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Abstract. Innovations in machine learning and cloud-based computing were merged with historical
remote sensing and field data to provide the first moderate resolution, annual, percent cover maps of plant
functional types across rangeland ecosystems to effectively and efficiently respond to pressing challenges
facing conservation of biodiversity and ecosystem services. We utilized the historical Landsat satellite
record, gridded meteorology, abiotic land surface data, and over 30,000 field plots within a Random
Forests model to predict per-pixel percent cover of annual forbs and grasses, perennial forbs and grasses,
shrubs, and bare ground over the western United States from 1984 to 2017. Results were validated using
three independent collections of plot-level measurements, and resulting maps display land cover variation
in response to changes in climate, disturbance, and management. The maps, which will be updated annu-
ally at the end of each year, provide exciting opportunities to expand and improve rangeland conservation,
monitoring, and management. The data open new doors for scientific investigation at an unprecedented
blend of temporal fidelity, spatial resolution, and geographic scale.
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INTRODUCTION

Efficient data collection and landscape moni-
toring in space and time are critical for respond-
ing to global challenges impacting preservation
of biodiversity. Integration of new technology
with existing large-scale, long-term data collec-
tion efforts can improve our understanding of
ecosystem threats leading to more effective con-
servation strategies (Marvin et al. 2016). Satellite
remote sensing platforms offer over four decades
of temporal records documenting ecological and
land use dynamics of Earth’s biomes. Land cover
maps derived from these data have proven
invaluable to informing conservation but have
been limited by computational tradeoffs that
constrain their temporal or spatial resolution.
Integration of new cloud-based computing and
image archive platforms (Gorelick et al. 2017)
into traditional land cover mapping may now
transcend shortfalls to advance conservation
solutions (Snaddon et al. 2013) by filling long-
standing information gaps in dynamic ecosystem
monitoring (Hansen et al. 2013, Donchyts et al.
2016).

At large scales, land cover mapping adheres to
tradeoffs that must balance spatial and temporal
resolution and categorical vs. continuous delin-
eations (i.e., each pixel as a single land cover type
vs. percent cover of multiple land cover types).
Global products that supply categorical land
cover (Arino et al. 2008) can provide high tempo-
ral resolution data (Friedl et al. 2010) capable of
tracking ecosystem dynamics but do so at coarse
spatial resolution (>300 m). These data provide
important insight into landscape-level change
but do not translate directly to finer ecosystem
interactions. In contrast, moderate resolution
(30 m) categorical maps at continental (Ryan and
Opperman 2013, Homer et al. 2015) or global
extents (Chen et al. 2015) and regional continu-
ous maps (Xian et al. 2013, 2015) provide higher-
order information, but behave as snapshots in
time due to five- or ten-year lags between evalua-
tions. Missing is land cover monitoring that com-
bines the virtues of high spatial and temporal
resolution needed to inform local ecological out-
comes that are inherently dynamic and difficult
to predict.

Land cover field protocols record the presence,
frequency, or relative coverage of species, plant

functional types (PFT), or abiotic components
(e.g., bare soil, rock) in recognition that, at nearly
any scale, the majority of the natural land surface
is heterogeneous. Categorical maps are simplifi-
cations of this complex heterogeneous land sur-
face, creating unrealistic ecotone boundaries and
limiting our ability to accurately model and mon-
itor ecological processes at resolutions relevant
to inform or monitor land management and
assess conservation efforts. For example, primary
productivity models (Running and Zhao 2015,
Robinson et al. 2018) require parameters that
represent vegetation attributes and functional
characteristics, and use of categorical maps
results in a single set of parameters over a pixel
that may contain numerous PFT with significant
functional variation. Categorical delineations
also confound species distribution and habitat
models when species display preferences for
heterogeneous landscapes or PFT cover thresh-
olds (Lipsey and Naugle 2017), especially if the
minimal presence of a specific PFT (e.g., tree spe-
cies encroachment into shrub communities)
equates to habitat loss (Miller et al. 2017). Map-
ping the migration or establishment of PFTs and
the spread or susceptibility of an area to invasive
species is also lacking as categorical classes rep-
resent the dominant cover type. The presence of
an invasive species may not be mapped until it
dominates an area, preventing timely initiation
of management activities to prevent or mitigate
spread. Continuous estimates of cover remove
these limitations as they preserve the heterogene-
ity of field measures and provide assessments of
vegetation composition, density, and biomass
variability, all of which are key indicators of
ecosystem biodiversity, function, resilience, and
resistance (Allen and Hoekstra 1991, Ostfeld
et al. 1997).
The innovation presented in this manuscript is

the use of emerging technologies (Gorelick et al.
2017) and machine learning (Breiman 2001) to
map continuous estimates of land cover which
required processing vast amounts of data that
were logistically prohibitive before. Remote sens-
ing has proven an adequate and low-cost solu-
tion for land cover monitoring that provides
continuous coverage at multiple spatiotemporal
scales (Booth and Tueller 2003, Hunt et al. 2003,
Sant et al. 2014, Xian et al. 2015, McCord et al.
2017), but challenges have remained as the
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geographic area and time period of interest
increased data volume and computational pro-
cessing, both becoming significant barriers to
implementation. The increased availability and
use of high-performance cloud computing, stor-
age, and services removes such barriers. Combin-
ing these technologies with traditional plot-level
monitoring programs permits the creation of
land cover datasets with complete geographic
and temporal coverage.

In the United States, rangelands are estimated
to cover approximately 2.6–3.0 million square
kilometers (Havstad et al. 2009, Reeves and
Mitchell 2011), nearly one-third of the total U.S.
land area, providing vital ecosystem services,
including water, mineral and wood resources,
livestock grazing, wildlife habitat, recreation,
and cultural heritage. Population growth and
increased demand for the goods and services
that rangelands provide, have affected the spatial
extent and degree of rangeland fragmentation
(Havstad et al. 2009). This demand has manifest
land cover changes in the form of cultivation for
crops (Smith et al. 2016), energy development
(Allred et al. 2015), and altered fire regimes
(Miller et al. 2013). These changes, coupled with
drought, climate effects (Huang et al. 2017), and
changes in species composition (particularly
from non-native invasive plants or encroachment
of native woody plants), are affecting rangeland
resilience and resistance with cascading effects
on ecosystem services (Brooks et al. 2016, Maes-
tas et al. 2016, Chambers et al. 2017).

Mapping continuous rangeland cover at
temporal and spatial scales relevant to on-the-
ground conservation would provide needed clar-
ity for reducing threats and informing adaptive
management in a rapidly changing world. To
this end, we implement Google Earth Engine, a
cloud computing platform for planetary-scale
analysis (Gorelick et al. 2017), the Random For-
ests (RF; Breiman 2001) machine learning algo-
rithm, and traditional large-scale field sampling
efforts to produce annual (1984–2017), moderate
resolution (30 m), percent land cover maps of
four classes: annual forbs and grasses (AFG),
perennial forbs and grasses (PFG), shrubs (SHR),
and bare ground (BG), for rangelands across the
western United States with the capability to pro-
duce annual updates at the end of each year. In
this manuscript, we (1) detail the methods and

land cover models which capitalize on these
emerging technologies, (2) display the resulting
land cover maps, (3) provide error and validation
metrics for each of the land cover classes, and (4)
demonstrate the utility of these maps for range-
land management, assessment, and monitoring
at broad scales.

METHODS

Spatial and temporal extents
The spatial extent and resulting maps cover all

rangelands of the western United States from the
Pacific Coast to the eastern border of Great Plains
states (Fig. 1). The bounds are based on the spa-
tial extent and density of plot-level measures
used to train and validate the land cover models.
For visualizations, non-rangelands are masked
using a coterminous U.S. Rangelands 30 m circa
2011 product (Reeves and Mitchell 2011). Land
cover maps are produced annually from 1984 to
2017 with the temporal bounds defined by the
historic period of the Landsat surface reflectance
(SR) data product, inclusive of the Landsat 5 TM,
Landsat 7 ETM+, and Landsat 8 OLI sensors.

Vegetation field plots
We used the Natural Resources Conservation

Service (NRCS) National Resources Inventory
(NRI; USDA NRCS 2015), the Bureau of Land
Management (BLM) Assessment, Inventory, and
Monitoring (AIM) Landscape Monitoring Frame-
work (LMF), and BLM TerrADat datasets (here-
after referred to as NRI-AIM field plots) across
western U.S. rangelands (Fig. 1) to train and vali-
date land cover models. The combination of
these field plots provided 31,130 plots collected
with a standardized protocol from 2004 to 2016
across non-federal and public BLM lands. Data
collection methods for NRI and AIM (LMF and
TerrADat) field plots are described in Herrick
et al. (2017) and MacKinnon et al. (2011), respec-
tively. Both methods use the same line-point-
intercept protocol where two 150-foot transects,
oriented northeast to southwest and northwest
to southeast, are centered on the sample point. A
pin is dropped at 3-foot intervals along each tran-
sect recording the presence of plants by species,
litter, rock fragment, and bare ground. In this
application, we use the first hit pin drop data to
calculate cover (a method to best represent cover
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from a remote sensing perspective) and species-
level data are aggregated into three functional
groups: AFG, PFG, and SHR based on definitions
in the USDA NRCS PLANTS database (USDA
NRCS 2018), and the bare ground (BG) measure
is retained resulting in percent cover estimates
per plot for four classes: AFG, PFG, SHR, and BG.

Landsat satellite data
The Landsat 5 TM, 7 ETM+, and 8 OLI SR Col-

lection products (30 m) are the highest level of

processing available for Landsat imagery and are
calibrated across sensors and corrected for atmo-
spheric effects and illumination/viewing geome-
try (Masek et al. 2006, Vermote et al. 2016). The
30 m resolution of the Landsat data is used as
the minimum mapping unit for the resulting
land cover maps. Capitalizing on the computa-
tional capability of Google Earth Engine (EE;
Gorelick et al. 2017), we analyzed all Landsat
TM, ETM+, and OLI scenes over the study region
from 1984 to 2017, 231,053 Landsat scenes in

Fig. 1. Extent of study area. Points are Natural Resources Conservation Service National Resources Inventory
(NRI) and Bureau of Land Management Assessment, Inventory, and Monitoring Landscape Monitoring Frame-
work (LMF) and TerraADat plots used for training and validating the Random Forests model. Stars show loca-
tions of independent plot-level measures of cover from the Sagebrush Steppe Treatment Evaluation Project
(SageSTEP), the Restore New Mexico Collaborative Monitoring Program (RNMCMP) initiative, and the Eastern
Oregon Agricultural Research Center (EOARC) used to validate model results.
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total. The Landsat data were masked for cloud-
contaminated, cloud shadow, and saturated SR
retrievals to calculate pixelwise seasonal SR met-
rics, a suite of vegetation and moisture indices,
and tasseled-cap (TC) transformations (Table 1).
For each year, seasonal SR means (spring, April–
June; summer, July–September; fall, October–
December) were calculated using all unmasked
pixels; winter (January–March) SR retrievals
were not included due to excessive snow and
cloud cover. Vegetation indices (USGS EROS
2017) and TC transformations (Baig et al. 2014)
were calculated for every unmasked retrieval,
and then, seasonal means, minimums, and maxi-
mums were derived, as well as differences in sea-
sonal maximums (Table 1). The Landsat data (as

well as the meteorological and abiotic data
described below) were reprojected and bilinearly
interpolated to a geographic coordinate system
(WGS-84; EPSG:4326) at ~30 m resolution after
calculating seasonal and annual metrics.

Meteorological data
The University of Idaho Gridded Surface

Meteorological Dataset (GRIDMET) provides
daily surface meteorological fields from 1979 to
the present at ~4 km resolution across the conti-
nental U.S. (Abatzoglou 2013). We used daily
fields of temperature, precipitation, and potential
evapotranspiration to derive seasonal and
annual metrics (Table 1). For each year (1984–
2017), total and seasonal precipitation, total

Table 1. Spatial temporally dynamic and static (see Notes) variables used to train Random Forests land cover
models and predict land cover.

Spatial temporally dynamic variables Seasonal‡ Seasonal differences Annual

Landsat surface reflectance bands†
Blue (Band 2, 480 nm) �xi; �xj; �xk
Green (Band 3, 560 nm) �xi; �xj; �xk
Red (Band 4, 655 nm) �xi; �xj; �xk
NIR (Band 5, 865 nm) �xi; �xj; �xk
SWIR 1 (Band 6, 1161 nm) �xi; �xj; �xk
SWIR 2 (Band 7, 2200 nm) �xi; �xj; �xk

Vegetation indices§
NDVI (normalized difference vegetation index) ð�x; xmin; xmaxÞi;j;k �xi � �xj; �xj � �xk
EVI (enhanced vegetation index) ð�x; xmin; xmaxÞi;j;k �xi � �xj; �xj � �xk
SAVI (soil adjusted vegetation index) ð�x; xmin; xmaxÞi;j;k �xi � �xj; �xj � �xk
MSAVI (modified soil adjusted vegetation index) ð�x; xmin; xmaxÞi;j;k �xi � �xj; �xj � �xk
NDMI (normalized difference moisture index) ð�x; xmin; xmaxÞi;j;k �xi � �xj; �xj � �xk
NBR (normalized burn ratio) ð�x; xmin; xmaxÞi;j;k �xi � �xj; �xj � �xk
NBR2 (normalized burn ratio 2) ð�x; xmin; xmaxÞi;j;k �xi � �xj; �xj � �xk

Tasseled-cap transformations
TC green ð�x; xmin; xmaxÞi;j;k �xi � �xj; �xj � �xk
TC brightness ð�x; xmin; xmaxÞi;j;k �xi � �xj; �xj � �xk
TC water ð�x; xmin; xmaxÞi;j;k �xi � �xj; �xj � �xk
TC 4 ð�x; xmin; xmaxÞi;j;k �xi � �xj; �xj � �xk
TC 5 ð�x; xmin; xmaxÞi;j;k �xi � �xj; �xj � �xk
TC 6 ð�x; xmin; xmaxÞi;j;k �xi � �xj; �xj � �xk

Meteorological data¶
Precipitation (p)

P
i;
P

j;
P

k;
P

l
P

i �
P

j;
P

j �
P

k
P

Minimum and maximum temperature P10, P50, P90
Potential evapotranspiration (pet)

P

Water deficit
P

p �
P

pet

Notes: All layers were reprojected and bilinearly interpolated to a geographic coordinate system (WGS-84) at approximately
30 m resolution. Temporally static variables. gSSURGO Soils: %sand, %silt, %clay, pH, available water (0–25 cm), elect. conductivity,
organic matter. Topography: elevation, slope, heat index, height above nearest drainage. Location: pixel latitude, pixel longitude.

† Landsat 8 OLI band numbers and band centers shown for reference.
‡ Seasons i, j, k, l as Spring (April–June), Summer (July–September), Fall (October–December), Winter (January–March).
§ Landsat Surface Reflectance-Derived Spectral Indices (USGS EROS 2017).
¶ Meteorological statistics calculated for current year and previous year. P is percentiles.
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evapotranspiration, and the 10th, 50th, and 90th
percentiles of minimum and maximum tempera-
tures were calculated. We also derived second-
order metrics, including an estimate of annual
water deficit (total precipitation minus total
potential evapotranspiration) and seasonal pre-
cipitation differences (spring minus summer pre-
cipitation; summer minus fall precipitation).

Abiotic land surface data
A suite of gridded, temporally static 30-m abi-

otic land surface data products were also incor-
porated (Table 1). From the USGS National
Elevation Dataset, we produced layers of eleva-
tion and slope and used a gridded dataset defin-
ing Height Above Nearest Drainage (Renn�o
et al. 2008, Nobre et al. 2011). Pixel center coor-
dinates of latitude and longitude were included
as model variables, and using slope, aspect, lati-
tude, and longitude, we produced a heat index
following the methods of McCune and Keon
(2002). Using the FY2016 Gridded Soil Survey
Geographic (gSSURGO) Database (the most
detailed level of soil geographic data developed
by the National Cooperative Soil Survey), we
mapped a set of 30-m-resolution soil attributes
across the study region: percent sand, silt, and
clay, organic matter, available water capacity
from 0 to 25 cm, pH, and electrical conductivity
(Soil Survey Staff 2017).

Sampling spatiotemporal data
Landsat, meteorological, and abiotic data

together provided 215 gridded 30 m variables
(Table 1) for predicting land cover percentages.
The selection of the 215 variables was based on
well-established scientific investigations and lit-
erature that demonstrate PFT variation in cover
is related to climate, meteorological patterns
(both seasonal and annual), topography, and soil
conditions and that remotely sensed measures of
SR, vegetation and moisture indices, and TC
transformations (and seasonal magnitudes and
differences therein) vary based on the type and
extent of vegetation and bare ground cover.
Using EE, the static abiotic and spatiotemporal
land surface values were extracted over each
NRI-AIM field plot using the single pixel nearest
to the plot center location (i.e., a nearest neighbor
approach). The spatiotemporal data were sam-
pled for the year corresponding to the year the

field plot was measured, including the previous
year’s meteorological data which have been
shown to influence current-year vegetation cover
(Pilliod et al. 2017a). The sampling provided a
table of 215 spatiotemporal and static variables
including the percent cover values for 27,643
NRI-AIM field plots for use in RF regression
models. Plots with missing data for any variable
(e.g., excessive cloud cover, SR saturation) were
excluded.

Random Forests
Random Forests (Breiman 2001) is a non-para-

metric machine learning method that utilizes an
ensemble of regression trees, has been shown to
have higher classification accuracy than simple
regression methods (Belgiu and Dr�agut� 2016,
G�omez et al. 2016), is robust to overfitting (each
regression tree retains an independent fraction of
the data [0.368] for validation, known as out-of-
bag [OOB] samples) and has grown in promi-
nence for mapping land cover with a multitude
of small-scale and regional studies and applica-
tions (Riley et al. 2016, Azzari and Lobell 2017,
West et al. 2017, Anderson et al. 2018). Random
Forests has the ability to model complex non-lin-
ear interactions across predictors, leveraging the
large quantity of high spatial resolution plot
cover estimates with the vast suite of spatiotem-
poral and static predictor variables.

Land cover model training and prediction
We used the R (R Core Team, 2017) ranger

package (Wright and Ziegler 2017) to define RF
model parameters and select the optimal input
variables, and then implemented RF in EE to pre-
dict percent cover values across the study region.
The ranger package provides diagnostic tools
and variable importance ranking which are not
available in the EE RF method. First, RF was
implemented individually for each land cover
class (AFG, PFG, SHR, BG) using the table of
27,643 NRI-AIM field plots and all 215 variables.
Variables were ranked by importance using an
impurity measure (the variance of the responses;
Louppe et al. 2013) resulting in ranks of variable
importance specific to each land cover. Random
Forests was then iteratively implemented for
each land cover class using the highest ranked
variable and adding the next highest ranked vari-
able at each subsequent run. Root mean square
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errors of the OOB field plots for each iteration
were used to determine the number of variables
at which errors were minimized for each land
cover class (Genuer et al. 2010, Chen and Ish-
waran 2012).

Error curves varied for each class with asymp-
totes occurring at a range of approximately 5–40
variables (Fig. 2). Although a class-specific num-
ber of variables could be used for each model,
we used the top 40 variables per class
(Appendix S1: Table S1) in land cover predic-
tions. The justification for using 40 variables was
to balance error minimization with computation
efficiency, to maintain a consistent model struc-
ture of 40 variables across classes, that errors did
not increase with the addition of variables
beyond the asymptote (e.g. SHR, AFG), and to
not limit the predictive power of the model in
future runs as field plots are added. For example,
as additional plots are included for model train-
ing and prediction, it cannot be assumed that
error minimization will occur at the same fixed
minimum number of variables for each class.

The table of sampled NRI-AIM field plots
(27,643) was then used to train RF models in EE
using the optimized RF parameters from the

ranger implementation. After model training, 30-
m gridded data cubes of the 40 highest ranking
variables for each land cover class and year were
assembled in EE which were then used as model
input to predict pixelwise annual percent cover
at 30 m resolution from 1984 to 2017. The model
prediction step alone required the processing
and co-registering of a minimum of 1360 geospa-
tial layers, or over 4.7 TB of data—demonstrat-
ing the power of cloud computing and EE.

Validation of continuous land cover
Percent land cover predictions were validated

using error estimates of OOB samples (NRI-AIM
field plots withheld from model training) in the
ranger and EE implementations of RF. Although
RF in ranger and EE implement the same pub-
lished methods (Breiman 2001), we calculated
root mean square errors (RMSE) and mean abso-
lute error (MAE) between OOB percent land
cover predictions and field plot measures for
both ranger and EE models to ensure that errors
were similar. The OOB error estimation provides
the mean prediction error for every NRI-AIM
field plot, using only predictions from the RF
regression trees that did not have that field plot
in the subset of data used for training. To esti-
mate confidence intervals we examined the vari-
ability of OOB predictions (Wager et al. 2014), a
method available within the ranger RF package
(detailed methods in Appendix S1).
We also validated the continuous land cover

maps using three independent collections of field
data (Table 2, Fig. 1) from the Sagebrush Steppe
Treatment Evaluation Project (McIver et al. 2010,
SageSTEP; a collaborative Great Basin effort to
evaluate sagebrush restoration), the Restore New
Mexico Collaborative Monitoring Program initia-
tive (BLM and USDA-ARS Jornada Experimental
Range collaborative effort to evaluate restoration
treatments), and a collaborative project from the
USDA Agricultural Research Service and The
Nature Conservancy collocated at the Eastern
Oregon Agricultural Research Center (EOARC).
We aggregated project data to percent cover per
plot for the AFG, PFG, SHR, and BG land cover
classes (BG measurements were only available
for SageSTEP). We calculated differences
between plot measurements and the average pre-
dicted land cover values (AFG, PFG, SHR, BG)
for all pixels that intersected the plot boundaries.

Fig. 2. Random Forests model (used within the R
ranger package) root mean square error for first 60 of
100 model iterations; the next most important variable
is added at each iteration. Model runs are conducted
independently for each class (AFG, annual forbs and
grasses; BG, bare ground; PFG, perennial forbs and
grasses; SHR, shrubs).
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RESULTS

Land cover maps
Annual percent cover maps from 1984 to 2017

at 30 m resolution for the four land cover classes
were produced across the full study region.
Maps of year 2016 for the four classes (AFG,
PFG, SHR, BG) are displayed in Fig. 3 with non-
rangeland systems masked. Maps of vegetation
cover are also combined (Fig. 4) where the vege-
tation classes are represented using a red (AFG),
green (PFG), blue (SHR) color palette providing
a visual representation of land cover heterogene-
ity (BG not shown) for year 2016 across the study
region; a heterogeneous pixel displays the result-
ing blend of colors along a gradient that scales
according to the per-pixel percent cover of each
class. Online visualization and analysis of the
land cover maps is available via the Rangeland
Analysis Platform (https://rangelands.app).

Validation and error metrics
Validation summary statistics of MAE and

RMSE from the OOB samples (NRI-AIM field
plots) for ranger and EE implementations of RF
are provided in Table 3, with RMSEs of 11.8%,
14.9%, 9.9%, and 10.6% for AFG, PFG, SHR, and
BG (respectively) for the EE RF model used for
land cover predictions across the study region.
Examination of errors between the ranger and
EE RF model implementations showed minimal
disparity with no error difference greater than
0.5% between the two implementations. The
errors are equivalent or lower than RMSEs from
similar efforts to map continuous rangeland
cover, where McCord et al. (2017) used a Baye-
sian additive regression tree and reported
RMSEs ranging from 11% to 14% for BG, herba-
ceous, and shrub classes, and Xian et al. (2013)
used regression tree modeling and reported

errors ranging from 9.7% to 14.4% for AFG, SHR,
and BG classes.
Estimations of prediction confidence using

variance of OOB predictions (Wager et al. 2014)
demonstrated that errors scaled somewhat with
increasing field plot cover values for AFG, SHR,
and BG, but remained constant for PFG
(Appendix S1: Fig. S1), with all classes display-
ing RMSEs across field plot cover values rela-
tively equivalent to the summarized RMSEs in
Table 3. The increase in error with field plot
cover for AFG, SHR, and BG can be partially
attributed to the skewed distribution of cover
values in the NRI/AIM field plots. Only 7%, 2%,
and 9% of the field plots had measured cover val-
ues over 50% for AFG, SHR, and BG, respec-
tively, resulting in minimal samples with high
cover values used in model training.
Fig. 5 displays scatter plots of NRI-AIM field

plot measures vs. OOB predictions and least-
squares linear regressions results for each land
cover class from the ranger RF model (AFG:
r2 = 0.49, P < 0.001, standard error of the esti-
mate (SEE) = 7.74; PFG: r2 = 0.75, P < 0.001,
SEE = 12.45; SHR: r2 = 0.43, P < 0.001, SEE =
6.14; BG: r2 = 0.71, P < 0.001, SEE = 8.22). Errors
between OOB percent land cover predictions and
NRI-AIM field plot measures are also presented
spatially (Appendix S1: Fig. S2) providing a geo-
graphic visual of error distribution.
For the three independent collections of field

data, validation summary statistics of MAE and
RMSE between percent land cover predictions
and plot-level measures are also provided in
Table 3. Root mean square errors ranged from
7.1% to 17.7% across land cover classes and pro-
jects. Fig. 5 displays scatter plots of the indepen-
dent collections of field data vs. land cover
predictions and least-squares linear regressions
results for each land cover class (AFG: r2 = 0.19,

Table 2. Projects that provided field plots of percent cover values used for validation.

Project Years Plots N Description

Sagebrush Steppe Treatment
Evaluation Project (SageSTEP)

2006–2014 52 253 Plots contained 15–24 subplots (30 9 33 m); 852 subplots total.
Five line transects measured in each subplot. Subplot cover
aggregated to plot-level cover for validation

Restore New Mexico Collaborative
Monitoring Program

2007–2017 183 868 Plots consist of paired parallel 50-m transects 20 m apart.
Percent cover for each transect used for validation

Eastern Oregon Agricultural
Research Center

2016 198 198 Plots (30 9 30 m) contained three 20-m transects. Plot-level
percent cover used for validation

Note: N is total number of plot-level measures used for validation.
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P < 0.001, SEE = 4.61; PFG: r2 = 0.16, P < 0.001,
SEE = 6.03; SHR: r2 = 0.04, P < 0.001, SEE =
5.18; BG: r2 = 0.49, P < 0.001, SEE = 5.32).

The scatter plots and regressions (Fig. 5) show
that the model performed better when predicting
OOB validation plots vs. the independent field
plots. This may be attributable to the variation in
plot protocols, size, and orientation across the
three projects (Table 2), none of which followed
the same protocols as the NRI-AIM field plots
used to train the model.

DISCUSSION

For the first time, we produced annual, his-
torical (1984–2017) percent land cover maps
by PFT for western U.S. rangelands. Utilizing

spatiotemporal robust ground-level measure-
ments, contiguous long-term land surface and
climate variables, and large-scale data processing
and modeling capability, we estimated percent
cover of AFG, PFG, shrubs, and bare ground at
approximately 30 m resolution. These datasets
better capture the spatiotemporal variability of
land cover than commonly used categorical data-
sets and build upon other continuous datasets
that are limited in geographic and temporal
extent, resolution, and PFT. Overcoming these
limitations allows for examination of land cover
dynamics that are particularly important for the
long-term monitoring, conservation, assessment,
and management of U.S. rangelands.
With continuous rather than categorical esti-

mates of vegetation cover, it is possible to assess

Fig. 3. Continuous land cover maps of annual forbs and grasses (AFG), perennial forbs and grasses (PFG),
shrubs (SHR), and bare ground (BG) for year 2016. Gray and white areas are non-rangeland pixels based on a
coterminous U.S. Rangelands 30 m circa 2011 product (Reeves and Mitchell 2011) and water, respectively.
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changes in functional group composition,
transitions to new vegetation states, efficacy of
vegetation treatments, and vegetation dynamics
pre- and post-disturbance across space and time.
Evaluations can be summarized at broad scales
(e.g., landscapes, watersheds, allotments, or pas-
tures) while also permitting examination of the
variation within such boundaries. The ability to
examine spatial variation allows energy, manage-
ment activities, and financial resources to be
focused on locations that need the most attention.
Temporal trends enable the examination of vege-
tation dynamics through time, which is especially
useful in areas where historical data or

knowledge is lacking. Such information can be
particularly helpful in restoration after a distur-
bance (e.g., wildfire), where knowledge of range-
land condition pre-disturbance is critical to
designing effective restoration (Miller et al. 2013).
We provide two examples demonstrating the ben-
efits of continuous cover estimates and their util-
ity for rangeland monitoring and management.

Wildfire and treatments
Catastrophic wildfire is a critical threat in one

of North America’s largest terrestrial ecosystems,
the sagebrush steppe (Miller et al. 2013). Pre-fire
vegetation composition is known to heavily

Fig. 4. A color gradient map of three vegetation classes; annual forbs and grasses, perennial forbs and grasses,
and shrubs mapped to red, green, and blue (respectively, as shown in Fig. 3 maps) displaying the heterogeneity
and dominance of vegetation cover classes per pixel for year 2016. Gray and white areas are non-rangeland and
water, respectively. Bare ground class not included in visualization.
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Table 3. Mean absolute error (MAE) and root mean square error from ranger and Earth Engine (EE) Random
Forests out-of-bag (OOB) error estimates, and percent cover between model results and independent plot-level
measures from three projects: the Sagebrush Steppe Treatment Evaluation Project (SageSTEP), the Restore
New Mexico Collaborative Monitoring Program (RNMCMP) initiative, and a project from the Eastern Oregon
Agricultural Research Center (EOARC).

Land Cover OOB ranger OOB EE SageSTEP RNMCMP EOARC

Annual Forbs/grasses 8.1|12.0 7.8|11.8 8.2|11.5 7.5|14.8 7.3|10.0
Perennial Forbs/grasses 11.6|15.2 11.2|14.9 13.2|17.7 11.0|14.9 10.8|13.2
Shrubs 7.2|10.1 6.9|9.9 9.2|11.0 5.6|7.1 8.1|10.6
Bare ground 7.0|10.1 7.3|10.6 9.4|12.5

Notes: Error values displayed as MAE|RMSE. Bare ground percent cover values available for SageSTEP only.

Fig. 5. Scatter plots of National Resources Inventory-Assessment, Inventory, and Monitoring field plot percent
cover of annual forbs and grasses (AFG), perennial forbs and grasses (PFG), shrubs (SHR), and bare ground (BG)
vs. Random Forests out-of-bag predicted percent cover (gray points) and linear least-squares regression results
(red line); AFG: r2 = 0.49, P < 0.001, standard error of the estimate (SEE) = 7.74; PFG: r2 = 0.75, P < 0.001,
SEE = 12.45; SHR: r2 = 0.43, P < 0.001, SEE = 6.14; BG: r2 = 0.71, P < 0.001, SEE = 8.22. Overlaid are scatter
plots of field plot percent cover from independent field plots vs. predicted percent cover (green points) and linear
least-squares regression results (green line); AFG: r2 = 0.19, P < 0.001, SEE = 4.61; PFG: r2 = 0.16, P < 0.001,
SEE = 6.03; SHR: r2 = 0.04, P < 0.001, SEE = 5.18; BG: r2 = 0.49, P < 0.001, SEE = 5.32. BG for independent field
plots was available from only a single project.
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influence post-fire succession, along with fire
severity, weather, soils, and other abiotic factors
(Miller et al. 2013). Typically, areas dominated by
native PFG are more resilient to fire and are more
likely to return to sagebrush rangelands over
time. Areas with low native perennial forb and
grass cover and an invasive annual forb or grass
presence may be dominated by annuals post-fire
and undergo undesired ecological state shifts
(Chambers et al. 2014), with subsequent impacts
to ecosystem resilience, wildlife habitat, and rural
economies (Miller et al. 2011). Therefore, land
managers often plan post-fire treatments to
reduce invasive annual plant abundance and seed
desired perennials to mitigate risks, but uncer-
tainty about pre-fire conditions over such large
landscapes hinders the ability to triage areas in
most need of intervention. Integrating our histori-
cal continuous land cover estimates with local
data and knowledge and available geospatial lay-
ers of burn severity (e.g., MTBS), weather (e.g.,
GRIDMET), and abiotic indicators of potential
resilience and resistance (Miller et al. 2013, Maes-
tas et al. 2016) can help managers more effectively
and efficiently target limited resources.

We illustrate the utility of our new monitoring
capability using the lightning-caused 2015 Soda
Fire which burned nearly 280,000 acres of sage-
brush rangeland along the southern border of
Idaho and Oregon (Fig. 6). Immediately post-
fire, an Emergency Stabilization and Burned
Area Rehabilitation plan was implemented to
stabilize and restore burned areas, increase
perennial grasses and shrubs, and reduce inva-
sive annual species at a cost of more than
$60 million (BLM 2015). Treatments included
seeding and seedling plantings, and aerial herbi-
cide application to suppress invasive annual
grasses. Summarizing land cover pre- and post-
fire within the Soda Fire perimeter reveals
expected trends for western sagebrush ecosys-
tems: Annual herbaceous vegetation and bare
ground increased the year after the fire, while
perennial herbaceous vegetation and fire-
intolerant shrubs decreased. Spatial examination
also shows that increases and decreases were not
consistent across the fire but varied greatly (Fig. 6).

The new monitoring tool presented here also
provides knowledge of historical pre-fire vegeta-
tion cover which can inform restoration plans and
resource allocation where more local data or

knowledge is absent and enables evaluation of
treatment impact and vegetation state changes
through time. Aerial herbicide applications (Pil-
liod and Welty 2013, Pilliod et al. 2017b, designed
to reduce invasive annuals) applied immediately
post-fire in the fall 2015 and one year later (2016)
show decreases in AFG in the years following
treatment with abrupt contrasts in AFG cover val-
ues along treatment boundaries (Fig. 7). It is
important to note that we are not evaluating the
efficacy of these treatments; such an evaluation is
out of the scope of this paper and is better con-
ducted by those with more detailed information
concerning treatment application, surface condi-
tions, and application timing, etc., and would
require thorough analysis of model error in rela-
tion to the magnitude of estimated change
(Table 3; Appendix S1: Fig. S1). The historical land
cover dynamics also enable analysis of effects of
previous disturbance within the same region, in
this case a 2002 fire that burned within the Soda
Fire perimeter (Fig. 7). Examining the annual
herbaceous dynamics of a single treatment within
the Soda Fire shows that in the 1980s, annual
herbaceous cover ranged from approximately 8–
20% (Fig. 7). Cover of annuals began to increase
in the early 2000s and peaked just before the 2002
wildfire. Subsequently, it appears a vegetation
state shift ensued, with altered perennial cover
dynamics and reduced shrub cover, accompanied
by a dominance of annuals. Annual herbaceous
cover exhibited extreme fluctuations following the
2002 fire, peaking the year following the Soda Fire
and prior to herbicide application.

Grazing and rangeland health
Evaluating rangeland health and the effects of

livestock grazing has long been a core objective
of rangeland monitoring and adaptive manage-
ment across private and public lands (West
2003). Ground cover and composition metrics are
commonly included in assessments of whether
or not land health standards are being achieved
(Pellant et al. 2005) with most inventory and
monitoring following traditional sampling proto-
cols (e.g., line-point-intercept plots) at individual
site scales. Transect-based estimates provide
important fine-resolution data but can be diffi-
cult to extrapolate to conditions at broader pas-
ture or allotment scales where management
decisions are often made. Combining these
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traditional approaches with our continuous land
cover maps provides new temporal and land-
scape perspective for local observations.

To illustrate, we provide a historical record of
land cover estimates over a 6000-ha grazing allot-
ment administered by the BLM in Montana,
USA. Annual means of AFG, PFG, SHR, and BG
cover and total precipitation within the allotment
are shown alongside photographs detailing the

same point of view from years 2002 and 2010
(provided by the BLM Billings, Montana Field
Office; Fig. 8). Land managers can use this infor-
mation to consider how site-level conditions
relate to overall conditions in the surrounding
area and assess whether changes in functional
groups are within the normal range of variability
or perhaps responding to management, weather,
and climate, or other factors. Of course, detailed

Fig. 6. Location of Soda Fire (2015) and maps of estimated change in percent cover from pre- (2014) to post-fire
(2016) for four classes within the Soda Fire perimeter (top). Histograms of percent change for each class (bottom).
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knowledge of the site history, grazing strategies,
and more, along with consideration of model
error in relation to change (Table 3; Appendix S1:
Fig. S1), is needed to make informed adaptive
management decisions. We simply demonstrate
the value-added information provided by histori-
cal maps produced at a temporal and spatial
scale that permits evaluations both within and
across allotments.

CONCLUSION

The ability to examine historical to present
trends of land cover across broad geographies at
30 m spatial resolution provides exciting oppor-
tunities to expand and improve rangeland con-
servation and management. These annually
updated cover maps will facilitate ongoing eval-
uation of conservation programs, management

Fig. 7. Percent cover of annual forbs and grasses (AFG) for years 2016 and 2017 within the Soda Fire (2015)
perimeter. Polygons display herbicide treatments to reduce invasive annuals applied post-fire in fall of 2015 (red)
and 2016 (orange), and boundary of Trimbly Creek Fire (2002). Time series of a single 2016 treatment polygon
(pink star) displays average percent land cover for AFG, perennial forbs and grasses (PFG), shrubs (SHR), and
bare ground (BG), including annual precipitation, fire years, and herbicide treatment year. Only herbicide treat-
ments are shown and may not be a complete record of treatments. Multiple other historic and post-fire treat-
ments (seeding, planting, etc.) are not included.
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changes, and overall rangeland conditions. Pri-
vate or public rangeland managers can use cover
maps to evaluate previous management actions,
but more importantly to guide future manage-
ment decisions. Coupled with intimate, local
knowledge of their system, managers can use
these tools to gain a historical perspective and to
plan specifically for their objectives. The integra-
tion of PFT maps into agency (i.e., BLM, NRCS,
and USFS) specific programs and future strate-
gies enhances broad-scale evaluation of range-
land core indicators (McCord et al. 2017). Our
work highlights the importance of large-scale
systematic monitoring programs like the NRCS
NRI and BLM AIM, which provided essential

field plot data in the creation of these cover
maps; future support for additional field plot
data will increase samples and likely improve
overall model accuracy and prediction.
The maps presented here are the result of a syn-

ergistic coupling of moderate resolution long-term
remote sensing products, vast collections of
historical field data, advanced machine learning
algorithms, and cloud-based computing. This cou-
pling provides an advancement in land cover
mapping where the resulting maps begin to match
the inherent heterogeneity of the landscape and
can be produced annually at minimal time-lags
(within months of year’s end). This advancement
opens new doors for monitoring, conservation,

Fig. 8. Photographs of a Bureau of Land Management grazing allotment in Montana, USA, taken from the
same point of view in years 2002 (A) and 2010 (B). Plot displays annual precipitation and percent cover means
within the allotment for four land cover classes, perennial forbs and grasses (PFG), annual forbs and grasses
(AFG), shrubs (SHR), and bare ground (BG) from 1984 to 2017. Black squares are years of photographs.
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and scientific investigation at an unprecedented
blend of temporal fidelity, spatial resolution, and
geographic scale. The future of such maps can
only improve as new remote sensing data, the
continuation of field campaigns, cloud computing
platforms, and advanced machine learning algo-
rithms become available and accessible.

ACKNOWLEDGMENTS

We thank the USDA Natural Resources Conserva-
tion Service and their Conservation Effects Assessment
Project-Grazing Land Component, and the BLM AIM
project team, particularly Sarah Burnett and Meghan
Holton. We also thank those providing independent
field data for validation including Laura Burkett and
the Restore New Mexico Collaborative Monitoring
Program initiative; the Sagebrush Steppe Treatment
Evaluation Project (SageSTEP Paper number 126), and
the Eastern Oregon Agricultural Research Center; and
Dave Theobald and Gennadii Donchyts for providing
key datasets. This work was funded by USDA NRCS
Working Lands for Wildlife, Sage Grouse Initiative,
and Wildlife Conservation Effects Assessment Project.

LITERATURE CITED

Abatzoglou, J. T. 2013. Development of gridded sur-
face meteorological data for ecological applications
and modelling. International Journal of Climatol-
ogy 33:121–131.

Allen, T. F. H., and T. W. Hoekstra. 1991. Role of
heterogeneity in scaling of ecological systems
under analysis. Pages 47–68 in J. Kolasa and S. T.
A. Pickett, editors. Ecological heterogeneity.
Springer, New York, New York, USA.

Allred, B. W., W. K. Smith, D. Twidwell, J. H. Hag-
gerty, S. W. Running, D. E. Naugle, and S. D. Fuh-
lendorf. 2015. Sustainability. Ecosystem services lost
to oil and gas in North America. Science 348:401–402.

Anderson, K. E., N. F. Glenn, L. P. Spaete, D. J. Shinne-
man, D. S. Pilliod, R. S. Arkle, S. K. McIlroy, and D.
R. Derryberry. 2018. Estimating vegetation biomass
and cover across large plots in shrub and grass
dominated drylands using terrestrial lidar and
machine learning. Ecological Indicators 84:793–802.

Arino, O., P. Bicheron, F. Achard, J. Latham, R. Witt,
and J. L. Weber. 2008. The most detailed portrait of
Earth. European Space Agency 136:25–31.

Azzari, G., and D. B. Lobell. 2017. Landsat-based clas-
sification in the cloud: an opportunity for a para-
digm shift in land cover monitoring. Remote
Sensing of Environment 202:64–74.

Baig, M. H. A., L. Zhang, T. Shuai, and Q. Tong. 2014.
Derivation of a tasseled cap transformation based
on Landsat 8 at-satellite reflectance. Remote Sens-
ing Letters 5:423–431.

Belgiu, M., and L. Dr�agut�. 2016. Random forest in
remote sensing: a review of applications and future
directions. ISPRS Journal of Photogrammetry and
Remote Sensing 114:24–31.

Booth, D. T., and P. T. Tueller. 2003. Rangeland moni-
toring using remote sensing. Arid Land Research
and Management 17:455–467.

Breiman, L. 2001. Random Forests. Machine Learning
45:5–32.

Brooks, M. L., C. S. Brown, J. C. Chambers, C. M.
D’Antonio, J. E. Keeley, and J. Belnap. 2016. Exotic
annual Bromus invasions: Comparisons among
species and ecoregions in the western United
States. Pages 11–60 in M. J. Germino, J. C. Cham-
bers, and C. S. Brown, editors. Exotic brome-
grasses in arid and semiarid ecosystems of the
western US. Springer International Publishing,
Basel, Switzerland.

Bureau of Land Management (BLM). 2015. Soda fire
post-fire emergency stabilization and burned area
rehabilitation plan. Boise, Idaho, USA. https://eplan
ning.blm.gov/epl-front-office/projects/nepa/52963/
63896/69241/J08B_SODA_ESR_Plan_9-30-15_elect
ronicsig.pdf

Chambers, J. C., B. A. Bradley, C. S. Brown, C. D’Anto-
nio, M. J. Germino, J. B. Grace, S. P. Hardegree, R.
F. Miller, and D. A. Pyke. 2014. Resilience to stress
and disturbance, and resistance to Bromus tectorum
L. invasion in cold desert shrublands of western
North America. Ecosystems 17:360–375.

Chambers, J. C., J. D. Maestas, D. A. Pyke, C. S. Boyd,
M. Pellant, and A. Wuenschel. 2017. Using resili-
ence and resistance concepts to manage persistent
threats to sagebrush ecosystems and greater sage-
grouse. Rangeland Ecology & Management 70:
149–164.

Chen, X., and H. Ishwaran. 2012. Random forests for
genomic data analysis. Genomics 99:323–329.

Chen, J., et al. 2015. Global land cover mapping at
30 m resolution: a POK-based operational appro-
ach. ISPRS Journal of Photogrammetry and Remote
Sensing 103:7–27.

Donchyts, G., F. Baart, H. Winsemius, N. Gorelick, J.
Kwadijk, and N. van de Giesen. 2016. Earth’s sur-
face water change over the past 30 years. Nature
Climate Change 6:810.

Friedl, M. A., D. Sulla-Menashe, B. Tan, A. Schneider,
N. Ramankutty, A. Sibley, and X. Huang. 2010.
MODIS Collection 5 global land cover: algorithm
refinements and characterization of new datasets.
Remote Sensing of Environment 114:168–182.

 ❖ www.esajournals.org 16 September 2018 ❖ Volume 9(9) ❖ Article e02430

EMERGING TECHNOLOGIES JONES ET AL.

https://eplanning.blm.gov/epl-front-office/projects/nepa/52963/63896/69241/J08B_SODA_ESR_Plan_9-30-15_electronicsig.pdf
https://eplanning.blm.gov/epl-front-office/projects/nepa/52963/63896/69241/J08B_SODA_ESR_Plan_9-30-15_electronicsig.pdf
https://eplanning.blm.gov/epl-front-office/projects/nepa/52963/63896/69241/J08B_SODA_ESR_Plan_9-30-15_electronicsig.pdf
https://eplanning.blm.gov/epl-front-office/projects/nepa/52963/63896/69241/J08B_SODA_ESR_Plan_9-30-15_electronicsig.pdf


Genuer, R., J.-M. Poggi, and C. Tuleau-Malot. 2010.
Variable selection using random forests. Pattern
Recognition Letters 31:2225–2236.

G�omez, C., J. C. White, and M. A. Wulder. 2016. Opti-
cal remotely sensed time series data for land cover
classification: a review. ISPRS Journal of Pho-
togrammetry and Remote Sensing 116:55–72.

Gorelick, N., M. Hancher, M. Dixon, S. Ilyushchenko,
D. Thau, and R. Moore. 2017. Google Earth Engine:
planetary-scale geospatial analysis for everyone.
Remote Sensing of Environment 202:18–27.

Hansen, M. C., et al. 2013. High-resolution global
maps of 21st-century forest cover change. Science
342:850–853.

Havstad, K., et al. 2009. The Western United States
Rangelands: A major resource. Pages 75–93 in W. F.
Wedin and S. L. Fales, editors. Grassland quietness
and strength for a new American Agriculture.
ASA, CSSA, SSSA, Madison, Wisconsin, USA.

Herrick, J. E., J. W. Van Zee, S. E. McCord, E. M. Cour-
tright, J. W. Karl, and L. M Burkett. 2017. Monitor-
ing manual for grassland, shrubland, and savanna
ecosystems. USDA-ARS Jornada Experimental
Range, Las Cruces, New Mexico, USA.

Homer, C., J. Dewitz, L. Yang, S. Jin, P. Danielson, G.
Xian, J. Coulston, N. Herold, J. Wickham, and K.
Megown. 2015. Completion of the 2011 National
Land Cover Database for the conterminous United
States – Representing a decade of land cover
change information. Photogrammetric Engineering
and Remote Sensing 81:345–354.

Huang, J., H. Yu, A. Dai, Y. Wei, and L. Kang. 2017.
Drylands face potential threat under 2°C global
warming target. Nature Climate Change 7:417–
422.

Hunt Jr., E. R., J. H. Everitt, J. C. Ritchie, M. S. Moran,
D. T. Booth, G. L. Anderson, P. E. Clark, and M. S.
Seyfried. 2003. Applications and research using
remote sensing for rangeland management. Pho-
togrammetric Engineering & Remote Sensing
69:675–693.

Lipsey, M. K., and D. E. Naugle. 2017. Precipitation
and soil productivity explain effects of grazing on
grassland songbirds. Rangeland Ecology & Man-
agement 70:331–340.

Louppe, G., L. Wehenkel, A. Sutera, and P. Geurts.
2013. Understanding variable importances in for-
ests of randomized trees. Pages 431–439 in C. J. C.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Q. Weinberger, editors. Advances in Neural
Information Processing Systems 26. Curran Associ-
ates, Red Hook, New York, USA.

MacKinnon, W. C., J. W. Karl, G. R. Toevs, J. J. Taylor,
S. Karl, C. S. Spurrier, and J. E. Herrick. 2011. BLM
core terrestrial indicators and methods. U.S.

Department of the Interior, Bureau of Land Man-
agement, National Operations Center, Denver, Col-
orado, USA.

Maestas, J. D., S. B. Campbell, J. C. Chambers, M. Pel-
lant, and R. F. Miller. 2016. Tapping soil survey
information for rapid assessment of sagebrush
ecosystem resilience and resistance. Rangelands
38:120–128.

Marvin, D. C., L. P. Koh, A. J. Lynam, S. Wich, A. B.
Davies, R. Krishnamurthy, E. Stokes, R. Starkey,
and G. P. Asner. 2016. Integrating technologies for
scalable ecology and conservation. Global Ecology
and Conservation 7:262–275.

Masek, J. G., E. F. Vermote, N. E. Saleous, R. Wolfe,
F. G. Hall, K. F. Huemmrich, F. Gao, J. Kutler, and
T.-K. Lim. 2006. A Landsat surface reflectance data-
set for North America, 1990–2000. IEEE Geoscience
and Remote Sensing Letters 3:68–72.

McCord, S. E., M. Buenemann, J. W. Karl, D. M.
Browning, and B. C. Hadley. 2017. Integrating
remotely sensed imagery and existing multiscale
field data to derive rangeland indicators: applica-
tion of Bayesian additive regression trees. Range-
land Ecology & Management 70:644–655.

McCune, B., and D. Keon. 2002. Equations for poten-
tial annual direct incident radiation and heat load.
Journal of Vegetation Science 13:603–606.

McIver, J. D., et al. 2010. SageSTEP: a regional experi-
ment to evaluate effects of fire and fire surrogate
treatments in the sagebrush biome. General Techni-
cal Report, RMRS-GTR-237, USDA Forest Service,
Rocky Mountain Research Station, Ft. Collins, Col-
orado, USA.

Miller, R. F., J. C. Chambers, D. A. Pyke, F. B. Pierson,
and C. J. Williams. 2013. A review of fire effects on
vegetation and soils in the Great Basin region:
response and ecological site characteristics (No.
RMRS-GTR-308), USDA General Technical Report.
U.S. Department of Agriculture, Forest Service,
Rocky Mountain Research Station, Fort Collins,
Colorado, USA.

Miller, R. F., S. T. Knick, D. A. Pyke, C. W. Meinke, S.
E. Hanser, M. J. Wisdom, and A. L. Hild. 2011.
Characteristics of sagebrush habitats and limita-
tions to long-term conservation. Pages 145–185 in
S. T. Knick and J. W. Connelly, editors. Greater
sage-grouse—ecology and conservation of a land-
scape species and its habitats. Studies in Avian
Biology 38. University of California Press, Berkeley,
California, USA.

Miller, R. F., D. E. Naugle, J. D. Maestas, C. A. Hagen,
and G. Hall. 2017. Woody invasion of western
rangelands: using grouse as focal species for
ecosystem restoration. Rangeland Ecology & Man-
agement 70:1–8.

 ❖ www.esajournals.org 17 September 2018 ❖ Volume 9(9) ❖ Article e02430

EMERGING TECHNOLOGIES JONES ET AL.



Nobre, A. D., L. A. Cuartas, M. Hodnett, C. D. Renn�o,
G. Rodrigues, A. Silveira, M. Waterloo, and S.
Saleska. 2011. Height above the nearest drainage—
a hydrologically relevant new terrain model. Jour-
nal of Hydrology 404:13–29.

Ostfeld, R. S., S. T. A. Pickett, M. Shachak, and G. E.
Likens. 1997. Defining the scientific issues. Pages
3–10 in S. T. A. Pickett, R. S. Ostfeld, M. Shachak,
and G. E. Likens, editors. The ecological basis of
conservation: Heterogeneity, ecosystems, and bio-
diversity. Springer US, Boston, Massachusetts,
USA.

Pellant, M., P. Shaver, D. A. Pyke, and J. E. Herrick.
2005. Interpreting indicators of rangeland health,
version 4. Technical Reference 1734-6. U.S. Depart-
ment of the Interior, Bureau of Land Manage-
ment, National Science and Technology Center,
Denver, Colorado, USA. BLM/WO/ST-00/001 +
1734/REV05.

Pilliod, D. S., and J. L. Welty. 2013. Land treatment dig-
ital library: US Geological Survey Data Series 806.
http://pubs.er.usgs.gov/publication/ds806

Pilliod, D. S., J. L. Welty, and R. S. Arkle. 2017a. Refin-
ing the cheatgrass-fire cycle in the Great Basin: pre-
cipitation timing and fine fuel composition predict
wildfire trends. Ecology and Evolution 7:8126–
8151.

Pilliod, D. S., J. L. Welty, and G. R. Toevs. 2017b.
Seventy-five years of vegetation treatments on
public rangelands in the Great Basin of North
America. Rangelands 39:1–9.

R Core Team. 2017. R: A language and environment
for statistical computing. R Foundation for Statisti-
cal Computing, Vienna, Austria.

Reeves, M. C., and J. E. Mitchell. 2011. Extent of coter-
minous US rangelands: quantifying implications of
differing agency perspectives. Rangeland Ecology
& Management 64:585–597.

Renn�o, C. D., A. D. Nobre, L. A. Cuartas, J. V. Soares,
M. G. Hodnett, J. Tomasella, and M. J. Waterloo.
2008. HAND, a new terrain descriptor using
SRTM-DEM: mapping terra-firme rainforest envi-
ronments in Amazonia. Remote Sensing of Envi-
ronment 112:3469–3481.

Riley, K. L., I. C. Grenfell, and M. A. Finney. 2016.
Mapping forest vegetation for the western United
States using modified random forests imputation
of FIA forest plots. Ecosphere 7:e01472.

Robinson, N. P., B. W. Allred, W. K. Smith, M. O.
Jones, A. Moreno, T. A. Erickson, D. E. Naugle,
and S. W. Running. 2018. Terrestrial primary pro-
duction for the conterminous United States
derived from Landsat 30 m and MODIS 250 m.
Remote Sensing in Ecology and Conservation 33:
121–138.

Running, S. W., and M. Zhao. 2015. Daily GPP and
annual NPP (MOD17A2/A3) products NASA Earth
Observing System MODIS land algorithm. MOD17
user’s guide. https://lpdaac.usgs.gov/sites/default/
files/public/product_documentation/mod17_user_
guide.pdf

Ryan, K. C., and T. S. Opperman. 2013. LANDFIRE:
a national vegetation/fuels data base for use in
fuels treatment, restoration, and suppression plan-
ning. Forest Ecology and Management 294:208–
216.

Sant, E. D., G. E. Simonds, R. D. Ramsey, and R. T. Lar-
sen. 2014. Assessment of sagebrush cover using
remote sensing at multiple spatial and temporal
scales. Ecological Indicators 43:297–305.

Smith, J. T., J. S. Evans, B. H. Martin, S. Baruch-Mordo,
J. M. Kiesecker, and D. E. Naugle. 2016. Reducing
cultivation risk for at-risk species: predicting out-
comes of conservation easements for sage-grouse.
Biological Conservation 201:10–19.

Snaddon, J., G. Petrokofsky, P. Jepson, and K. J. Willis.
2013. Biodiversity technologies: tools as change
agents. Biology Letters 9:20121029.

Soil Survey Staff. 2017. Gridded Soil Survey Geo-
graphic (gSSURGO) Database for the conterminous
United States. United States Department of Agri-
culture, Natural Resources Conservation Service.
http://datagateway.nrcs.usda.gov

USDA, NRCS. 2015. The National Resources Inventory
grazing lands on-site database, 2004 – 2014 (Unre-
leased). Compiled by the Resource Inventory Divi-
sion; processed by the Resource Assessment
Division, Conservation Effects Assessment Project-
Grazing Land Component.

USDA, NRCS. 2018. The PLANTS Database (http://pla
nts.usda.gov). National Plant Data Team, Greens-
boro, North Carolina, USA.

USGS EROS. 2017. USGS product guide, Landsat sur-
face reflectance-derived spectral indices version 3.5.
https://landsat.usgs.gov/sites/default/files/documents/
si_product_guide.pdf

Vermote, E., C. Justice, M. Claverie, and B. Franch.
2016. Preliminary analysis of the performance of
the Landsat 8/OLI land surface reflectance product.
Remote Sensing of Environment 185:46–56.

Wager, S., T. Hastie, and B. Efron. 2014. Confidence
intervals for Random Forests: the jackknife and the
infinitesimal jackknife. Journal of Machine Learn-
ing Research 15:1625–1651.

West, N. E. 2003. Theoretical underpinnings of range-
land monitoring. Arid Land Research and Manage-
ment 17:333–346.

West, A. M., P. H. Evangelista, C. S. Jarnevich, S.
Kumar, A. Swallow, M. W. Luizza, and S. M.
Chignell. 2017. Using multi-date satellite imagery

 ❖ www.esajournals.org 18 September 2018 ❖ Volume 9(9) ❖ Article e02430

EMERGING TECHNOLOGIES JONES ET AL.

http://pubs.er.usgs.gov/publication/ds806
https://lpdaac.usgs.gov/sites/default/files/public/product_documentation/mod17_user_guide.pdf
https://lpdaac.usgs.gov/sites/default/files/public/product_documentation/mod17_user_guide.pdf
https://lpdaac.usgs.gov/sites/default/files/public/product_documentation/mod17_user_guide.pdf
http://datagateway.nrcs.usda.gov
http://plants.usda.gov
http://plants.usda.gov
https://landsat.usgs.gov/sites/default/files/documents/si_product_guide.pdf
https://landsat.usgs.gov/sites/default/files/documents/si_product_guide.pdf


to monitor invasive grass species distribution in
post-wildfire landscapes: an iterative, adaptable
approach that employs open-source data and
software. International Journal of Applied Earth
Observation and Geoinformation 59:135–146.

Wright, M., and A. Ziegler. 2017. ranger: a fast imple-
mentation of random forests for high dimensional
data in C++ and R. Journal of Statistical Software
77:1–17.

Xian, G., C. Homer, D. Meyer, and B. Granneman.
2013. An approach for characterizing the distribution
of shrubland ecosystem components as continuous
fields as part of NLCD. ISPRS Journal of Photo-
grammetry and Remote Sensing 86:136–149.

Xian, G., C. Homer, M. Rigge, H. Shi, and D. Meyer.
2015. Characterization of shrubland ecosystem com-
ponents as continuous fields in the northwest United
States. Remote Sensing of Environment 168:286–300.

SUPPORTING INFORMATION

Additional Supporting Information may be found online at: http://onlinelibrary.wiley.com/doi/10.1002/ecs2.
2430/full

 ❖ www.esajournals.org 19 September 2018 ❖ Volume 9(9) ❖ Article e02430

EMERGING TECHNOLOGIES JONES ET AL.

http://onlinelibrary.wiley.com/doi/10.1002/ecs2.2430/full
http://onlinelibrary.wiley.com/doi/10.1002/ecs2.2430/full

