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Abstract Measurements of aeolian sediment transport support our understanding of mineral dust
impacts on Earth and human systems and assessments of aeolian process sensitivities to global
environmental change. However, sample design principles are often overlooked in aeolian research. Here
we use high‐density field measurements of sediment mass flux across land use and land cover types to
examine sample size and power effects on detecting change in aeolian transport. Temporal variances were
1.6 to 10.1 times the magnitude of spatial variances in aeolian transport for six study sites. Differences in
transport were detectable for >67% of comparisons among sites using ~27 samples. Failure to detect change
with smaller sample sizes suggests that aeolian transport measurements and monitoring are much more
uncertain than recognized. We show how small and selective sampling, common in aeolian research, gives
the false impression that differences in aeolian transport can be detected, potentially undermining
inferences about process and impacting reproducibility of aeolian research.

Plain Language Summary Aeolian sediment transport, including wind erosion and dust
emission, impacts agricultural production and food security, nutrient cycling, water resources, and
climate. Measuring aeolian sediment transport is therefore important for developing an understanding of its
impacts on Earth systems and society. However, little consideration has been given to howmany samples are
needed to measure aeolian transport and detect its change across space and through time. We investigate
how sample size, design, and decisions about the precision of change detection affect aeolian transport
monitoring. Using field measurements, we show that traditional approaches in aeolian research with small
sample sizes and selective placement of equipment are often unable to detect change and support robust
inferences about aeolian processes. Unless large numbers of samples are used, uncertainty in field
measurements can be so large that it undermines our understanding of how and why aeolian sediment
transport rates change across space and through time.

1. Introduction

Wind erosion, sand dune dynamics, and dust emission are highly sensitive to the impacts of natural and
anthropogenic environmental change (Arvin et al., 2017; Hooper & Marx, 2018; Kok et al., 2018; Yizhaq
et al., 2009), but magnitudes of aeolian sediment transport responses to these changes are not well estab-
lished (Webb & Pierre, 2018). The highly nonlinear response of aeolian transport to wind forcing further
complicates efforts to quantify its patterns (Durán et al., 2011). Understanding effects of disturbances and
environmental change on aeolian processes, and connected feedback, requires field measurements and
models that are sensitive to biotic and abiotic drivers. Repeated measurements (monitoring) of aeolian trans-
port rates across ecosystems provide a basis for understanding process mechanics, evaluating treatment
effects, and parameterizing dust models for broad‐scale investigations (e.g., Belnap et al., 2009; Haustein
et al., 2015; Hoffmann et al., 2008; Nauman et al., 2018). To detect change, unbiased samples should be used
to represent the spatial and temporal variability in transport (de Gruijter et al., 2006). However, large uncer-
tainties in monitoring due to spatiotemporal variability in aeolian transport potentially undermine analyses
of wind erosion, dune dynamics, and dust cycle sensitivities to environmental change (Sankey et al., 2012;
von Holdt et al., 2019).
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Large spatial and temporal variability in aeolian transport arises from land surface‐atmosphere interactions
at different scales (Ellis et al., 2012). Monitoring these dynamics is critical for quantifying aeolian transport
patterns and the underlying causes (Sherman et al., 2018). Efforts are being made to measure aeolian trans-
port rates at increasingly high temporal frequencies (e.g., Baas & van den Berg, 2018; Martin et al., 2018) and
improve efficiencies of sampling equipment (e.g., Goossens et al., 2000; Goossens & Buck, 2012). These
approaches are justified for studies of aeolian process mechanics, but basic principles of sample design that
enable assessment of change in transport rates over space and time are frequently ignored. This is evidenced
by the large number of aeolian studies that have used small sample sizes (e.g., n ≤ 3) without appropriate
justification, do not report sample sizes, and selectively position equipment within study sites. The conse-
quences are larger uncertainty than recognized in measurements and the false impression that change
can be detected (de Gruijter et al., 2006).

Monitoring aeolian transport and its controls requires sample designs that capture effects of boundary‐layer
interactions across scales over which inferences about aeolian processes are sought. Since aeolian transport
rates respond directly to the spatiotemporal variability in wind shear stress over a site (Stout & Zobeck,
1997), monitoring requires sufficient samples to establish unbiased estimates of mean transport rates and
their variability over space and time. Sampling at just a few selected locations (small n) frequently in time
has been shown to capture some temporal variance but omits spatial variance and inadequately represents
total within‐site variance in aeolian transport (Chappell & Baldock, 2016; de Gruijter et al., 2006; Li et al.,
2015). Unless site‐level variance is represented, change detection inference will be statistically invalid and
the scientific significance will be more uncertain than recognized (Lenth, 2001).

Here we use repeated high‐density samples of horizontal sediment mass flux across land use and land
cover types in the United States to quantify spatiotemporal variability in aeolian transport. We test the
effectiveness of stratified random sampling used by the National Wind Erosion Research Network for
monitoring horizontal sediment mass flux (Q) and examine effects of sample size and power (the prob-
ability that a test will reject a false null hypothesis) on change detection. We demonstrate that small sam-
ple sizes (n < 10) are often inadequate for monitoring change in Q over space and time. Furthermore,
selective placement of Q sampling locations may poorly characterize transport at a site when its spatial
variability is large. We show that with planning, a sample design can be established to reduce uncertainty
in monitoring Q to enable change detection over time, in response to treatments, and between land use
and land cover types.

2. Data and Methods
2.1. Horizontal Sediment Mass Flux Data

We acquired spatiotemporal measurements of horizontal sediment mass flux from six National Wind
Erosion Research Network sites (Figure 1; Webb et al., 2016). The network uses a standardized sample
design, instrumentation, and methods to measure sediment mass fluxes, dust emission, and land surface
and meteorological controls over 1.0‐ha sites across U.S. agroecological systems. Data were collected at
two semiarid grassland sites with patchy (Holloman site) and homogeneous (Moab site) grass cover, two
shrubland sites with large (Jornada site) and small (San Luis Valley site) heterogeneity in shrub canopy
height and cover, and two cropland sites that use no tillage (Mandan site) and conventional tillage
(Pullman site) crop management (Table 1). Site vegetation structures are typical of those in deserts, range-
lands, and croplands across dust source regions globally (Webb et al., 2017).

At each site, a stratified random sample design was used to measure the areal horizontal sediment mass flux
(including saltating and suspended sediment) using 27 ModifiedWilson and Cooke (MWAC) sediment sam-
pler masts, with samplers at 0.10‐, 0.25‐, 0.50‐, and 0.85‐m heights (Webb et al., 2015). In the absence of a
priori information, the sites were stratified in a regular 3 × 3 square grid (each 33.3 m2). Within each of
the nine grid cells, MWACmasts were located at three random positions; labeled A1, A2, and A3 for the first
cell through I1, I2, and I3 for the ninth cell (Figure 2). Sediment trapped in the MWAC samplers was col-
lected every ~28 days within sampling periods of 6–37 months (Table 1). Sediment was extracted from the
samplers using either wet or dry analysis methods and weighed to determine sediment masses following
Webb et al. (2015).
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Figure 1. Locations and photographs of the six U.S. NationalWind Erosion Research Network sites fromwhich data were
used in this study.
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We calculated for each MWACmast and sampling period the vertically integrated sediment mass fluxes (Q)
from the sediment masses normalized by the MWAC inlet areas (2.34 × 10‐4 m2) using nonlinear least
squares regression to fit exponential functions to the data. Following Ellis et al. (2009), we fitted two‐
parameter or three‐parameter functions to the mass flux profiles depending on whether sediment masses
of detectable weight (>0.0001 g) were available at three or four heights respectively (96% of total samples).
We then integrated from 0‐ to 1.0‐m height and divided by the sampling periods to obtain:

Q ¼ ∫
1

0q zð Þdz; (1)

where q(z) is the sediment mass collected per unit inlet area (m‐2) per sampling period (day) at heights z (m)
and Q is expressed with units of g · m‐1 · day‐1.

2.2. Analysis of Spatial and Temporal Variances

We first explored the spatial and temporal contributions to variance in aeolian transport. We plottedQ to test
for normality and applied a log‐transformation to Q prior to statistical analyses. Following Horvitz and
Thompson (1952), if a variable (e.g.,Q) is monitored over a land cover type using a stratified random sample,
then inverse probability weighting should be used to account for different proportions of observations within
strata. The Horvitz‐Thompson (HT) estimator of the population mean of the site (zHT) for the variable (z) is
defined as

zHT ¼ ∑m
i¼1

zi
πi

n
; (2)

where πi is the probability that the ith sample unit is included in the sample, m = 3 is the simple random
sample set size within a stratum, n (up to 27) is the total sample size, and zi is the value at sampling location
i (Horvitz & Thompson, 1952). The zHT is population unbiased, meaning that repeated sampling, measure-
ment, and calculation would find on average the true value for the mean. The unbiased condition remains if
the errors are purely random (zero on average). As the strata and sample sizes were the same at all study
locations, the selection probabilities (πi= 1) were the same for the samples and the HT estimator of themean
produced approximately the same means but smaller spatial variances than a simple random sample.
Assuming unbiased sampling, we calculated mean ln(Q) across MWAC sample locations for each sampling
period at each site, and mean ln(Q) through time for each MWAC sampler location at each site. For each
sampling period we then calculated the spatial variance of the HT estimator of the mean ln(Q) across
MWAC sampler locations in space at each site as:

cVs zHTð Þ ¼
∑n

i¼1
1−πi
πi

� �
X2

i þ∑n
i¼1∑

n
j≠1

πij−πiπj

πiπi

� �
XiXj

n2
; (3)

where πij is the inclusion probability of Xi and Xj population units being in the sample size (Horvitz &

Table 1
National Wind Erosion Research Network Sites and Sampling Details

Site name
Holloman
(grassland)

Moab
(grassland) Jornada (shrubland)

San Luis Valley
(shrubland)

Mandan
(cropland)

Pullman
(cropland)

Latitude 32.94 38.65 32.63 37.59 46.78 46.89
Longitude ‐106.11 ‐109.87 ‐106.74 ‐105.69 ‐100.95 ‐118.29
Ecoregion Chihuahuan Desert Colorado Plateau Chihuahuan Desert Arizona/New

Mexico Plateau
Northwestern
Great Plains

Columbia Plateau

Management Rangeland, military land,
livestock grazing

Rangeland,
livestock grazing

Rangeland, livestock
grazing

Rangeland preserve No tillage
cropping

Conventional
tillage cropping

USDA soil texture class Gypsiferous sandy loam Sandy loam Sandy loam Loamy fine sand Silt loam Silt loam
Land cover Grassland Grassland Shrubland Shrubland Sunflower,

wheat, corn
Wheat

Sampling start 08/2015 05/2016 06/2015 06/2016 11/2015 08/2016
Sampling end 05/2018 04/2018 05/2018 11/2017 06/2017 11/2017
Months sampled 36 23 37 16 10 6

Abbreviation: USDA, U.S. Department of Agriculture.
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Thompson, 1952). We established the mean spatial variance in ln(Q) for each site ascVs. We then calculated
the temporal variance of ln(Q) between sampling periods for each MWAC sampler location as

cVt zð Þ ¼ 1
nt−1ð Þ∑

nt
i¼1 zi−ztð Þ2; (4)

where nt is the number of sampling periods and zt is the temporal mean of an MWAC sampler, then

Figure 2. Schematic showing stratified‐random sample design used for Modified Wilson and Cooke sediment sampler
masts to measure horizontal sediment mass flux (Q) at the National Wind Erosion Research Network sites. Each site
has dimensions of 100 × 100 m.
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established the mean temporal variance in ln(Q) for each site as cVt (following de Gruijter et al., 2006). We
calculated the relative magnitude of the temporal and spatial variances in ln(Q) as the ratio cVt=

cVs.

2.3. Establishing Detectable Change

Having calculated the magnitudes of variances in ln(Q), we established the effect of sample size and power
on detectable change in the transport rate. To examine effects of temporal covariance among samplers on
change detection, we calculated lag autocorrelation functions (ρk) and MDC for a set of lag periods (k = 1
to 12 months) across ln(Q) for the samples at each site following Priestley (1982); Figure S1). Following
Woodward (1992), the one‐tailed test (for change with direction) statistic is commonly based on the t test:

X1−α þ X1−β
� �2 ¼ bd2;12

V bz t1ð Þ
� �
n1

þ
V bz t2ð Þ
� �
n2

; (5)

where X is a standard normal distribution, α is the size of the significance test, 1− β is the power of the test, n
is the sample size, t1 and t2 denote the two sampling periods, and bd2;1 is the mean difference in estimated
means. Equation (5) can be rearranged for bd2;1 to establish the difference between means that is dependent
on the specified power and size of test (de Gruijter et al., 2006). For a one‐sided test this gives

bd2;1 ¼ X1−α þ X1−β
� � 1−ρkð ÞV bz t1ð Þ

� �
n1

þ
1−ρkð ÞV bz t2ð Þ

� �
n2

0
@

1
A

0:5

; (6)

including the autocorrelation term ρk at lag k (here 1 month) to moderate the variances for temporal auto-
correlation among samplers (Brus & Noij, 2008). We used bd2;1 to describe the MDC in ln(Q)—the smallest
difference between means that could be detected at a chosen confidence level. We applied equation (6) with
α = 0.05 (Type I error—to infer change when there was none) and β = 0.05 and 0.20 (Type II error—to infer
no change when there really was) to calculate MDC between each sampling period at the sites using the HT
estimators of the spatial variance for the stratified random samples (equation (3)). We calculated absolute
differences between mean ln(Q) of each sampling period and their respective MDC. We then calculated
the percentage of time over the sampling periods for which differences in mean ln(Q) were greater than
MDC. That is, the frequency at which differences in aeolian transport over time could be detected with
80% confidence and 95% confidence that the differences were significant for α = 0.05. We then calculated
MDC for a set of site comparisons with α = 0.05 and for β = 0.05 and 0.20 to evaluate the frequency at which
differences in aeolian transport could be detected between sites. We used β= 0.05 and 0.20 for these analyses
to examine how sample power affects change detection where the risk of falsely detecting change, or not
detecting change, has different implications. For example, a higher level of confidence may be desired to
understand physical relations governing aeolian transport versus that needed to decide to initiate manage-
ment actions to mitigate erosion in a crop field. Finally, we calculated the sample sizes that would be
required to detect a difference in aeolian transport; for example, due to land use or land cover change.
Assuming n1 = n2 = n, α = 0.05 and β = 0.05 and the spatial variance and temporal autocorrelation ρk of
aeolian transport remain constant between comparisons, we used a selection of large and smallcVs zHTð Þ from
each site to calculate

n ¼ X1−α þ X1−β
� �2

2−2ρkð ÞcVs zHTð Þ
bd2;1� �2

:

(7)

3. Results

Monthly Q showed large variability in space and time across the land cover types, spanning at least two
orders of magnitude (Table 2). Overall, Q tended to be smallest at the Holloman grassland and Mandan
no‐till cropland site, and largest at the San Luis Valley shrubland and Pullman conventional tillage cropland
site (Table 2). The temporal distribution of Q varied considerably and by different amounts among MWAC
sampler locations within each site, and among land cover types, within large variability of mean Q for the
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sites through time. For example, at the Jornada site, some sampler locations consistently measured larger Q,
while others consistently measured smaller Q (Figure 3). The spatial variances were consistently large as the
number of samples increased over longer analysis periods. Large spatiotemporal variability in aeolian
transport has previously been reported from landscapes around the world (e.g., Sterk & Stein, 1997;
Chappell et al., 2003a, 2003b).

We foundmore variance inQ through time than across space (Table 2). The mean temporal variance in sedi-

ment transport (cVt) was larger than the mean spatial variance (cVs) by a factor of 1.6 to 3.4 at all sites except

the Holloman grassland sites wherecVtwas 10.1 times larger thancVs. Despite
cVt being larger in all cases, both

the spatial variance and temporal variance of aeolian transport were different among land use and land
cover types. Our results suggest that the spatial variance in aeolian transport may be considerably smaller
than the temporal variance for land cover types with homogeneous roughness (e.g., grasslands) and larger
at sites with heterogeneous roughness (e.g., shrublands) and exposed bare soils.

The effect of spatiotemporal variability in Q on aeolian transport change detection at the National Wind
Erosion Research Network sites is demonstrated by the proportion of comparisons for which measured

Table 2
Mean (Q), Spatial Variances (cVs), and Temporal Variances (cVt) of Vertically Integrated Horizontal Sediment Mass Flux
(g · m‐1 · day‐1) for the Sites Calculated From the Stratified Random Samples

Site Q cVs
cVt

cVt=
cVs

Grassland‐Holloman 10.5 10.4 104.9 10.1
Grassland‐Moab 21.6 934.4 2,248.0 2.4
Shrubland‐Jornada 55.9 4,688.7 7,325.5 1.6
Shrubland‐San Luis Valley 179.4 52,018.4 91,324.2 1.8
Cropland‐Mandan 7.1 80.3 133.3 1.7
Cropland‐Pullman 59.9 1,305.1 4,409.2 3.4

Note. The ratio cVt=
cVs compares the magnitude of the temporal variances to the spatial variances.

Figure 3. Boxplots of vertically integrated horizontal sediment mass flux (Q) for eachModifiedWilson and Cooke sediment sampler mast at the Jornada shrubland
site, summarized over 6 months to 36 months of sampling. The boxes represent interquartile ranges with medians (dark internal lines), and the whiskers extend to
the range of measurements with dots being data outside 1.5 times the interquartile ranges.
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differences in the transport rate exceeded the MDC (Figure 4). Between‐site differences in aeolian transport
were detected with 95% confidence for 67 to 91% of site‐to‐site comparisons (Figure 4a). Reducing the sample
power (β = 0.20) increased the frequency at which differences in aeolian transport between sites were
detected between Jornada and Holloman and between Moab and Pullman but had no effect on the other
between‐site comparisons (α = 0.05). Differences in aeolian transport through time were detected with
95% confidence (at α= 0.05) for 80% and 86% of sampling periods at the Holloman andMoab grassland sites,
respectively (Figure 4b). Differences in aeolian transport were detected for 75% and 87% of sampling periods
at the Jornada and San Luis Valley shrubland sites respectively and for 89% and 60% of comparisons at the
Mandan and Pullman cropland sites. Reducing the sample power (β = 0.20) improved the frequency at
which differences in aeolian transport through time were detected at the Holloman grassland site and
Jornada shrubland site (by 6%), Mandan cropland site (by 11%), and Pullman cropland site (by 20%), but
reduced confidence that differences were statistically significant. The temporal pattern of aeolian transport
was random at all sites with only weak temporal autocorrelation among samples at k = 1 month at the
Jornada shrubland site (ρk = 0.4, p <0.05; Figure S1 in the supporting information). Monitoring over a

Figure 4. Distribution of differences between change in horizontal sediment mass flux, ln(Q), and the minimum
detectable change (MDC) calculated for a one‐tailed 5% significance test (Type I error; α = 0.05) with 95% confidence and
80% confidence of detecting change between sampling periods (Type II error; β= 0.05 and 0.2). Results are summarized for
(a) between site comparisons and (b) within site comparisons. Positive values indicate that statistically significant
differences in aeolian transport were detected. Negative values indicate that statistically significant differences in aeolian
transport were not detected. Labels show percentage of comparisons for which statistically significant differences were
detected.
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longer period (e.g., >5 years) may enable a more robust analysis of temporal autocorrelation among samples.
The MDC in aeolian transport did not decrease with increasing lag time at any site (Figure S2). That is, there
was no appreciable change detection benefit of measuring Q frequently (monthly) or comparing
measurements between longer increments of time.

The MDC varied among land cover types and with time within sites but decreased with larger sample sizes.
Figure 5 shows the effect of sample size on the minimum detectable change in aeolian transport with 95%
confidence that change was significant (α = 0.05). The stratified random sample design used by the
National Wind Erosion Research Network (n = 27) was able to detect statistically significant differences
in Q for the majority of site‐to‐site and month‐to‐month comparisons (Figure 4). However, if a smaller sam-
ple size is used (e.g., n< 10), large differences in aeolian transport must be measured to have confidence that
differences are statistically significant; that there was a change in aeolian transport through time or between
sites or treatments. While three or fewer sediment sampler masts commonly used in aeolian research might
provide a reasonable estimate of the temporal variance in Q, depending on sampler location and measure-
ment period (Figure 3), differences in aeolian transport of 20 to 700% or more between sampling periods
or treatments may be required for confident change detection.

4. Discussion and Conclusions

Using repeated high‐density measurements of horizontal sediment mass flux across land use and land cover
types, we tested the effects of sample size and power on aeolian transport monitoring. Our results show that
small samples (n < 10) are likely to produce large uncertainties and may be ineffective for characterizing
transport rates and detecting change between sites and over time. Selective sampling—for example, placing
sediment samplers in specific locations relative to vegetation (e.g., open gaps)—may also bias estimates of
transport when its variability is not accounted for. The spatial and temporal variances of aeolian transport
can be large and both must be measured to enable change detection with confidence, not overestimate

the magnitude of treatment effects, and be reproducible. Sample designs that effectively measure bVs, imple-

mented over long enough periods of time to establish bVt, are necessary to monitor and detect change in aeo-
lian transport within and among land cover types.

The sample design used by the National Wind Erosion Research Network was generally sufficient for detect-
ing statistically significant change in Q. At the 95% confidence level, up to 91% of comparisons over space
could detect change between sites and up to 89% of comparisons through time could detect change within
sites. However, detection varied among sites and over time and was smallest at the Jornada shrubland site.
Our results suggest that shrubland sites with a heterogeneous distribution of bare soil, grasses, forbs, and

Figure 5. Response of minimum detectable change in horizontal sediment mass flux, ln(Q), for sample size n calculated
from small (solid lines) and large (dashed lines) variances measured for a selection of sampling dates at the sites for a
stratified random sample with α = 0.05 and β = 0.05. Larger sample sizes enable smaller changes in aeolian sediment
transport to be detected with confidence that the changes are statistically significant.
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shrubs may be the most challenging to sample adequately because the spatial variance of Q is large (Gillette
et al., 2006; Gonzales et al., 2018). The financial costs of data collection suggest that implementing a sample
design that does not enable consistent change detection (e.g., selective, small n designs) is likely a poor use of
resources (Chappell et al., 2003a, 2003b; Li et al., 2015). The costs for making robust inferences from field
data are very large if undersampling gives the false impression that change can be detected—potentially
undermining new insights about aeolian processes and causing confusion or lack of confidence in scientific
advice about the effectiveness of management options (Chappell & Baldock, 2016). Reducing sample power
could be used if larger uncertainty in change detection is acceptable (Desu & Raghavarao, 1990). However,
our results show that while reducing sample power had a large effect (6‐20%) at some sites, it had no effect on
detecting change at other sites. Our results also show that a sample size of ~30 would generally still be
needed to consistently detect change at the plot scale (1 ha). The statistical risk of choosing a lower confi-
dence level, possibly producing a false conclusion, should be determined by the data application to research,
model parameterization, or management (Smith et al., 2014).

If we seek high confidence in the patterns and processes revealed by aeolian transport measurements, it is
necessary to plan sampling accordingly. Consistent with Webster and Oliver (1992), our results show that
a sample size of ~100 appears necessary to measure the spatial variance of Q and consistently reduce
MDC below 100% across land use and land cover types (Figure 5). The requirement for adequate sampling
of the variance in Q will hold across spatial scales, meaning that similarly large sample sizes may be needed

to detect change in Q at the plot scale (< 102 m2) or regional scale (>104 km2). Sample sizes can be smaller

when the spatial variance ofQ is small, but our data show that bVs is temporally variable and likely difficult to
predict. The MDC framework is statistically rigorous and, by allowing for adjustment of sample power, has
the flexibility to avoid being overly stringent. The large MDC (>700%) that may result from very small sam-
ple sizes (n < 3) suggests that aeolian research implementing small sample sizes and selective sampling is
likely to contain inherently greater uncertainty than previously recognized. These uncertainties have inevi-
tably propagated through our understanding of aeolian processes, parameterization of aeolian transport
models, and reproducibility of aeolian research.

To encourage rigor in aeolian research, sample planning should identify the smallest difference between
treatments or sampling periods that must be detected to meet project objectives. The level of confidence
necessary to make inferences from data should be determined so that sample sizes needed to detect differ-
ences in transport can be selected. The scientific and management risks of not using a sample design that
can detect change at the level of precision required should also be considered. In all cases, we encourage
reporting sample designs, sample sizes, and uncertainty in results so that interpretations are not potentially
misleading. If the aim is to monitor net change in erosion, then approaches that use 137Cs or other tracers
that are cost‐effective for sampling spatial variability in soil properties to detect change should also be con-
sidered (e.g., Li et al., 2015).

Finally, it should be acknowledged that it is difficult to establish robust sample designs without knowing the
spatial and temporal variances of a property beingmeasured or expected treatment effects. For aeolian trans-
port, variances in Table 2 from diverse land cover types could be used to establish initial sample designs.
Future research using the network data will examine the effects of differences in vegetation structure and
erodible sediment supply among sites on their spatial variances in aeolian transport. Pilot surveys to mea-
sure variances in transport using a large number of samples (e.g., ~30) could also be used when establishing
an experiment or monitoring (de Gruijter et al., 2006). Sample designs should optimize the inferential power
of data for characterizing aeolian transport rates and detecting change given site characteristics and moni-
toring goals (Li et al., 2015). However, care should be taken not to oversample to obtain statistically signifi-
cant effects while ignoring scientific meaning, and sampling should be adapted to ensure that project
objectives are met (Lenth, 2001). It should also be recognized that a very high density of sediment samplers
could modify site aerodynamics and influence sediment transport rates, making it even harder to measure
natural processes accurately. Such effects will be determined by the size and shape (frontal area) of instru-
ments and could be estimated from drag partition theory (e.g., Raupach et al., 1993). Measurement of factors
controlling aeolian transport should follow the same sample design principles. Surface aerodynamic rough-
ness, wind friction velocity, threshold friction velocity, vegetation foliar cover, and structure all have poten-
tially large spatiotemporal variability (e.g., Gillette, 1999). Implementing sample designs that reduce
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uncertainty in their measurement would improve confidence in inference about their relations, our under-
standing of aeolian processes across ecosystems and land uses, and of wind erosion, dune dynamics, and dust
cycle responses to environmental change.
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