
test except annual average relative humidity 
(table 2). The trends in annual precipita-
tion and average temperature indicated an 
increase of 0.93 mm y–1 and 0.03°C y–1, 
respectively, from 1958 to 2018. The trends 
in annual solar radiation, average wind speed, 
and average maximum wind speed at 10 m 
height appeared to decrease at 16.3 Lang y–1, 
0.01 m s–1 y–1, and 0.03 m s–1 y–1, respectively 
(table 2), over the six decades. The signifi-
cant trends we found in most meteorological 
parameters indicated that northern Xinjiang 
Province has undergone an “unequivocal” 
change in climate (IPCC 2007; Scott et al. 
2016; Fu et al. 2013; Deng et al. 2015), and 
appeared to synchronize with global-scale 
climate signal as reported by Wu et al. (2010). 
Weakening of the Arctic oscillation (AO) and 
Siberian High may relate to the weak wind 
activities of the basin (Shao et al. 2013).

The Aletai station in northern Junggar 
Basin is relatively cool and wet as it has the 
lowest annual average temperature and rela-
tively high annual precipitation and average 
relative humidity as compared with other 
stations in southern Junggar Basin (e.g., 
Manasi station). This may be due to moist 
and cold air masses intruding the basin from 
the northwest (Huang et al. 2017). These 
moist and cold air masses are gradually 
depleted of moisture when they pass through 
the Gurbantunggut Desert. 
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further away from the Tian Shan Mountains 
(adjacent to the Gurbantunggut Desert) and 
thus is characterized by a dry environment. 

Temporal Trends of Soil Loss and PM10 
Emissions. Our simulations show that soil loss 
and PM10 emissions decreased from 1958 
to 2018 across stations in the Junggar Basin. 
The time series trends of mean soil loss and 
PM10 emission were significant at the 95% 
confidence level based on the Mann-Kendall 
nonparametric trend tests. The trends in 
mean annual total soil loss and PM10 emis-
sion indicated a decrease of 3.65 and 0.20 kg 
m–2 y–1, respectively (table 2 and figure 3a), 
over the six decades. The time series trend 
was negative at the 90% confidence level for 
all the 11 stations except at Bole, where sim-
ulated soil loss only occurred in 2008 with a 
value of 1.20 kg m–2 (figure 3a). In all other 
years, no soil loss or PM10 emission was sim-
ulated at the Bole station. This can be due 
to the lower annual average maximum wind 
speed (4.14 m s–1, second smallest in all the 
stations) and greater annual average relative 
humidity (65.9%, greatest of all the stations). 
The relative humidity is a factor suppressing 
wind erosion (Mckenna Neuman 2003). The 
relative humidity appeared to influence sim-
ulated wind erosion at the semiarid study sites 
based on a greater coefficient of regression 
(table 3), although not statistically significant 
(discussed in the next section). This finding 
is consistent with previous research in which 
decreasing dust activities has been detected 
in northern China (Song et al. 2016; Zhang 
et al. 2019). 

Wind erosion was frequent and severe 
in April and May during which the aver-
age simulated soil losses were 19.0 and 
21.7 kg m–2, respectively (figure 4). This is 
not surprising because April and May had 
greater average wind speed and lower rel-
ative humidity and maximum wind speed 
as compared with other months (figure 4). 
Spring has been considered the season with 
the most frequent dust storms in northern 
China (Zhou and Zhang 2003). The WEPS 
model simulated no erosion at any station 
in December, January, and February, due to 
weak winds, low temperatures, and consid-
erable precipitation (figure 4), the latter two 
of which resulted in snow cover and frozen 
topsoils unavailable for emissions (USDA 
ARS 2020)—evidence that the average tem-
peratures in December, January, and February 
were <–8.6°C. However, these results appear 
to contrast with Li et al. (2020b), in which 

Figure 3 
(a) Time series of annual mean loss of soil from 1958 to 2018 at all the stations of Junggar Basin 
except Mulei, and (b) annual mean soil loss and wind speed at Mulei from 1958 to 2018.
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y = –3.65x + 7,349.2
R2 = 0.58, p < 0.001

y = –0.0248x + 52.955
R2 = 0.64, p < 0.001

y = –11.132x + 22,475
R2 = 0.36, p < 0.001

South Junggar Basin is relatively warm 
and dry, but temperature, precipitation, and 
humidity varied among adjacent stations. For 
example, Mosowan has the lowest annual 
precipitation with an average of 141.5 mm 
y–1, which was half that at Urumqi. However, 
Mosowan was only 180 km northwest of 
Urumqi. The greater variation of climatic 
conditions among adjacent stations has been 

due to the varied topography and elevation 
(Pi et al. 2017b). Snowfall and snowmelt 
dominate the hydrological process of south-
ern Junggar Basin (Guo and Li 2015). 
Urumqi, for example, which is in close 
proximity to the Tian Shan Mountains, may 
have a relatively wet climate and plentiful 
water sources to support dense vegetation. 
The Mosowan station, in contrast, is located 
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2016; Zheng et al. 2016; Song et al. 2016), 
but we are not aware of any studies that have 
observed wind erosion events during winter 
in the region.

they simulated greater soil loss in winter 
(December, January, and February) from 
1986 to 2099 in Central Asia, using the 
RWEQ in northern Xinjiang Province, but 
this is not surprising because RWEQ fails to 

consider changes in soil conditions associated 
with freezing (Fryrear et al. 1998). Previous 
studies have reported frequent wind ero-
sion events in northwestern China during 
spring (Shao and Wang 2003; Pi et al. 2014, 

Table 3 
Regression of soil loss and PM10 emission versus various meteorological parameters from 1958 to 2018 in the Junggar Basin.

 Regression model*

Meteorological parameters Soil loss (kg m–2) PM10 emission (kg m–2)

Annual precipitation (mm) y = 0.461x, R2 = 0.48, P = 0.0001† y = –0.0248x, R2 = 0.48, P = 0.001
Annual solar radiation (Langleys d–1) y = 0.001x, R2 = 0.62, P = 0.003 y = 0.00005x, R2 = 0.62, P = 0.004
Annual average temperature (°C) y = 16.0x, R2 = 0.53, P = 0.007 y = 0.86x, R2 = 0.53, P = 0.005
Annual average relative humidity (%) y = 1.842x, R2 = 0.59, P = 0.609 y = 0.099x, R2 = 0.59, P = 0.587
Annual average wind speed (m s–1) y = 49.2x, R2 = 0.70, P = 0.0001 y = 2.646x, R2 = 0.70, P = 0.0001
Annual average maximum wind speed (m s–1) y = 20.9x, R2 = 0.69, P = 0.0001 y = 1.123x, R2 = 0.69, P = 0.0001
Annual average wind direction (degrees) y = 0.632x, R2 = 0.59, P = 0.0001 y = 0.034x, R2 = 0.60, P = 0.0001
*Regression model: y is value of the soil loss and PM10 emission (kg m–2), x is value of a meteorological parameters.
†P value <0.05 means that y is significantly associated with x at the 95% confidence level.

Figure 4 
Monthly meteorological parameters and simulated monthly soil loss and PM10 emissions averaged across 11 meteorological stations in Junggar Basin 
of north Xinjiang. 
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Spatial Distribution of Soil Loss and PM10 
Emissions. The highest single year soil loss 
and PM10 emissions occurred at Mulei in 
1982. Cotton was grown on a Calcimorphic 
soil in 1982 at this station (figure 2a), and 
simulated total soil loss and PM10 emission 
at this station in 1982 reached 1,594.5 and 
86.6 kg m–2, respectively. This soil loss and 
PM10 emission was greater than the total 
loss of soil and PM10 emissions at Tacheng 
(541.7 and 38.3 kg m–2), Bole (1.2 and 0.1 
kg m–2), Shihezi (470.1 and 32.4 kg m–2), and 
Wulanwusu (1,357.1 and 108.8 kg m–2) over 
the past six decades. The average wind speed 
and average maximum wind speed at 10 m 
height at Mulei in 1982 reached 4.87 and 
5.92 m s–1, respectively, which were greater 
than that in any other years, at other sites. 
The highest loss of soil and PM10 emission 
thus appeared to correspond with the great-
est wind energy.

The WEPS simulated no annual erosion 
at least once at all the 11 weather stations 
except Mulei (figure 3). For example, there 
was no simulated erosion in 2006 and 2017 
at Qitai although the mean annual soil loss 
reached 138.4 kg m–2 y–1 at the site. The 
lowest soil loss (1.69 kg m–2 y–1) at Mulei 
occurred in 2008. In contrast, there was 
very limited wind erosion risk at Bole as a 
result of no simulated erosion during the 60 
years except in 2008. In 2008, the simulated 
total loss of soil and PM10 emission in Bole 
were 1.2 and 0.1 kg m–2, respectively. Despite 
Mulei appearing to have the highest peren-
nial wind erosion risk and Bole appearing to 
have the lowest perennial wind erosion risk 
as compared with any other sites in the basin 
(table 2), both stations appeared to have the 
same amount of soil loss in 2008 (figure 3). 
This indicated that wind erosion risk var-
ied not only among stations, but also years. 
The highest single year soil loss at Manasi 
(962.6 kg m–2 y–1) occurred in 1975, whereas 
soil loss during the same year at Mulei was 
681.3 kg m–2 y–1. This suggested that the dust 
hotspot source areas changed considerably 
from year to year within the basin. 

Regression analysis of annual soil loss as a 
function of annual average wind speed and 
wind direction had the highest coefficient 
of determination (R2 = 0.70) as compared 
with relationships between annual soil loss 
and other major meteorological parameters 
(table 3). These results indicated that annual 
soil loss was influenced primarily by the 
driving force of the wind. The coefficients 

of determination of the correlation analy-
sis for annual precipitation, solar radiation, 
average temperature, and relative humidity 
varied and ranged from 0.48 for precipitation 
to 0.62 for solar radiation, which suggested 
there are statistical significances between soil 
loss and precipitation, solar radiation, tem-
perature, as well as wind direction (table 3). 
These parameters thus may directly or indi-
rectly impact annual soil loss as a result of 
influencing the erodibility of sites through 
the threshold friction velocity and plant and 
soil surface properties. Higher precipita-
tion and temperature are beneficial to plant 
productivity at these sites (Sala et al. 1988; 
Grace 1988), thus potentially increasing the 
threshold friction velocity and reducing the 
erosion rate. Wind is the primary factor driv-
ing wind erosion, and lower solar radiation 
is associated with greater soil surface water 
content (Li et al. 2016). Drier cropland soils 
typically are more susceptible to erosion 
due to their lower inter-particle cohesion. 
Lower solar radiation and wind speed may 
reverse this effect. The simulated reduction 
in erosion at all the 11 stations was directly 
associated with decreasing wind speed and 
indirectly with increasing annual precipita-
tion and temperature and decreasing solar 
radiation. A relatively poor relationship (R2 
= 0.48) was found between precipitation 
and simulated soil loss as compared with 
other meteorological parameters. This could 
be due to the impact of irrigation practices, 
which can suppress wind erosion. Humidity 
appeared to influence simulated annual wind 
erosion at the semiarid study sites based on 
a greater coefficient of regression (table 3), 
although not statistically significant. This 
finding is consistent with previous research 
and highlights the active role of the “warm-
ing climate” in restraining wind erosion 
activities (Song et al. 2016; Zhang et al. 2019). 

Wind direction impacts soil wind ero-
sion as a result of influencing aerodynamic 
roughness. Aerodynamic roughness is also 
dependent on roughness element configu-
rations such as ridge height and orientation, 
crop row orientation, and barrier direction 
(Burri et al. 2011; Webb et al. 2014; USDA 
ARS 2020). Pi et al. (2020) found crop rows 
oriented perpendicular to the wind resulted 
in the smallest soil loss while crop rows ori-
ented parallel to the wind resulted in the 
greatest soil loss. Prevailing winds were from 
the southwest for these selected weather sta-
tions. As a result, northerly orientation of 

crop rows and ridges were considered to be 
effective in reducing soil wind erosion. For 
example, though the annual total soil loss 
reached 344.5 kg m–2 y–1 at Mulei, soil loss 
may be more severe if prevailing wind were 
from 236° to 180° (table 2). In this study, no 
barriers were placed along simulated bound-
aries based on Pi et al. (2019).

As expected, annual soil loss and PM10 
emissions were respectively 1.57 and 1.34 
times greater from cotton as compared with 
wheat. Soil erodibility is typically greater for 
cotton than wheat fields as a result of rela-
tively low plant protection in cotton fields. 
For example, Pi et al. (2017a) reported that 
average soil loss was 95.3 g m–2 from cotton 
fields and 31.4 g m–2 from wheat fields across 
two years.

The highest loss of soil and PM10 emission 
occurred at Mulei. The Mulei station had 
the greatest annual average and maximum 
wind speed (table 2). This is not surprising 
because Mulei was in close proximity to 
what is regionally known as the “hundred 
miles wind area” where a gap in the Tian 
Shan Mountains causes sustained high winds 
(figure 1). Winds are channeled through the 
gap in the mountains during passage of syn-
optic weather systems. The gap physically 
constricts and constrains the wind, thus gen-
erating frequent and greater wind events in 
the “hundred miles wind area” (Cheng et al. 
2015; Wang et al. 2018). Higher dust flux also 
was measured in the southwest as compared 
to other regions of the Junggar Basin as well 
as central and western Inner Mongolia and 
northwestern Gansu (Song et al. 2016).

The proportion of simulated suspension 
particles to total soil loss ranged from 82.9% 
at Tacheng to 94.3% at Bole. The high pro-
portion of suspension particles (mean of 
91.4%) simulated by the WEPS model indi-
cated the soil loss in suspension dominates 
the erosion process on agricultural lands in 
the study area. In contrast, a relatively lower 
proportion of suspension particles to total 
soil loss (mean of 75.8%) was found in a 
desert environment of south Xinjiang (Pi et 
al. 2017c). This suggested that erosion from 
agricultural land appeared to have a greater 
regional air quality risk due to fine sus-
pended particles and a higher risk for land 
degradation due to loss of fine and fertile 
soil particles. In contrast, desert typically has 
coarser sediments and lower suspension con-
tents, thus the erosion of desert environments 
may pose a smaller risk to air quality, but have 
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a greater environmental risk in abrading and 
burying plants, facilities, or adjacent road-
ways than agricultural environments.

Comparison of WEPS with Dust Event 
Frequencies. Comparing model outputs with 
measured data is a necessary step in the appli-
cation of wind erosion models for assessing 
soil loss or dust emissions. However, the lack 
of long-term continuous soil loss and PM10 
emission observations has limited evaluating 
wind erosion models (Shao 2008; Song et al. 
2016; Pi et al. 2019). Zheng et al. (2016) mea-
sured soil loss from a cotton field near Alaer 
in south Xinjiang. During six high wind 
events in spring of 2012 and 2013, they found 
monthly soil loss was 0.26 and 0.15 kg m–2 in 
April and May, respectively. Pi et al. (2019) 
quantified wind erosion potential in Xinjiang 
Province including Alaer and the nine cotton 
sites of the study (table 1). They found aver-
age wind erosion potential across the nine 
cotton sites (table 1) was three times greater 
than that in Alaer. Based on this proportion, 
average monthly soil loss across the nine cot-
ton sites should be about 0.78 and 0.45 kg 
m–2 in April and May. However, the simulated 
average monthly soil loss was 1.89 and 1.19 
kg m–2 in April and May across the nine cot-
ton sites over the two years. That was to say, 
the simulated soil loss was potentially 150% 
higher than measured soil loss. Nonetheless, 
the measured soil loss by Zheng et al. (2016) 
observed soil loss from discrete high wind 
events, but lower loss events were missed, and 
thus resulted in a relatively lower monthly 
soil loss as compared with simulation.

Other evidence is noted that WEPS sim-
ulated the soil loss in response to climate 
change in this study well. We found the 
greater annual soil loss frequently occurred 
in years when the frequency of dust events 
was high (figure 5a). For example, the highest 
annual mean total soil loss and PM10 emis-
sions (283 and 15.2 kg m–2) occurred in 1982, 
during which dust storms (9 d y–1), floating 
dust (6.5 d y–1), and blowing dust (22.3 d y–1) 
were more frequent than other years (figure 
5a). There was a strong linkage between sim-
ulated annual soil loss and frequency of dust 
storms based on the regression analysis (y = 
0.0225x + 1.30, R2 = 0.51, P = 0.001). Both 
simulated annual soil loss and frequency of 
dust storms appeared to have similar patterns 
of temporal variation. However, simulated 
annual soil loss appeared to have the worst 
relationship with floating dust frequency (y 
= 0.007x + 1.667, R² = 0.13, P = 0.012). 

Figure 5 
(a) Time series of mean frequency of dust events (dust storm frequency, floating dust frequency, 
and blowing dust frequency) and annual mean simulated soil loss, and (b) regression analysis 
between frequency of dust events and annual mean simulated soil loss and (c) between simulat-
ed erosion frequency and frequency of dust events across 11 meteorological stations in Junggar 
Basin of north Xinjiang.
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indirectly impact soil wind erosion through 
impacting the wind speed or precipitation.
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