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A B S T R A C T   

Aeolian processes are fundamental to arid and semi-arid ecosystems, but modeling approaches are poorly 
developed for assessing impacts of management and environmental change on sediment transport rates over 
meaningful spatial and temporal scales. For model estimates to provide value, estimates of sediment flux that 
encapsulate intra- and inter-annual and spatial variability are needed. Further, it is important to quantify and 
communicate transparent estimates of model uncertainty to users. Here, we present a wind erosion and dust 
emission model parameterized for rangelands using a Generalized Likelihood Uncertainty Estimation framework. 
Modeled horizontal sediment flux was calibrated using data from five diverse grassland and shrubland sites from 
the USDA National Wind Erosion Research Network. Observations of wind speed, vegetation height, length of 
gaps between vegetation, and percent bare ground were used as model inputs. Horizontal sediment flux estimates 
from 10,000 independently selected parameter sets were compared to flux observations from 44 ~ month-long 
collection periods to calculate a likelihood measure for each model. Results show good agreement for individual 
sampling periods across sites with few observations falling outside prediction bounds and a one-to-one rela
tionship between median predictions and observations. Additionally, combined distributions of sediment flux 
estimates from all sample periods for a given site closely approximated the probability of observing a given flux 
at that site. These results suggest AERO effectively represents temporal variability in aeolian transport rates at 
rangeland sites and provides robust assessments suitable for assessing land health and better predicting changes 
in air quality and the impacts of land management activities.   

Introduction 

Aeolian processes play a fundamental role in dryland ecosystems and 
how they respond to disturbance, land use, and environmental change 
(Ravi et al., 2011; Webb et al., 2020a). Soil erosion and nutrient redis
tribution by wind can impact soil health, biogeochemical cycles, plant 

productivity, and ecosystem resilience (Okin et al., 2015; Webb et al., 
2017). Soil deflation, root exposure, and plant tissue damage occur 
during extreme wind events and can result in mortality of perennial 
grasses and other herbaceous species (Alvarez et al., 2012; Gonzales 
et al., 2017). During more frequent, lower-intensity sediment transport 
events, many shrubs capture blowing soil and nutrients, which promotes 

* Corresponding author at: USDA-ARS Jornada Experimental Range, P.O. Box 30003, MSC 3JER, NMSU, Las Cruces, NM 88003, USA. 
E-mail address: bedwar4@nmsu.edu (B.L. Edwards).  

Contents lists available at ScienceDirect 

Aeolian Research 

journal homepage: www.elsevier.com/locate/aeolia 

https://doi.org/10.1016/j.aeolia.2021.100769 
Received 9 July 2021; Received in revised form 24 November 2021; Accepted 27 November 2021   

mailto:bedwar4@nmsu.edu
www.sciencedirect.com/science/journal/18759637
https://www.elsevier.com/locate/aeolia
https://doi.org/10.1016/j.aeolia.2021.100769
https://doi.org/10.1016/j.aeolia.2021.100769
https://doi.org/10.1016/j.aeolia.2021.100769
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aeolia.2021.100769&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Aeolian Research 54 (2022) 100769

2

species composition change and loss of ecosystem services (Schlesinger 
et al., 1990; Bestelmeyer et al., 2018). Dust emissions impact climate 
(Mahowald et al., 2014), air quality (Achakulwisut et al., 2017), and 
human health (Goudie, 2014), while episodic dust storms directly 
threaten human life, infrastructure, and material resources (Pimentel 
et al., 1995; Middleton, 2017). Quantifying the frequency, timing, and 
magnitude of wind erosion and dust emission—and interpreting asso
ciated costs and risks—is thus critical for managing local and downwind 
impacts (Edwards et al., 2019; Webb et al., 2020a). Despite broad 
recognition of these needs among researchers and land managers, there 
is a lack of consistent, actionable information and tools that can support 
dryland wind erosion management (Webb et al., 2020b). 

Cropland wind erosion models have successfully been adopted by 
agencies globally to support soil conservation planning and identify 
potential impacts of land use and management strategies on soil loss and 
deposition, fine dust emissions (i.e., PM2.5 & PM10), and air quality (e. 
g., Tatarko et al., 2019; Jarrah et al., 2020). Such models have yet to be 
extended to rangelands, however, because parameterization for mixed 
plant community structures, diverse landscapes, and disturbance is 
difficult (Li et al, 2014). In the United States (US), Environmental Pro
tection Agency (EPA) empirical emissions factors are used by rangeland 
managers to assess potential impacts of some land uses on particulate 
matter (PM) emissions (EPA, 2018), but the utility of this approach is 
limited because emissions factors are explicitly linked to narrowly 
defined, mostly industrial activities. Process-based emission models 
have been developed to forecast air quality and assess dust effects on 
climate (Haustein et al., 2015), but also have limited utility for 
informing dryland management (Webb and McGowan, 2009). Model 
validation using offsite dust concentrations and reliance on preferential 
dust source functions (e.g., Ginoux et al., 2001; Parajuli et al., 2019) 
largely preclude using these models to assess why landscapes are 
eroding. Ascribing contributing factors to erosion is important for ran
gelands, where land uses like livestock production, energy development, 
recreation, and land management activities are strongly linked with 
aeolian processes (Duniway et al., 2019). Applications of wind erosion 
and dust emission models at fine scales have demonstrated their po
tential for understanding management effects (e.g., Pierre et al., 2018), 
but further work is needed to improve model accuracy and sensitivity to 
diverse soils and heterogeneity in the cover, structure, and composition 
of vegetation. 

Without robust models, current rangeland wind erosion assessment 
relies on qualitative methods that describe evidence of historical wind 
erosion (e.g., Herrick et al., 2019; Pellant et al., 2020) and interpretation 
of soil and vegetation indicators that indirectly describe current erosion 
risk (Herrick et al., 2018; Webb et al., 2020b). Developing the capacity 
to quantitatively assess indicators of wind erosion and dust emission 
would complement these approaches (Webb et al., 2020b). Making 
models and quantitative indicators available to land managers would 
encourage more integrated approaches to dryland management that 
consider land health and air quality impacts of wind erosion alongside 
other ecosystem attributes (e.g., Herrick et al., 2010; Toevs et al., 2011). 
Some quantitative rangeland and pastureland monitoring programs 
already collect soil and vegetation data using standard monitoring 
methods (Herrick et al., 2018) and remote sensing (e.g., Jones et al., 
2018; Zhang et al., 2019; Zhou et al., 2020) that could enable accurate, 
quantitative estimates of sediment transport and dust emission (Webb 
et al., 2017). In the US, the Natural Resources Conservation Service’s 
(NRCS) grazing lands National Resources Inventory (NRI), Bureau of 
Land Management’s (BLM) Assessment, Inventory and Monitoring 
(AIM) program, National Park Service’s (NPS) Inventory and Monitoring 
(I&M) program, and other government agency programs have imple
mented core monitoring methods from Herrick et al. (2018) at over 
65,000 monitoring locations on federal and non-federal lands since 
2004. Data collected by these programs support quantitative indicators 
of ground cover, vegetation height, the size distribution of unvegetated 
gaps between plants, and soil surface properties. These indicators could 

enable more accurate quantification of landscape susceptibility to wind 
erosion and incorporation of wind erosion information into existing land 
health and air quality assessment approaches (e.g., Kachergis et al., 
2020), but a new modeling approach is needed that can leverage these 
data to develop new indicators of wind erosion and dust emission at 
scales meaningful for dryland management. 

Here, we present the Aeolian EROsion (AERO) model with parame
terization of horizontal sediment flux for rangelands. AERO integrates 
established physical models (e.g., Kawamura, 1951; Shao and Lu, 2000; 
Shao, 2004; Okin, 2008) of the key components of aeolian sediment 
transport systems to predict particle size-resolved streamwise horizontal 
sediment flux Q (kg m− 1 s− 1) and vertical dust emission F (kg m− 2 s− 1). 
We calibrated AERO using observations of standardized vegetation 
monitoring data, meteorological conditions, and horizontal sediment 
flux from five grassland and shrubland sites from the National Wind 
Erosion Research Network (NWERN) in the western US using the 
Generalized Likelihood Uncertainty Estimation (GLUE) approach 
(Beven and Binley, 1992). The GLUE approach explicitly recognizes 
model equifinality—there are many possible combinations of parameter 
values for a given model that produce suitable solutions—and accounts 
for unknown sources, structure, and magnitude of errors among 
component models, variables, and observations. GLUE also enables 
reporting of weighted distributions of model predictions that provide a 
more holistic view of sediment transport rates that could be expected at 
a site and support risk-based interpretations, where it is useful to un
derstand the range and probability of possible outcomes. Results suggest 
that AERO appropriately describes aeolian sediment transport dynamics 
and provides necessary information to enhance current land health and 
air quality assessments through development of meaningful wind 
erosion indicators and management benchmarks for rangelands. 

Description of AERO model 

AERO is a largely physically-based aeolian sediment transport and 
dust emission modeling scheme developed to leverage standardized 
ecological monitoring data to produce plot-scale estimates of Q and F. 
AERO estimates Q based on surface soil particle size distribution, wind 
speed, and vegetation cover and structure. F is estimated based on sur
face soil particle size distribution, wind speed, and Q and includes ex
pressions for saltation bombardment and soil disaggregation following 
Shao (2004). Q and F are reported per unit width (of a vertical plane 
intersecting the surface and perpendicular to the direction of transport) 
and unit surface area, respectively. Thus, there is no prescribed spatial 
extent constraining flux estimates. The ecological monitoring data that 
AERO was developed to leverage typically describe conditions over plots 
on the order of 1 ha, but AERO could also be implemented to represent 
transport at a single point or over a larger area—assuming relevant 
controls remain within acceptable limits. 

The model employs a core set of generalizable, mechanistic functions 
representing fundamental aeolian processes that operate over either 
scalar values or probabilistic representations of key variables Fig. 1. As 
such, AERO is flexible in that it can produce sediment flux estimates 
from minimal inputs—e.g., for a single wind speed and sediment 
transport threshold in the absence of vegetation—yet is designed to 
implement the most fully realized simulation possible given the level of 
available information. The equations presented here represent the full 
implementation of AERO for standardized rangeland monitoring data. 
Required model inputs include bare ground cover fraction, mean vege
tation height, surface soil particle size distributions (PSDs), unvegetated 
canopy gap length observations, and wind speed observations (or dis
tribution parameters). Model parameters used to calibrate AERO esti
mates of Q for rangelands are identified in the following description. The 
dust emission scheme is presented in deference to completeness but has 
not yet been parameterized in AERO. 
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Representing a dynamic sediment bed 

AERO requires minimally and fully dispersed surface (0–1 cm) soil 
PSDs pdm (x) and pdf (x) to estimate Q and F. If site-specific PSDs are not 
available, AERO uses a search function to select the closest member in 
sand–silt–clay percentage space from an internal database of represen
tative soils sampled across the western US (and Australia, if desired). 

Following Shao (2004) and Shao et al. (2011), the two distributions 
represent possible end members of the physical character of the 

sediment bed—i.e., before a transport event and assuming complete 
breakdown of soil aggregates during transport, respectively. For both 
distributions, particle size bin midpoints xi are distributed logarithmi
cally such that: 

xi =

(
dmax

dmin

i− 1/n

dmin

)(
dmax

dmin

i/n

dmin

)
0.5 (1)  

where dmax = 1000 μm, dmin = 0.1 μm, and n = 200. AERO assumes that 
saltating aggregates break apart to some degree upon impact with the 

Fig. 1. Variables, calculation steps, and component equations of the Aeolian EROsion (AERO) model. Figure shows the full implementation of AERO presented in this 
paper. Parameters used to calibrate AERO for horizontal sediment flux are shown in red. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.) 
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sediment bed during transport. As such, soil PSD pds (x) is calculated by a 
weighted mix of pdm (x) and pdf (x) as: 

pds (xi) = γpdm (xi)+ (1 − γ)pdf (xi)forallxi (2)  

to represent the event-specific sediment bed. The degree to which the 
distribution moves toward being fully dispersed depends on γ, which 
represents the relative strength of the event. Lu and Shao (2001) defined 
γ as: 

γ = e− k(us* − u*t)
3 (3)  

where parameter k describes the rate at which γ→0 as surface shear 
velocity us* (m s− 1) increases above threshold shear velocity u*t (m s− 1), 
or how easily soil aggregates are broken down during transport. As γ→1, 
i.e., for weak transport events, soil disaggregation becomes negligible. 
Conversely, as γ→0 (very strong event),pds (xi)→pdf (xi). It should be 
noted that: 1) u*t in Eq. (3) is the minimum value of u*t from Eq. (12); 
and 2) while AERO currently uses a value of k = 0.5, Shao et al. (2011) 
suggest that the value of k is soil dependent. However, Eq. (2) has the 
largest influence on dust production from aggregates and has negligible 
impact on particle sizes susceptible to saltation in the model, i.e., where 
inertial force resisting motion is orders of magnitude larger than inter
granular cohesive force (Edwards and Namikas, 2015). As such, k has 
not been parameterized in the current effort. 

Estimating horizontal sediment flux 

Estimated size-resolved saltation flux Q̂(ds) is calculated following 
Kawamura (1951) as: 

Q̂(ds) =

⎧
⎨

⎩
E∙

∑

us*

P(us*)C
ρa

g
(us* − u*t)(us* + u*t)

2 us* > u*t0us* ≤ u*t (4)  

where E is fractional cover of exposed, bare soil (i.e., excluding areas 
below plant canopies or covered by plant litter and other impediments), 
ρa is fluid density (kg m− 3), g is gravitational acceleration (9.81 m s− 2), 
u*t (m s− 1) is threshold shear velocity, and C is an unknown dimen
sionless parameter—originally suggested as related to grain size and 
sorting (e.g., Kawamura, 1951; Bagnold, 1936)—that relates empirical 
measurements to theoretical flux rates. P(us*) is the probability of a 
given shear velocity at the soil surface us* such that: 

pus* (x) = P(us* = x) for all x ∈ S (5)  

where the sample space S is determined by the relative ranges and 
magnitudes of probability distributions of wind speed u (m s− 1) and the 
size of unvegetated gaps between plants, which modulate the transfer of 
momentum from the wind to the sediment bed. 

First, the wind speed probability distribution: 

pu(x) = P(u = x)for
{

x1, x2,⋯, xn|xi =
i(umax − umin)

n
, i = 1, 2,⋯, n

}

(6)  

where n = 250, is estimated using in situ measurements or pre-estimated 
wind speed probability distribution parameters for a given location. If in 
situ measurements are used, wind speeds are binned to the closest value 
of xi before P(u = x) is calculated. Next, shear velocity for each wind 
speed from Eq. (6) u*(u), which assumes a bare surface, is calculated as: 

u*(u) =
uzκ

log(z/z0)
(7)  

where z is the wind speed measurement height (m), z0 is the aero
dynamic roughness length (m), and κ is the von Kármán constant (≈
0.4). Each u*(u) is assigned the same probability as P(u). Because Eq. (7) 
requires z0—an inherently dynamic function of surface configuration 
and wind speed—to be fixed across a range of conditions, AERO treats it 

as a parameter of unknown value similar to the approach of Li et al. 
(2013). This approach also has the advantage, within the GLUE cali
bration framework, of accounting for the interaction between z0 and C in 
Eq. (4) in the model parameterization. 

AERO implements the drag partition scheme developed in Okin 
(2008) to describe the effect of vegetation on attenuating momentum 
transfer from the wind field to the soil surface and the resulting spatial 
distribution of surface shear stress. Conceptually, the Okin (2008) 
scheme describes the accumulated effects of the reduction and subse
quent recovery of u*(u) in the lee of individual plants, which has the 
advantage of treating the problem probabilistically across values of u 
rather than as a static increase in u*t for all meteorological conditions (e. 
g., in the commonly implemented Raupach et al. (1993) drag partition). 
Other major benefits of this approach are: 1) the drag partition scheme 
can be applied explicitly to in situ vegetation conditions using widely 
available rangeland monitoring data, and 2) it is sensitive to the spatial 
configuration of vegetation at a site. Thus, AERO is appropriately sen
sitive to ecosystem changes resulting from land management or other 
disturbances. 

The scheme stipulates that in the lee of a plant, u*(u) is reduced by 
ratio φ to us*(u*, l ), the shear velocity at the soil surface as a function of 
u* and l —the distance from the closest upwind plant lp (m) normalized 
by vegetation height h (m). AERO uses standard monitoring observa
tions (e.g., Herrick et al., 2018) of canopy gap lengths (length of unve
getated gaps between plants) lg (m) normalized by h to estimate the 
probability distribution of scaled canopy gap lengths P(lg/h) such that: 

p(lg/h)(x) = P
( (

lg
/

h
)
= x

)
for

{

x1, x2,⋯, xn|xi =
i
(
lgmax − lgmin

)

n
, i

= 1, 2,⋯, n
}

(8)  

where n = 100 and lgmin and lgmax are the minimum and maximum ob
servations of lg, respectively. In cases where there are less than 100 
vegetation gap observations, e.g., for densely vegetated areas or for 
sparsely vegetated areas with mostly bare interspaces, x1,x2,⋯,xn = lg1,

lg2, ⋯, lgn. pl (x) for the same {x1, x2,⋯xn} is then easily estimated 
because P(l ) is directly proportional to P

(
lg/h

)
as: 

P(l )∝
P
(
lg
/

h
)

(
lg
/

h
) (9) 

Eq. (9) effectively distributes the probability for a given scaled gap 
size evenly across the interval (0, lg/h]. Renormalization such that: 

∑n

i=1
pl (xi) = 1 (10)  

completes the proportionality. It should be noted that in practice, when 
using standard rangeland monitoring data, 0.2 ≤ lg ≤ 50 or 100 m, 
which are the typical minimum gap length reported and transect length 
for monitoring plots, respectively. 

The Okin (2008) drag scheme is then implemented for each u*(u) as: 

us*(u*, l ) = u*
[
φl =0 +(1 − φl =0)

(
1 − e− l /r) ] (11)  

where φl =0 is the shear velocity ratio (u*s/u*) in the immediate lee of a 
plant and r determines the rate of shear velocity recovery downwind. 
Data supporting appropriate values of φl =0 and r are limited in the 
literature; hence AERO treats both as parameters of unknown value, 
again similar to Li et al. (2013). Eq. (11) necessarily results in a large 
number of values of us* (max of n = 250× n = 100). Thus, results are 
binned as they are calculated into pus* (x) such that successive bin 
boundaries are at least 0.002 m s− 1 apart and probabilities P(u* ∩ l ) are 
accumulated within each bin. 

AERO calculates threshold shear velocity used in Eq. (4) for all xi in 
pd(x) following Shao and Lu (2000) as: 
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u*t(d) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

AN

(ρpgdm

ρa
+

Γ
ρad

)√

(12)  

where An is a dimensionless coefficient ≈ 0.0123, ρp is particle density 
(kg m− 3), and Γ represents the influence of interparticle cohesion. Shao 
and Lu (2000) suggested that Γ varies between 1.65 × 10− 4 and 5 ×
10− 4. AERO treats Γ as an unknown parameter. It should be noted that 
AERO is capable of modifying u*t(d) for soil moisture, e.g., following 
Fécan et al. (1999), if desirable, but no correction was used here. 

Total streamwise sediment flux Q is calculated by summing the 
contribution for each particle size bin as: 

Q̂tot =
∑

ds

Q̂(ds)P(ds) (13)  

Estimating dust emission 

AERO estimates F following Shao (2004). Size-resolved vertical dust 
emission rate F(di, ds) of particles in the ith size bin di resulting from 
saltation of particles sized ds is estimated by: 

F(di, ds) = cP
(
dfi
)[
(1 − γ)+ γσp

]
[1+ σm]

gQ̂(ds)

us*
2 (14)  

where c is a dimensionless fitting coefficient and P
(
dfi

)
constrains esti

mates of F(di, ds) to the mass fraction of total available dust in dfi—i.e., 
the amount of dust emission predicted from di cannot exceed the amount 
from that bin in the fully dispersed soil PSD. σp describes the ratio of 
freely available, non-aggregated dust to total dust in di such that: 

σp =
wmi

wfi
=

pdm (xi)

pdf (xi)
(15) 

The bracketed expressions in Eq. (14) describe dust emission as the 
combined effect of the breakdown of soil aggregates during transport, 
emission of free dust particles, and particle ejection caused by saltating 
particles of a given size impacting the sediment bed. As γ→1, the 
contribution of soil disaggregation to dust emission becomes negligible, 
and as γ decreases the contribution of disaggregation increases. As the 
relative proportion of freely available dust in the sediment bed σp in
creases for a given event strength, the contribution of the emission of 
free dust increases. 

Saltation bombardment efficiency σm represents the ratio of the mass 
of soil ejected by a particle impacting the bed to that particle’s mass, and 
is described by an expression developed by Lu and Shao (1999) 
simplified for typical particle and bulk densities for silicate soils as: 

σm = 12u2
s*

ρb

p

(

1+ 14us*

̅̅̅̅̅
ρb

p

√ )

(16)  

where ρb is soil bulk density (kg m− 3, assumed ≈ 1000,) and p is the soil 
plastic pressure (Pa), which represents how resistant to deformation the 
soil surface is. For low p, soils are relatively loose and erodible, and the 
contribution of saltation bombardment to particle ejection is significant. 
As p increases, the contribution of saltation bombardment to emitted 
dust decreases until negligible. 

Vertical dust flux from di generated by saltation of all sand-sized 
particles in range dsand is estimated as: 

F(di) =
∑

dsand

F(di; ds)P(ds) (17)  

and total dust flux for dust-sized particles is given by: 

F =
∑

idust

F(di)P(di) (18) 

In AERO, the upper limit of idust = lower limit of dsand and is user 
selectable. Suggested ranges of c and p, are [1,5] × 10− 5 and [1,50] × 103 

Pa, respectively (Shao, 2004). c, p, and ρb will be treated as unknown 
parameters in AERO when the dust emission scheme is calibrated for 
rangelands in future efforts. 

Methods 

A major challenge in developing wind erosion and dust emission 
models is acquiring robust data across land use and land cover types. 
Aeolian horizontal sediment flux and dust emission are inherently var
iable across space and through time. Thus, data networks and reliable 
observations with explicit recognition of the heterogeneity of physical 
processes are needed to meet advances in approaches to modeling 
physical systems (Kirchner, 2006). Drivers of change, controls, and 
fundamental sediment transport processes occur across scales from 
instantaneous to geologic and grain-scale to planetary. The number of 
coincident physical samples needed to detect differences in aeolian 
sediment flux among ecologically similar sites—or detect change at a 
single site through time—is prohibitive to most monitoring efforts 
(Webb et al., 2019). The typical approach to aeolian model parameter
ization, where models are conditioned using observations from a single 
location, limited experimental data, or unrelated data parsed from the 
literature, fails to represent spatiotemporal variability of aeolian pro
cesses in a meaningful way for characterizing long-term behavior at a 
site and informing land management. 

The National Wind Erosion Research Network (NWERN) was estab
lished in 2014 to support model development, with an emphasis on 
models parameterized using field data collected following standard 
protocols (Herrick et al., 2018), and facilitate leveraging large 
ecosystem monitoring datasets to produce wind erosion assessments 
across scales (Webb et al., 2016; https://winderosionnetwork.org/). The 
network currently comprises 18 sites extending from ~32 to 50◦ N 
latitude and ~98 to 117◦ W longitude. 

The network collects standardized observations of aeolian sediment 
transport rates, size-resolved dust emission, and environmental controls 
and uses a rigorous stratified random sample design to measure 
spatiotemporal variability in aeolian sediment transport over 1 ha sites 
(Webb et al., 2016). Network sites employ the same standardized 
monitoring methods used by federal agencies in the US to monitor and 
assess the status, condition and trend of grazing lands (Toevs et al., 
2011). Field data for model calibration were collected at five NWERN 
sites in the western United States (Table 1). Sites used to calibrate AERO 
comprise grasslands and shrublands located in the Chihuahuan Desert, 
Arizona/New Mexico Plateau, Colorado Plateau, and High Plains Ecor
egions that are grazed by livestock and other wildlife (Fig. 2, Table 1). 
AERO was conditioned against vegetation, surface (0–1 cm) soil PSD, 
and wind speed measurements (the variable inputs), and 44 ~ 1-month 
long horizontal sediment flux observation periods (~850 K sampler- 
hours) across the five sites. 

Field measurements 

Wind speeds are measured at NWERN sites at heights of 0.5, 1, 1.5, 
2.5, 5 and 10 m using RM Young 03101 cup anemometers. Anemometers 
are sampled at a frequency of 1 Hz frequency and samples are averaged 
to produce 1-minute average wind speeds. For AERO calibration, only 
the 10-meter wind speeds were used as model inputs for consistency 
with available wind speed estimates for monitoring plots that AERO was 
designed to leverage. For the 8 June 2017 and 5 July 2017 (Table 2) 
sediment flux observation periods at SLV, 5-meter wind speeds were 
used instead and the model adjusted accordingly because the 10-meter 
anemometer required maintenance during that period. 

Vegetation and soil surface characteristics were measured following 
standard NWERN methods along three 100-m transects crossing through 
the site center. The line-point intercept (LPI) method (Herrick et al., 
2018) was used to quantify total foliar and ground cover from which 
percent bare soil is calculated. Vegetation height was measured every 2 
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m along each transect to estimate a site mean, and vegetation canopy 
gap lengths > 5 cm were recorded along each transect (see Webb et al., 
2015 for details). Vegetation transect measurements are conducted 
approximately quarterly at all NWERN sites to capture seasonal and 
phenological changes. 

Surface soil samples were collected from each site using a stratified 
random sampling design. Three groups of 1-cm deep scoop samples were 
collected at randomly chosen locations inside each cell in a regular 3x3 
grid across the site (27 samples total). Samples were combined to pro
duce three composite samples per site. Samples were sieved to 2 mm 
maximum size and organic material and litter ≥ 2 cm long and/or 1 mm 
wide were removed. Soil PSDs were measured using a Beckman Coulter 
LS 13 320 laser particle size analyzer. Three samples were randomly 
split out from each composite, and results averaged to produce PSDs for 
each site. Minimally dispersed samples were analyzed using low power 
sonification during measurement. Fully dispersed samples were pre
pared by agitating the sample in a standard 5% solution of sodium 
hexametaphosphate for ~24 h on a reciprocating shaker table. The 
sample was further agitated with high power sonication for two minutes 
prior to and during measurement. 

Horizontal sediment flux measurements 

NWERN sites use a stratified random sample design with 27 Modified 
Wilson and Cooke (MWAC) sediment sampler masts to capture spatio
temporal variability of horizontal sediment mass flux. Each mast has 
samplers at 0.10, 0.25, 0.50 and 0.85 m height. Sites are stratified in a 
regular 3 × 3 grid and MWAC masts are located at three random posi
tions within each cell. Samples were collected every ~28 days and 
weighed to determine sediment mass per sampler (following Webb et al., 
2019). Sediment mass flux at each height q(z) (kg m− 2 s− 1) was calcu
lated by: 

q(z) = m∙A/Ts (19)  

where m is the mass of the sediment collected at height z, A is the area of 
the sampler inlet size (2.34× 10− 4 m− 3, and Ts is the sampling period. 
Exponential curves were fit to the data using nonlinear least squares 
regression of q on z using the form: 

q̂(z) = q0eaz+bz2 (20)  

or 

q̂(z) = q0e− az (21)  

where q0, a, and b are fitting parameters. Eq. (20) was used to fit the data 
if measurable sediment was collected at all heights. Eq. (21) was used if 
measurable sediment was collected at three heights. Data were excluded 
if measurable sediment was collected at two or fewer heights or if 
sediment weights did not decrease monotonically with height. Fits with 

R2 < 0.80or ≥ 0.999 were excluded from subsequent analyses. The 
upper limit was used to exclude samples that were overfit and produced 
unrealistic curves for heights other than the sample heights. 

Q was calculated by integrating from 0 < z ≤ 1 m: 

Q =

∫ 1

0
q̂(z)dz (22) 

Following Webb et al. (2019), a natural log transformation was 
applied to Q and the spatial mean and variance were calculated for each 
observation period following Horvitz and Thompson (1952). The 
Horvitz-Thompson (HT) estimator of an unbiased mean zHT for variable 
z for a stratified random sampling design is defined as: 

zHT =

∑m

i=1
zi

/

πi

n

(23)  

where πi is the probability that the i th sample unit is included in the 
sample, m is the simple random sample set size within a stratum, n is the 
total sample size, and zi is the value at sampling location i. The spatial 
variance of Q for each observation period was calculated as: 

V̂s(zHT) =

∑n
i=1

(
1− πi

πi

)

X2
i +

∑n
i=1

∑n
j∕=1

(
πij − πiπj

πiπi

)

XiXj

n2 (24)  

where πij is the inclusion probability of Xi and Xj population units being 
in the sample size (Horvitz and Thompson, 1952). 

Model calibration was restricted to observation periods of Q that 
coincided with vegetation transect measurements at each site to best 
represent the influence of vegetation on parameter set likelihood 
(Table 2). For all included observation periods, vegetation transects 
were measured during or within two weeks of the beginning or end of 
the observation period. Observation periods were further parsed from 
the calibration data set if they included snowfall, heavy rainfall events, 
multiple rainfall events, or other circumstances that might interfere with 
reliable flux estimation. Hereafter, flux observations refer to the site- 
wide spatial mean fluxes calculated using Eq. (23). 

Brief description of GLUE framework for model calibration 

Transparently conveying the magnitude and sources of model un
certainty is critical for interpreting model estimates and using them to 
inform land management decisions. The GLUE model calibration 
framework was developed based on the premise of model equi
finality—i.e., there are many possible model structures and/or combi
nations of model parameters that are acceptable predictors of observed 
behavior (Beven and Binley, 1992). The other fundamental tenant of the 
GLUE framework is the explicit acknowledgment that sources and 
magnitudes of error—e.g., model structural error, measurement biases, 
observation methodology—and their relative contributions are 

Table 1 
Management, ecological, and location information for National Wind Erosion Research Network (NWERN) field sites used to calibrate Aeolian EROsion (AERO) model.  

Site ID JER HAFB Moab SLV CPER 

Site management USDA-ARS Jornada 
Experimental Range Long 
Term Agro-ecosystem 
Research (LTAR) Network 

USDA-ARS Jornada 
Experimental Range Long 
Term Agro-ecosystem 
Research (LTAR) Network 

USGS Southwest 
Biological Science Center 

BLM San Luis Valley field 
office 

USDA-ARS Central Plains 
Experimental Range Long 
Term Agro-ecosystem 
Research (LTAR) Network 

Location 32.6271− 106.7387 32.9423− 106.1073 38.6515− 109.8696 37.5991− 105.6907 40.8349− 104.6973 
Elevation 1320 m 1267 m 1575 m 2300 m 1650 m 
Ecoregion (level 

III) 
Chihuahuan Desert Chihuahuan Desert Colorado Plateau Arizona/New Mexico Plateau Western High Plains 

Surface soil 
(USDA 
standard soil 
texture classes) 

Sandy loam to fine sandy 
loam, weak biological and 
physical crusting 

Gypsiferous fine to very fine 
sandy loam, strong biological 
crusting 

Loamy fine sands, weak to 
moderate biological and 
physical crusting 

Sandy soil overlying natric 
sandy loam to clay loam soils, 
weak physical and biological 
crusting 

Fine sandy loam overlying 
sandy clay loams, moderate to 
strong physical crusting 

Land cover Shrubland Grassland Grassland Shrubland Grassland  
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unknown (Beven and Binley, 2014). It also allows for future observa
tions of the same or other variables to be added to model calibrations to 
improve performance or account for changing boundary conditions 
(Beven and Freer, 2001). The GLUE framework is particularly well 
suited to developing an aeolian transport model for application to land 
and resource management, given 1) the level of uncertainty in both 

modeling and measurement of aeolian systems, and 2) the need for 
sediment flux estimates that represent the range of probable conditions 
over intermediate time scales (seasons to years), rather than a single 
estimate for a set of input forcing and boundary conditions. In addition, 
future calibration of the dust emission scheme can be easily incorpo
rated with the horizontal flux calibration presented here, and model 

Fig. 2. Site photos taken along vegetation transects at a) JER, b) HAFB, c) Moab, d) CPER, and e) SLV National Wind Erosion Research Network (NWERN) sites; and 
f) location map of NWERN sites. Sites used in the current Aeolian EROsion (AERO) model calibration are highlighted in red. Sites indicated with black are cropland 
and rangeland sites that are currently being established or did not yet have sufficient observations and will be included in subsequent model parameterizations. Note: 
site in Manitoba, Canada not shown here. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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calibrations can be refined or purpose built for different environments 
(e.g., cropland) as suitable data become available. If desirable, subse
quent sets of flux observations could also be included in the model 
calibration in such a manner that captures the transport system response 
to long-term environmental change, i.e., giving more weight to more 
recent observations (Beven and Freer, 2001). 

The GLUE approach is conceptually straightforward but requires 
some subjective decisions prior to model calibration depending on 
specific goals (Beven and Binley, 2014). In short, a likelihood measure 
LT [M(Θ|YT,ZT) ] based on the level of agreement between predictions 
and observations is calculated for model M(Θ) with parameter vector Θ 
conditioned on input vector Y and observation vector Z over some set of 
observations T. Many simulations—typically on the order of 
103–106—are conducted using different model structures and/or 
parameter sets sampled from a specified prior distribution and results 
are compared to observations. Parameter sets are chosen independently, 
and no hypothesis about correlation structure is necessary in defining 
the prior distributions of the model parameters (Ratto et al., 2001). 
Thus, the likelihood surface is also independently sampled, and simu
lations can be weighted with minimal need for additional assumptions 
(Beven and Freer, 2001). A form of Bayes’ equation can be applied, e.g., 
following Beven and Binley (1992), such that: 

L[M(Θi) ] = L0[M(Θi) ]LT [M(Θi|YT ,ZT) ]/B (25)  

where M(Θi) is the ith model simulation, L0[M(Θi) ] is the specified prior 
likelihood of model M(Θi), and B is a scaling constant. Eq. (25) specifies 
the likelihood of the model structure and/or parameter set M(Θi) being 
correct, rather than the value of a prediction or the individual param
eters being correct (Beven and Freer, 2001). L0[M(Θi) ] is either from the 
initial sampling of parameter space (typically from a uniform distribu
tion of estimated parameter ranges) or from a previous model calibra
tion. In such a way, the model calibration can be updated when new 
information becomes available. 

GLUE implicitly accounts for unknown sources and structure of 
model error. The likelihood measure reflects the performance of a 
particular model—encapsulating errors associated with model structure, 
measurement or estimation of inputs, and measurement of observations. 
The likelihood measure also encapsulates covariation of parameter 
values on model performance (Beven and Freer, 2001). The exact form 
of the likelihood measure used to evaluate model performance must be 
chosen for the specific implementation. It can be based on traditional 
error models (e.g., Romanowicz et al., 1994, 1996), but typical forms 
include variations of the Nash and Sutcliffe efficiency criterion or a 
transformation of the model error variance: 

Table 2 
Spatial mean and variance of horizontal sediment flux (calculated using Horvitz and Thompson (1952) estimator) and vegetation transect information used to con
dition the Aeolian EROsion (AERO) model. Dates are the sediment flux sample collection dates at the end of ~ month-long sampling periods. *5-meter wind speeds 
were used because the 10-meter anemometer required maintenance.  

Site MWAC collection date No. samples Mean ln(Flux) Variance ln(Flux) Mean flux (gm¡1 d− 1) Bare soil (%) Mean vegetation height (m) 

JER 21 Mar 16 25  3.03  0.52  20.74  0.69  0.26 
JER 20 Apr 16 23  3.73  0.27  41.76  0.69  0.26 
JER 13 Jul 16 22  2.67  0.51  14.43  0.68  0.25 
JER 8 Mar 17 27  5.14  0.27  170.69  0.78  0.24 
JER 5 Apr 17 27  4.52  0.26  91.74  0.78  0.24 
JER 15 Nov 17 24  1.66  0.27  5.24  0.62  0.31 
JER 20 Dec 17 14  − 0.91  0.43  0.40  0.62  0.31 
JER 14 Mar 18 24  2.64  0.76  14.07  0.71  0.30 
JER 10 Apr 18 25  4.61  0.61  100.38  0.71  0.30 
JER 6 Jun 18 26  2.62  0.74  13.77  0.69  0.33 
JER 5 Jul 18 25  3.00  0.31  20.10  0.69  0.33 
JER 26 Oct 18 23  2.15  0.26  8.59  0.71  0.30 
JER 5 Mar 19 26  4.12  0.58  61.26  0.75  0.30 
JER 4 Apr 19 25  5.73  0.26  306.95  0.75  0.30 
HAFB 5 Nov 15 23  1.36  0.20  3.90  0.49  0.35 
HAFB 28 Jul 16 22  2.17  0.03  8.74  0.54  0.24 
HAFB 16 Nov 16 25  0.52  0.42  1.69  0.55  0.23 
HAFB 5 Dec 17 15  − 0.17  0.05  0.85  0.43  0.23 
HAFB 28 Mar 18 21  2.61  0.01  13.66  0.48  0.52 
HAFB 19 Jun 18 25  1.66  0.05  5.28  0.46  0.44 
HAFB 17 Jul 18 24  1.80  0.02  6.03  0.46  0.44 
HAFB 9 Oct 18 25  0.95  0.19  2.60  0.46  0.52 
HAFB 7 Nov 18 22  0.36  0.86  1.43  0.46  0.52 
HAFB 18 Mar 19 11  3.39  0.00  29.60  0.46  0.47 
Moab 31 May 16 22  2.72  0.03  15.21  0.36  0.26 
Moab 8 Nov 16 24  1.36  0.04  3.90  0.55  0.25 
Moab 7 Dec 16 27  1.91  0.10  6.77  0.55  0.25 
Moab 2 May 17 17  2.05  0.05  7.78  0.48  0.22 
Moab 6 Jun 17 21  2.26  0.04  9.61  0.48  0.22 
Moab 12 Oct 17 25  2.23  0.04  9.26  0.46  0.32 
Moab 7 Nov 17 11  0.50  4.10  1.65  0.46  0.32 
Moab 12 Jun 18 7  2.45  0.02  11.58  0.46  0.14 
Moab 16 Aug 18 22  2.95  0.03  19.14  0.63  0.14 
Moab 12 Dec 18 13  1.26  0.01  3.51  0.54  0.21 
Moab 1 Apr 19 27  2.40  0.02  11.05  0.57  0.19 
SLV 7 Jun 16 27  4.76  0.30  116.23  0.64  0.17 
SLV 7 Sep 16 14  3.79  0.09  44.36  0.59  0.18 
SLV *8 Jun 17 26  3.65  0.24  38.34  0.58  0.18 
SLV *5 Jul 17 21  2.98  0.33  19.73  0.56  0.21 
SLV 19 Oct 17 26  2.84  0.64  17.08  0.49  0.21 
SLV 16 Jul 18 27  2.34  0.24  10.38  0.50  0.22 
SLV 27 Sep 18 22  1.26  0.26  3.52  0.50  0.22 
CPER 14 Jul 17 11  − 0.70  0.12  0.50  0.12  0.49 
CPER 14 Nov 17 8  − 0.55  0.08  0.58  0.12  0.40  
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σ2
∊ =

∑

i
(ŷi − yi)

2 (26)  

where ŷi and yi are modeled and observed values, respectively (Beven 
and Freer, 2001). The only requirement is that likelihood measures for 
each M(Θ) increase monotonically with the goodness of fit to observa
tions Z. 

Each M(Θ) is then deemed an acceptable or unacceptable predictor 
of observations based on a predefined criterion of the likelihood mea
sure. Unacceptable models are assigned a value of zero. Renormalization 
by B of acceptable models such that: 
∑

i
L[M(Θi) ] = 1 (27)  

facilitates the calculation of prediction quantiles. Cumulative distribu
tions of likelihood are constructed by ranking predictions from accept
able models and cumulatively summing the renormalized likelihood 
measures. Thus: 

P(Ẑ t < z) =
∑

i
L
[
M(Θi)|Ẑ t,i < z

]
(28)  

where Ẑt,i is the value of the variable Z estimated for the observation at t 
by model M(Θi) (Beven and Freer, 2001). It is important to note that Eq. 
(28) is distinct for each observation—or time step, in most case
s—against which the model is conditioned; hence the order of M(Θi) and 
shape of the cumulative distribution is distinct for each. Quantiles can 
then be calculated for a desired estimate of central tendency and level of 
uncertainty, e.g., the median prediction and 90% prediction bounds. In 
addition, probability distributions of predictions for individual obser
vations can be examined, and marginal distributions of parameter values 
can be viewed qualitatively to assess model sensitivity. 

Parameter space sampling and GLUE setup 

Model parameter space was constructed from uniform distributions 
within reasonable estimated ranges of C, z0, φl =0, r, and Γ (Table 3). The 
selected parameters represent either unmeasurable values or unknown 
parameters that relate models largely developed using data from 
limited, idealized experimental conditions to natural conditions. The use 
of uniform distributions simplifies parameter space sampling because no 

prior knowledge of the shape of the response surface is needed. Latin 
hypercube sampling was used to independently sample 10,000 param
eter sets from the parameter space and model simulations were 
conducted. 

The likelihood measure used to compare goodness of fit between 
simulation results and observations was calculated following Freer et al. 
(1996) as: 

LT [M(Θi|YT ,ZT) ] = e− Nσ∊i 2
/

σ2
obs (29)  

where σ2
∊i is the error variance for parameter set M(Θi) (i.e., Eq. (26)), N 

is a shaping factor, and σ2
obs is the variance of all observations used in the 

model calibration. Eq. (29) was chosen as the likelihood measure 
because equal weight is given to subsequent sets of additional obser
vations when they are added to the model calibration. As such, when 
sufficient data become available from other rangeland sites to improve 
the model calibration, they can be included without disproportionately 
impacting the calibration. The shaping factor N determines the relative 
weight given to goodness of fit between simulations and observations in 
the likelihood surface. As N increases, increasingly higher likelihoods 
are assigned to the better simulations until eventually only the best is 
assigned a nonzero likelihood (Beven and Freer, 2001). Thus, the value 
of N influences the number of acceptable models and the peakedness of 
the resulting likelihood distribution. As such, the choice of N is subjec
tive and determining an appropriate value may require some trial and 
error so that the distribution of acceptable model estimates is not too 
wide, yet most observations fall within prediction bounds. A value of 
N = 3 was used to calibrate AERO. Parameter sets resulting in likelihood 
values ≥ 0.3 were deemed acceptable for predicting sediment flux. 
Parameter sets with lower values were assigned a likelihood measure of 
zero. 

Results 

Site characteristics 

Surface soil texture (top 1 cm) ranged from sandy loam to sand 
(USDA soil textural classes) at sites used to calibrate AERO. Mean and 
median grain sizes, respectively, for minimally dispersed PSDs were 211 
and 169 μm at JER, 99 and 48 μm at HAFB, 150 and 110 μm at Moab, 
241 and 191 μm at SLV, and 369 and 295 μm at CPER (Fig. 3). Both mean 
and median grain size were larger for the fully dispersed PSD for JER and 
SLV soils, increasing to 232 and 195 μm, and 251 and 202 μm, respec
tively. Mean and median grain size were smaller for the fully dispersed 
PSD for CPER, decreasing to 314 and 238 μm, respectively. Neither was 
appreciably different between the two PSDs for HAFB and Moab. 

At JER, HAFB, and Moab, there was an increase in the frequency of 
particles between ~1 to ~60 μm and a corresponding decrease for larger 
particles between the minimally and fully dispersed PSDs resulting from 
aggregate dispersion. CPER soils showed the greatest difference between 
the two PSDs, with more finer particles for the fully dispersed PSD across 
the particle size range used in AERO. It should be noted that the laser 
particle size analyzer measures particle frequency up to 2000 μm, so this 
difference represents dispersion of large aggregates from 1000 to 2000 
μm. The SLV soil is predominantly sand and there was negligible dif
ference between the two PSDs although some minor disaggregation 
occurred, evidenced by the slight change in mean and median particle 
sizes. 

The JER and SLV sites are classified here as shrublands and HAFB, 
Moab, and CPER as grasslands (Table 1, Fig. 2). Mean foliar cover over 
the period 2015–2019 ranged among sites from ~23% at JER to ~85% 
at CPER (Fig. 4a). Mean woody cover at both JER and SLV was ~10% 
and was ~2% or lower at HAFB, Moab, and CPER. Mean percent bare 
soil (E in Eq. (4)) ranged from ~3% at CPER to ~69% at JER (Table 3, 
Fig. 4c). Within-site variability in foliar cover and percent bare ground 
was highest at Moab and lowest at CPER, both grassland sites. CPER was 

Table 3 
Range of values of the prior (uniform) distributions of model parameters used to 
construct the parameter space for calibrating the Aeolian EROsion (AERO) 
model. Parameters are dimensionless unless otherwise noted. Q1, Q2, and Q3 
are the quartiles of the marginal posterior distributions of model parameters 
following model calibration.  

Parameter Range Basis for 
Estimated 
Limits 

GLUE 
Q1 

GLUE 
Q2 

GLUE 
Q3  

C  0–0.5 Trial and error  0.03  0.06  0.10  
z0 (m)  log10(- 

4)– 
log10(- 
1) 

King et al., 
2006; 
Marticorena 
et al., 2006; 
National Wind 
Erosion 
Research 
Network data;  
Ziegler et al., 
2020  

1.7  3.0  7.7 ×

10− 4 

φl =0  0–0.5 Okin, 2008; Li 
et al., 2013  

0.08  0.18  0.31  

r  2–8 Okin, 2008; Li 
et al., 2013  

4.89  6.11  7.19  

Γ (kg s− 2)  1.65–5 
× 10− 4 

Shao and Lu, 
2000  

2.8  3.7  4.5 ×

10− 4  
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much more densely vegetated and exhibited less seasonal variability in 
cover. Foliar cover and bare soil were less variable overall at JER, HAFB, 
SLV than at Moab, but follow a similar pattern of variability in non- 
shrub cover, while shrub percent cover remained relatively stable. 
Percent bare soil for each observation period used to calibrate AERO is 
listed in Table 3. 

Mean vegetation height for the period of record ranged from ~0.20 
m at SLV to ~0.37 m at CPER (Fig. 4b). Within-site variability was 
highest at HAFB and lowest at SLV. Shrubs contributed significantly to 

overall mean vegetation height and relatively low within-site variability 
in vegetation height for the two shrubland sites, JER and SLV. Between 
the two shrubland sites, mean shrub height was much higher at JER 
(~0.71 m) than SLV (~0.42 m). Mean non-woody vegetation height at 
the grassland sites was ~0.37 m, ~0.35 m, and ~0.21 m at SLV, HAFB, 
and Moab, respectively. Mean vegetation heights for the observation 
periods used to calibrate AERO are listed in Table 3. 

For all sites, the highest proportion of unvegetated gaps was between 
0.25 and 0.5 m, and there were few gaps larger than 3 m (Fig. 5). The 
general shape of the probability distribution of lg was similar among 
sites and follows a typical gamma distribution, as suggested by Okin, 
(2008). SLV had the highest proportion of small unvegetated gaps, lg <
0.25 m, and JER had the lowest. Within-site variability in lg was highest 
for Moab and SLV and relatively low at other sites with the exception of 
the 0.25 < lg ≤ 0.5 m range. Distributions of l were similarly shaped to 
those for lg with some minor differences following normalization by 
mean vegetation height, which varied among sites (Fig. 5b). The 
exception was CPER, where the frequency of l skews noticeably to lower 

Fig. 3. Soil particle size cumulative distributions from the a) JER, b) HAFB, c) Moab, d) SLV, and e) CPER National Wind Erosion Research Network (NWERN) sites 
used to calibrate the Aeolian EROsion (AERO) model. 

Fig. 4. a) vegetation cover, b) vegetation height and c) percent bare ground for 
all vegetation transect measurements to date for National Wind Erosion 
Research Network (NWERN) sites used to calibrate the Aeolian EROsion 
(AERO) model. Yellow lines indicate mean values, purple boxes indicate stan
dard error of the mean, and white boxes indicate ± 1 standard deviation. 
Yellow circles indicate observations from individual transect measurements. W, 
H, and T stand for woody, herbaceous, and total, respectively. (For interpre
tation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 

Fig. 5. Panel a) shows mean probabilities ± 1 standard deviation (purple bars) 
of on-the-ground canopy gap distances for all vegetation transect measurement 
dates for National Wind Erosion Research Network (NWERN) sites used to 
calibrate the Aeolian EROsion (AERO) model; and b) scaled canopy gap, 
calculated here as canopy gap distance divided by mean vegetation height. Bin 
width is 2.5 m and 1 (dimensionless) for canopy gap distance and scaled canopy 
gap, respectively. Standard deviations are not shown for CPER because only 
two observation periods were included in the model calibration. (For inter
pretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 
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bins relative to lg, which reflects dense vegetation cover where unve
getated gaps mostly comprise distances less than the canopy height. 

Wind speeds during sediment flux observation periods are repre
sentative of both long-term and seasonal variability in meteorological 
conditions across the sites used to calibrate the model, except CPER, 
where observations periods did not capture the highest wind speeds 
during the period of record (Fig. 6). In general, for each site, periods 
with wind speeds approaching the maximum recorded during the period 
of record as well as periods characterized by relatively low wind speeds 
were used in the calibration. In addition, observations periods from 
spring, summer, fall, and winter were included for JER, HAFB, and 
Moab. For SLV and CPER, only summer and fall observation periods 
were included, largely because colder, wetter conditions and snow cover 
preclude sampling during winter and spring conditions. Mean daily 
wind speeds were highest at CPER (~4.6 m s− 1), followed by HAFB 
(~3.5 m s− 1), SLV (~3.4 m s− 1), JER (~3.2 m s− 1) and Moab (~3.0 m 
s− 1), respectively. CPER also had the largest variability in mean daily 
wind speeds over the period of record (standard deviation ≈ 1.9 m s− 1). 
Variability was similar at SLV, Moab, and JER (standard deviation ≈ 1.6, 
1.5, 1.4 m s− 1, respectively), and lowest at HAFB (standard deviation ≈
1.2 m s− 1). Maximum hourly wind speeds were similar for JER, HAFB, 
Moab, and SLV (~11.9, 10.8, 10.8, and 11.2 m s− 1, respectively) and 

highest at CPER (~17.5 m s− 1). 

Horizontal sediment flux observations 

After eliminating horizontal sediment flux observations using the 
criteria described in Section “Parameter space sampling and GLUE 
setup”, 44 observation periods across sites were selected to condition 
AERO flux predictions. Overall, the range of observed horizontal sedi
ment fluxes across sites varied considerably, ranging several orders of 
magnitude (Fig. 7a; Table 3). Within-site variability was also large and 
spanned several orders of magnitude at all sites except CPER. These 
results indicate that the sites selected for calibrating AERO appropri
ately represent a large range of aeolian sediment transport rates that 
could be expected to occur in many rangelands. 

AERO calculates fluxes using SI units, but hereafter fluxes are re
ported in g m− 1 d− 1, which is a more meaningful unit given time frames 
of aeolian activity in rangelands (Li et al., 2013). Mean observed fluxes 
for the observation periods used to calibrate AERO were ~65, 7, 9, 36, 
and 0.6 g m− 1 d− 1 at JER, HAFB, Moab, SLV, and CPER, respectively. 
Within-site mean fluxes were negligibly different for the entire period of 
record, and the across-site distribution of observations selected to con
dition the model calibration was comparable to the distribution of all 
observed fluxes (Fig. 7b). Thus, natural variability in sediment flux 
across a range of ecological conditions is encapsulated in the model 
calibration. 

Model calibration 

Model calibration resulted in 453 acceptable parameter sets. Un
certainty was estimated for 90% prediction bounds. Results show good 
agreement for individual sampling periods across sites, with most indi
vidual observations falling within prediction bounds (Fig. 8). Agreement 
was typically better for the largest flux values, and most of the obser
vations that fell outside prediction bounds were for very small fluxes. 
For the entire set of observations, linear regression of the median GLUE 
predictions versus observations resulted in a slope ≈1 (R2 ≈ 0.89), with 
an RMSLE (root mean squared log error) ≈ 0.70 and RMSE ≈ 19 RMSE 
(g m− 1 d− 1). These results indicate that the GLUE calibration setup—e. 
g., number of simulations, likelihood measure, prior distributions of 
parameters—was appropriate, and that AERO produces realistic esti
mates of Q across a range of rangeland vegetation and meteorological 
conditions. 

It should be noted that for each observation used to calibrate the 
model—or subsequently, for each set of model inputs used to estimate 
flux for a specific plot or scenario— the GLUE methodology results in a 

Fig. 6. Hourly, daily, and weekly 10-meter wind speeds measured at the a) 
JER, b) HAFB, c) Moab, d) SLV, and e) CPER National Wind Erosion Research 
Network (NWERN) sites. Note different periods of record, August 2015–April 
2019 for JER and HAFB, January 2016–April 2019 for Moab, SLV and CPER. 
The light purple windows indicate the horizontal sediment flux observation 
periods used to condition the Aeolian EROsion (AERO) model calibration. Other 
than at CPER, observation periods are representative of both long term and 
seasonal variability in meteorological conditions across sites. Note missing 10- 
meter wind speed data in June and July 2017 at SLV. Five-meter wind speed 
data were used for model inputs for these observation periods. (For interpre
tation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 

Fig. 7. a) Distribution plots of all observed horizontal sediment fluxes from 
National Wind Erosion Research Network (NWERN) sites used to calibrate the 
Aeolian EROsion (AERO) model. Color scale represents number of flux samples 
(27 per site per observation period) in each bin, and bin width represents 
relative density of points by bin for each site. Yellow lines indicate mean and 
standard error of the mean. b) Probability distributions (bin size = 0.25 in 
log10 space) for all horizontal sediment flux observations across sites and ob
servations used to condition the AERO model calibration. As shown, the dis
tribution of fluxes used for the calibration is representative of the distribution of 
all fluxes observed during the period of record across all sites (2015 through 
April 2019). (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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unique probabilistic distribution of model predictions (Fig. 9). The 
ranked order of flux estimates from acceptable parameter sets is not 
necessarily the same across simulations because of the complexity of 
parameter interactions and relative influence of model inputs. The 
resulting distributions change in shape and variance across observa
tions, and are thus non-Gaussian (Beven and Freer, 2001), highlighting 
limitations of using traditional statistical and optimization approaches 
based on the assumption that model errors are normally (or some other 
known form) distributed to parameterize complex environmental, 
including aeolian, models. 

Marginal posterior distributions can be used to qualitatively assess 
model sensitivity to individual parameters and to approximate “best” 
values for individual parameters (Fig. 10). The median GLUE estimates 
of model parameters were ~0.061, 3.0 × 10− 4, 0.37 × 10− 4, 0.18, and 
6.1 for C, z0, Γ, φl =0, and r, respectively (Fig. 10, Table 3). The relative 
degree of departure from the prior uniform distributions used to 
construct the parameter space for parameter set sampling indicates the 
relative influence of the parameter on model simulation results and 
performance. The marginal posterior distributions for C and z0 had the 
largest departure from the prior uniform distribution, indicating AERO 
is most sensitive to those parameters. The model appears least sensitive 
to Γ and φl =0. It should be noted, however, that some caution should be 
shown in interpreting these distributions, as the parameter sets as a 
whole are independent, rather than the individual parameter values 
(Beven and Freer, 2001). 

On a site-by-site basis, the probability distribution resulting from 

combining likelihood-weighted predictions for all observation periods at 
a given site more closely approximated the probability distribution of 
observations than for most single observation periods used to condition 
the model (Fig. 11). This approach—which can be interpreted as esti
mating the long-term distribution of aeolian sediment fluxes for a 
site—suggests that using a GLUE framework to condition an aeolian 
transport model encapsulates natural variability in transport rates 
resulting from time-variable vegetation and meteorological conditions 
and provides robust assessments of horizontal sediment flux probability 
suitable to inform land management. In particular, agreement between 
the long-term estimated and observed flux distributions was best for JER 
and SLV, which have the highest sediment transport rates among the 
sites used to condition the model. This outcome suggests that AERO 
more accurately predicts larger aeolian sediment transport rates that are 
likely to be of greatest significance for soil loss, dust emission, and 
feedbacks to ecosystem change (Bestelmeyer et al., 2018). Agreement 
between predictions and observations for both individual observation 
periods and the long-term flux distributions was poorest at HAFB. HAFB 
has a relatively high proportion of often strongly crusted gypsiferous 
soils, so it is possible that AERO overestimated flux at this site for 

Fig. 8. a) Predicted versus observed horizontal sediment flux for the 44 
observation periods used to condition the Aeolian EROsion (AERO) model 
calibration. Values shown are the median Generalized Likelihood Uncertainty 
Estimation (GLUE) predictions of flux and error bars are the 90% prediction 
bounds. Observed values are spatial means calculated using Eq. (23). Solid line 
is linear fit between predicted and observed flux and dotted line is 1 to 1. 
Notably, the slope of the relationship between median predicted and observed 
fluxes is 1 (R2 = 0.89), indicating that choices made to construct the GLUE 
calibration framework, e.g., number of simulations, likelihood measure, prior 
distributions of parameters, were appropriate and that the AERO model suc
cessfully produces realistic estimates of horizontal sediment flux for rangelands. 
b) Median predicted flux for each observation period organized by site versus 
mean and median observed flux from the 27-mast MWAC array. Error bars are 
90% prediction bounds. Notably, much of the disagreement between predicted 
and observed flux is for relatively low flux values. 

Fig. 9. Examples of probability density of horizontal sediment flux observa
tions (from 27 Modified Cooke and Wilson (MWAC) samplers) and GLUE pre
dictions (453 predictions binned into 20 bins) for a) an observation period with 
very good agreement between predicted and observed flux. Note the median 
prediction and mean observation overlap. b) an observation period with good 
agreement between observed and predicted flux. The median predicted and 
mean observed flux are not as close, but the observed mean is well within the 
90% prediction uncertainty bounds and the distribution of predictions closely 
resembles observations. c) an observation period with poor agreement between 
observed and predicted flux, indicated by the spatial mean observed flux falling 
outside of the 90% prediction uncertainty bounds. Note that there is still sig
nificant overlap between observed and predicted flux in this case of 
poor agreement. 
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observed meteorological and vegetation conditions. In addition, particle 
density in Eq. (4) was adjusted to reflect the soil mineralogy at HAFB, 
but the saltation layer at the site often extends higher than for silicate 
soils. Because the MWAC masts were designed to integrate Q up to 1 m 
height, this precludes acceptable fits using Eq. (24) or Eq. (25) for many 
high transport periods. Thus, it is also possible that observed values of Q 
at HAFB are underestimated. These issues are also exacerbated by 
frequent influx of already entrained sediment to the site from the White 
Sands dune field, which is located ~5 km upwind. In either case, pre
dictions and observations are still generally of the same order of 
magnitude, despite the relatively large disagreement in means 
compared to other sites. 

Discussion 

Overall, AERO produces realistic estimates of horizontal sediment 
mass flux distributions for varied rangeland vegetation and 

meteorological conditions. Aeolian transport models are notoriously 
difficult to parameterize across multiple field observations, even from 
the same site or under near-ideal conditions (e.g., Sherman and Li, 2012; 
Sherman et al., 2013), because they often require site- and event-specific 
fits for parameter values. Moreover, at larger temporal and spatial 
scales, horizontal sediment flux and dust emission models often over
estimate aeolian transport rates by an order of magnitude or more 
(Haustein et al., 2015). We found the majority of AERO predictions were 
accurate within 90% prediction uncertainty bounds over several orders 
of magnitude of observed fluxes from five sites, with a linear regression 
slope of 1–1 (Fig. 8). These results suggest that while AERO is minimalist 
by design to accommodate standardized monitoring data (e.g., Toevs 
et al., 2011), the selected component schemes and overall model 
structure adequately describe the transport system over short to inter
mediate time scales (e.g., months to years) and a range of vegetation and 
meteorological conditions (Figs. 2–6). Perhaps more importantly from a 
management context, long-term probability distributions comprised of 
all flux predictions through time for a site agree very well with spatially 
distributed (27 MWAC sampler masts over a one-hectare site) observa
tions over a period of several years, indicating that the GLUE model 
calibration approach sufficiently captures spatiotemporal variability in 
transport at these grassland and shrubland sites (Fig. 11). Agreement 
between long-term estimates and observations was particularly good for 
the two sites with the highest mean fluxes, which is promising for pro
ducing meaningful wind erosion estimates to inform management. 

There are many reasons why process-based aeolian models are 
difficult to apply universally across diverse landscapes. Primary among 
them are 1) model development from limited experimental data (Sher
man, 2020); 2) application of models that describe steady state, equi
librium conditions to represent processes that are more often than not 
intermittent across both space and time (e.g., Baas, 2008; Shao et al., 
2020); 3) insufficient, or non-standardized observation sampling pro
tocols (Webb et al., 2019; Sherman et al., 2018; Shao et al., 2020); and 4) 
the difficulty in representing spatially and temporally heterogeneous 
limiting factors on transport dynamics (e.g., Hagen, 2004; Namikas 
et al., 2010; Webb et al., 2021). These and other questions regarding 
uncertainties have persisted since the beginning of aeolian research as a 
discipline (e.g., Akiba, 1933; Cox et al., 1935), yet aeolian modeling 
remains an uncertain endeavor at best. Our basic understanding of the 
underlying physics has changed relatively little since early seminal 
works (e.g., Bagnold, 1936, 1941; Kawamura, 1951; and others), but the 
impact of uncertainty, including model structural errors, incomplete or 
unknown descriptions of processes, observational and measurement 
biases, and others remains largely unknown. For wind erosion and dust 
emission modeling, this has led to extensive model tuning (e.g., Ginoux 
et al., 2001; Zender et al., 2003) and application-specific (e.g., Tatarko 
et al., 2019) or region-specific approaches (e.g., Darmenova et al., 2009; 
Jarrah et al., 2020). Though these approaches work well under condi
tions or in geographies for which they were developed, they are difficult 
to generalize. Our aim with AERO was to develop a modeling approach 
that was generalizable across dryland systems, captured natural vari
ability in transport rates, and communicated uncertainty in sediment 
transport predictions, which was accomplished by using a GLUE model 
calibration framework. 

It should be noted that our application of GLUE methodology to 
AERO differs from the typical implementation. In most cases, GLUE is 
used to condition models with well-defined domains to time series ob
servations, e.g., discharge from a specific catchment. We applied the 
methodology more generally to model a suite of processes at different 
locations, independent of time. The marginal posterior distributions of 
parameter values from acceptable models (Fig. 10) indicate that this 
approach reasonably encapsulates aeolian transport processes across 
distinct rangeland conditions. From a modeling standpoint, our results 
are also consistent with other recent research that suggests that 
parameter values for aeolian models should be treated stochastically 
because of the inherently variable nature of turbulent processes (Liu 

Fig. 10. Marginal posterior cumulative distributions of model parameters 
following calibration of the Aeolian EROsion (AERO) model for rangelands. 
Prior uniform distributions used to construct parameter space shown by dotted 
lines. Qualitatively, the level of departure of the marginal distribution away 
from the prior distribution indicates level of model sensitivity to each. Median 
values suggest a “best” value for each parameter, but it should be noted that the 
Generalized Likelihood Uncertainty Estimation (GLUE) framework relies on 
independence of parameter sets rather than individual values. Thus, while 
predictions using median parameter values for these marginal distributions will 
likely produce reasonable results, caution should be used in such an approach. 

Fig. 11. Probability density of all observations (from all MWAC masts) of 
sediment flux during observation periods used to condition the Aeolian 
EROsion (AERO) model calibration compared to probability density of all 
likelihood weighted sediment flux predictions by site. Shaded tails are from the 
0 to 5% quantile and from the 95% quantile to ∞, which represents the 90% 
prediction bounds for predicted flux. Plots are for a) JER, b) HAFB, c) Moab, 
and d) SLV National Wind Erosion Research Network (NWERN) sites. Data for 
the CPER site is not shown here because many of the observed and predicted 
fluxes are zero or negligible. 
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et al., 2018). Median values and interquartile ranges (Table 3) of the 
posterior distributions are consistent with values of z0, Γ, and r sug
gested in the literature (Shao and Lu, 2000; Okin, 2008; Li et al., 2013) 
or determined experimentally for a range of dryland environments (King 
et al., 2006; Marticorena et al., 2006), and for NWERN sites specifically 
(Ziegler et al., 2020). Median φl =0 is slightly lower than suggested by 
Okin (2008) and parameterized by Li et al. (2013), 0.18 versus 
0.28–0.32, respectively, but seems reasonable given the mix of shrub
land and grassland sites used in the model calibration. Values of C for 
acceptable parameter sets are much lower compared to values reported 
for equilibrium and near-equilibrium saltation conditions (e.g., Kawa
mura, 1951; White, 1979; Shao et al., 2011), but likely reflect the 
intermittent and supply-limited nature of saltation in sparsely vegetated 
drylands, and are of similar magnitude to values parameterized for 
similar environments by Li et al. (2013). Thus, AERO can be applied to 
rangelands generally without the need to reparametrize the model on a 
site-by-site basis. However, it should be noted the current model cali
bration may be limited for dissimilar dryland landscapes. While we 
included as many sites with suitable data as were available, and limiting 
factors such as soil crusting are inherently captured in the current cali
bration to the degree and duration they exist at the calibration sites, 
there is a great deal of diversity in vegetation cover and composition, 
surface soil characteristics, and meteorology not currently represented 
by the model. Ongoing work will extend the model calibration to 
incorporate data from disturbed rangeland sites (e.g., post-fire and brush 
management) and croplands under different management systems (e.g., 
conventional and no-till). 

AERO can be used by land managers, government agencies, 
including transportation departments, and conservationists as a tool for 
adaptive management and planning. In this context, we foresee AERO to 
be used to: 1) assess aeolian sediment transport and dust emission rates; 
2) identify conditions or actions that may lead to increased risk for soil 
erosion, blowing dust hazards, and degraded air quality; 3) assess 
effectiveness of conservation practices and whether management ob
jectives are being met; 4) evaluate co-benefits and trade-offs for erosion 
management among ecosystem services; and 5) identify thresholds in 
vegetation cover and structure to avoid undesirable ecosystem state 
transitions and land degradation. In addition, the impact of a changing 
climate on rangelands globally remains uncertain, but some general
izations can be made about impacts to high level controls of wind 
erosion over the next few decades. Current projected trends in the 
western U.S., for example, are expected to cause regional shifts in 
vegetation cover and community composition; frequency, magnitude, 
and range of fire disturbance; and the frequency of high intensity, 
erosive weather events, all of which could lead to increased wind 
erosion and dust emissions in many areas (Edwards et al., 2019). Other 
available models largely fail to capture either short- or long-term vari
ability in horizontal sediment transport or dust emission rates and are 
thus ill equipped to assess the potential impacts of gradual changes to 
forcing and boundary conditions through time. AERO simulations using 
climate change modelling scenarios could be useful in assessing wind 
erosion and dust emission response over seasonal to decadal time scales 
and in determining necessary land management changes, conservation 
treatment needs, and other actions that could be implemented now as a 
means to reduce estimated future risks. 

For all cases, applications of AERO in these contexts will depend on 
the availability and/or capacity to collect needed input data, as well as 
the ability to interpret probabilistic estimates of aeolian sediment 
transport rates. Developing analysis frameworks and interpretive tools 
to provide context and benchmarks for assessing wind erosion and air 
quality will be important for users to apply erosion prediction tools like 
AERO to inform management (Webb et al., 2020b). To support inter
pretation, ongoing work seeks to build on an online version of the model 
that can run scenarios of land cover change, incorporate AERO estimates 
into land-potential (or site-specific) online databases of ecosystem dy
namics (Bestelmeyer et al., 2016), and evaluate how quantitative 

sediment transport predictions can complement qualitative and quan
titative rangeland health assessment protocols (e.g., Pellant et al., 2018; 
Herrick et al., 2019). 

Our approach to calibrating AERO also shows promise for other 
aeolian applications. Because the GLUE methodology accounts for 
equifinality, unknown biases, and structural errors among different 
models (Beven and Binley, 2014), a similar approach could be employed 
to what was presented here using both a suite of aeolian models and 
parameter sets. This could be a potentially useful approach to assess 
model performance in situations where different models, e.g., of salta
tion flux or threshold of motion, produce a wide range of results for the 
same inputs (e.g., Namikas and Sherman, 1995; Sherman et al., 1998; 
Edwards and Namikas, 2015). Our selection of specific equations (e.g., 
Kawamura, 1951) was based largely on straightforward integration with 
other model components. However, in the same way we used different 
parameter sets only to calibrate AERO, different model and parameter 
set combinations could also be used to calibrate models for other aeolian 
systems, effectively producing likelihood-weighted predictions con
structed from the most accurate prediction ranges from a suite of 
models. In effect, the “best” part of each model would influence the 
overall result. Such an approach could improve, for example, sediment 
flux forecasting for beach and dune sediment budgets, where research 
has shown that different equations perform better for different condi
tions (Sherman et al., 2013). 

Conclusions and future work 

The AERO model was developed to provide rangeland managers with 
a tool to quantitatively assess wind erosion and dust emission. AERO 
leverages standardized ecosystem monitoring datasets to calculate 
probabilistic estimates of streamwise horizontal sediment mass flux, an 
indicator of soil and site stability, and size-resolved dust emission, an 
indicator of soil and nutrient loss and air quality. AERO balances the 
need for parsimony with process fidelity; the model can be applied using 
a minimum set of core inputs obtained in the field using standard 
monitoring methods (Herrick et al., 2018) or by remote sensing (e.g., 
Jones et al., 2018; Zhang et al., 2019; Zhou et al., 2020). AERO captures 
first-order controls to predict aeolian sediment transport across diverse 
soil types, vegetation communities, and land uses. Here, we have pre
sented the AERO model structure and parameterization of the model 
threshold shear velocity, drag partition scheme, and horizontal mass 
flux equation for grassland and shrubland rangeland sites. 

A Generalized Likelihood Uncertainty Estimation (GLUE) model 
calibration framework was used to parameterize horizontal sediment 
flux estimates for rangelands. Model calibration resulted in 453 
acceptable models of horizontal aeolian sediment flux out of an initial 
10,000 simulations. Median flux predictions exhibited a one-to-one 
relationship with observations of sediment flux. Long-term probability 
distributions of horizontal sediment flux predictions agree well with 
spatially distributed observations over a period of several years on a site- 
by-site basis, with agreement being best for the most active sites. AERO 
can be used by land managers, government agencies, and conserva
tionists to assess potential aeolian sediment transport and dust emission 
rates for risk mitigation, determining the effectiveness of conservation 
practices, evaluating co-benefits and trade-offs for erosion management, 
and identifying critical thresholds in vegetation cover and structure for 
state transitions and land degradation. The next step in AERO devel
opment is to include parameterization of the vertical dust emission 
scheme in the model calibration when enough observations become 
available and continued refinement based on data from an increasingly 
large number of sites in the NWERN, representing an even greater di
versity of conditions. 
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