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Abstract. Frequency and severity of extreme climatic events are forecast to increase in the
21st century. Predicting how managed ecosystems may respond to climatic extremes is intensi-
fied by uncertainty associated with knowing when, where, and how long effects of extreme
events will be manifest in an ecosystem. In water-limited ecosystems with high inter-annual
variability in rainfall, it is important to be able to distinguish responses that result from sea-
sonal fluctuations in rainfall from long-term directional increases or decreases in precipitation.
A tool that successfully distinguishes seasonal from directional biomass responses would allow
land managers to make informed decisions about prioritizing mitigation strategies, allocating
human resource monitoring efforts, and mobilizing resources to withstand extreme climatic
events. We leveraged long-term observations (2000–2013) of quadrat-level plant biomass at
multiple locations across a semiarid landscape in southern New Mexico to verify the use of
Normalized Difference Vegetation Index (NDVI) time series derived from 250-m Moderate
Resolution Imaging Spectroradiometer (MODIS) data as a proxy for changes in aboveground
productivity. This period encompassed years of sustained drought (2000–2003) and record-
breaking high rainfall (2006 and 2008) followed by subsequent drought years (2011 through
2013) that resulted in a restructuring of plant community composition in some locations. Our
objective was to decompose vegetation patterns derived from MODIS NDVI over this period
into contributions from (1) the long-term trend, (2) seasonal cycle, and (3) unexplained vari-
ance using the Breaks for Additive Season and Trend (BFAST) model. BFAST breakpoints in
NDVI trend and seasonal components were verified with field-estimated biomass at 15 sites
that differed in species richness, vegetation cover, and soil properties. We found that 34 of 45
breaks in NDVI trend reflected large changes in mean biomass and 16 of 19 seasonal breaks
accompanied changes in the contribution to biomass by perennial and/or annual grasses. The
BFAST method using satellite imagery proved useful for detecting previously reported ground-
based changes in vegetation in this arid ecosystem. We demonstrate that time series analysis of
NDVI data holds potential for monitoring landscape condition in arid ecosystems at the large
spatial scales needed to differentiate responses to a changing climate from responses to sea-
sonal variability in rainfall.
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INTRODUCTION

Forecasted increases in the frequency and severity of
drought episodes in the 21st century (Overpeck and
Udall 2010, Cook et al. 2014) amplify the pressing need
for data-informed strategies to mitigate the effects of
variable climate. Capabilities to identify state transitions
influencing ecosystem structure and function are needed
to inform decisions and devise strategies to sustain natu-
ral resources (Bestelmeyer et al. 2011). Developing such
capabilities requires an understanding of the drivers of
long-term patterns in vegetation dynamics along with

data needed to fuel the analytical approaches that build
them (Carpenter et al. 2011). The ability to identify eco-
logically relevant shifts in vegetation structure and com-
position is predicated on distinguishing seasonal patterns
from long-term directional trends in primary productiv-
ity (de Jong et al. 2012). Tools are needed that can char-
acterize these temporal patterns of plant community
dynamics, and to quantify deviations in a consistent way
that can be applied over large spatial extents. Such tools
would be especially valuable for forecasting landscape-
scale responses to disturbance and environmental change
(Herrick et al. 2013, Browning et al. 2015).
Remote sensing tools and products are a recognized

means to detect landscape change and characterize dis-
turbance in a consistent way over time that can improve
the ability to identify state changes. Techniques that
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leverage the capabilities of long time series from remote
sensing platforms and long-term ground observations
are especially helpful (Woodcock et al. 2008, Brandt
et al. 2015). Verbesselt et al. (2010a) described a time-
series decomposition method for remotely sensed ima-
gery known as Breaks For Additive and Season and
Trend (BFAST) that characterizes time series patterns in
land surface condition based on spectral vegetation
index values (e.g., Normalized Difference Vegetation
Index [NDVI]) and partitions these patterns into three
components. The first component characterizes overall
trends across the time period of interest. The second
component represents seasonal or cyclical patterns in
the data, and the third component represents the residu-
als or variance that remains once the trend and seasonal
components are extracted (Verbesselt et al. 2010b). In
addition to separating the trend and seasonal compo-
nents in the time series, BFAST provides the ability to
identify significant breaks in the modelled trend and sea-
sonal components via a change in either the slope of the
trend line or in the amplitude or frequency (i.e., shape)
in the seasonal pattern.
The ability to distinguish seasonal patterns from those

reflecting changes occurring at longer time scales (here-
after, “trend”) strengthens change detection efforts.
Landscape changes, from both anthropogenic and natu-
ral causes, occur over a range of temporal scales. We
consider three classes of landscape change based on their
temporal footprint: (1) abrupt changes that occur over
days or weeks (e.g., deforestation, fires); (2) gradual
changes (e.g., shrub encroachment, gradual land degra-
dation) that occur over months or years; and (3) shifts in
the seasonality of primary production that can be either
abrupt or gradual (Verbesselt et al. 2010b). Changes in
the timing, length, and shape of the growing season can
potentially exhibit large influence on primary productiv-
ity and nutrient cycling (de Jong et al. 2013, Hufkens
et al. 2016). Shifts in seasonality can be the result of dif-
ferent processes including high inter-annual climatic
variability or changes in the dominance of plant func-
tional groups (e.g., C4 grasses vs. C3 shrubs in the case
of many grass and savanna systems worldwide). Changes
in functional group dominance that result from shifts in
the growing season (e.g., earlier start or later end) may
serve as an indicator of vegetation state change or spe-
cies invasion, and can affect a range of ecosystem ser-
vices, including agricultural and forage yield, nutrient
cycling, and plant–pollinator interactions (Morisette
et al. 2009, Wolkovich and Cleland 2011).
There are two notable benefits of the BFAST method

over other remote-sensing change detection techniques.
First, it makes use of the entire time series rather than
snapshots commonly used in change detection methods
such as differencing two dates of imagery (e.g., Browning
and Steele 2013). Second, the BFAST method requires
specification of only a single parameter, the h value,
which sets the minimum period between the breaks,
thereby determining the potential number of breaks that

can be detected in the time series. Selection of the h value
should be based on the duration and frequency of the
monitored processes (i.e., vegetation dynamics) and the
length of the time series (Verbesselt et al. 2010a).
While the BFAST method has been used widely for a

variety of research applications in a range of ecosystems
(Verbesselt et al. (2010a) has been cited 256 times;
accessed via Web of Science on 16 March 2017), there
has not been an evaluation of BFAST’s ability to detect
changes in arid ecosystems based upon independent
quantitative field data. There are three potential reasons
for this research gap. First, validation of time series algo-
rithms is complicated by the paucity of independent data
sets for verification that span a long-term remote sensing
record (Browning et al. 2015). Second, arid ecosystems
are marked by high inter-annual variability in rainfall
that make landscape patterns difficult to detect and make
defining “average” conditions difficult (Sheppard et al.
2002). Third, relationships between primary productivity
and environmental drivers in these water-limited ecosys-
tems are non-linear and often exhibit lag effects, which
are expressed differently across plant functional groups
(Peters et al. 2007, Gherardi and Sala 2015b). Moreover,
Verbesselt et al. (2010a) noted the reliability of detecting
breaks is challenged in ecosystems with a low signal-to-
noise ratio and recommended that the annual amplitude
of the NDVI minimally exceeds 0.1 for the BFAST algo-
rithm to work reliably. Arid landscapes commonly have a
lower than average signal-to-noise ratio (SNR) and exhi-
bit annual amplitudes in NDVI close to 0.1; high intra-
and inter-annual variability in climate and sparse vegeta-
tion cover contribute to lower than average SNR.
Assessments of remotely sensed data using field data

involve efforts to minimize effects of different spatial
and temporal resolutions (Brandt et al. 2015, Browning
et al. 2015). Differences in spatial resolution are inherent
and are best evaluated in the context of spatial variabil-
ity of the land surface (Karl et al. 2012). Landscape vari-
ability is more effectively characterized by imagery with
smaller grain or pixel size while there is a trade-off with
spatial resolution and consistency in sample frequency.
Even so, we used 250-m MODIS imagery rather than
30-m Landsat imagery in this study because recent work
at the JRN showed that the systematic grid field sam-
pling employed at each study site effectively character-
ized the spatial variability present within 250-m MODIS
pixels and MODIS circumvents the need for gap-filling
that Landsat (with 30-m pixels) time series requires
(Maynard et al. 2016).
In theory, we proposed that BFAST’s trend component

would be associated with inter-annual variability in plant
biomass, while the seasonal component would be associ-
ated with intra-annual variability in plant phenology.
While several studies have verified breaks identified in the
trend component (typically abrupt high-magnitude
changes) using records of forest management (Verbesselt
et al. 2010a) or flooding and fire events (Watts and
Laffan 2014), direct validation of trend and seasonal

1678 DAWNM. BROWNING ET AL.
Ecological Applications

Vol. 27, No. 5



breaks with quantitative field data has been lacking. A
recent study by DeVries et al. (2016) helps fill this gap in
tropical forests in Ethiopia by leveraging data collected
by local experts. The broader gap to include seasonal
breaks from BFAST as well as applications in water-lim-
ited environments brings into question the ecological sig-
nificance of identified seasonal as well as trend breaks
and whether they can be used to inform management.

Objectives

We set out to determine whether the BFASTalgorithm
yields ecologically meaningful breaks when applied to
MODIS 250-m NDVI imagery of an arid environment
with a high inter-annual variability and a low annual
amplitude of NDVI (but exceeding 0.1). Specifically, we
predicted (1) breaks in the overall trend would reflect
changes in total photosynthetic biomass (increases or
decreases) and (2) seasonal breaks would identify shifts
in dominance of plant functional groups exhibiting con-
trasting phenology patterns.
The Jornada Basin Long-Term Ecological Research

site (JRN) in southern New Mexico is a model system to
verify BFAST breaks derived from MODIS imagery in
an arid environment. The JRN offers a long-term data
record from 1990 to present including field-estimated
biomass collected at 15 study locations exhibiting
heterogeneity in fractional cover, plant biomass by spe-
cies and functional type, and soils (Peters et al. 2012). In
addition, extreme fluctuations in rainfall with a period
of sustained below average rainfall (2000–2003) and a
sequence of record-breaking rainfall years (2006 and
2008) resulted in a rearrangement of plant productivity
between phenologically distinct plant functional groups
at sites on the JRN (Peters et al. 2012, 2014). This “nat-
ural experiment” and documented shift in plant commu-
nities provide an opportunity to examine performance
of both trend and seasonal breaks from the BFAST algo-
rithm. We draw on expert knowledge of local vegetation
dynamics and phenology at this arid site and leverage an
independent long-term field data record in conjunction
with moderate resolution MODIS NDVI time series to
examine the utility and performance of BFAST in identi-
fying ecologically significant breaks in the seasonal and
long-term trends in biomass from 2000 through 2012.

METHODS

Study site

The study was conducted on the JRN LTER site near
Las Cruces, New Mexico (32.603° N, 106.776° W;
Fig. 1). The JRN lies in the northern Chihuahuan Desert
between the Rio Grande corridor and the San Andres
Mountains within the southern Jornada del Muerto
Basin in the Southern Desertic Basins, Plains, and Moun-
tains Major Land Resource Area (USDA-NRCS 2010).
Soils at study sites are dominantly sandy with variable

surface sand content, soil depth, and subsurface clay
accumulations (Bulloch and Neher 1980). Soils and land-
scape position strongly influence soil water dynamics at
the JRN (Snyder and Tartowski 2006). Plant growth is
primarily constrained by moisture and secondarily con-
strained by soil nutrients. Long-term (1990–2012) average
annual rainfall was 233 mm with 53% of annual rainfall
(123 mm) occurring from July to September. Mean maxi-
mum monthly temperatures range from 13.5°C in Jan-
uary to 35.0°C in July (Wainwright 2006).
Five ecosystem types distinguished by the dominant

plant species characterize our study sites on the JRN: (1)
Larrea tridentata shrublands, (2) Flourensia cernua
alluvial flats, (3) Prosopis glandulosa dune systems, (4)
Bouteloua eriopoda upland grasslands, and (5) grass-
dominated dry lakes (Pleuraphis mutica) or playas
(Panicum obtusum; Huenneke et al. 2002). Variation in
environmental conditions across sites is reflected in the
range of peak fall biomass from 65 to 257 g/m2 between
1989 and 2014, percent bare (i.e., unvegetated surface)
from 2% to 59%, surface gravel from 0% to 55% and
plant-available water in the upper 50 cm of the soil pro-
file from 1.7 to 9.4 cm (D. M. Browning et al., submitted
manuscript).

Data used

Aboveground photosynthetic biomass was measured
using non-destructive field methods at the same sites
where rainfall data were collected. Plant biomass was
compared to the seasonal and trend components of 250-
m MODIS NDVI time series from BFAST over 13 yr
(2000–2012). Changes in biomass and BFAST breaks
were examined in the context of rainfall data collected at
individual sites to enhance interpretation of patterns in
this water-limited ecosystem. Biomass data and MODIS
imagery are described in the following sections.

Field data.—The long-term field-based data record at
the JRN used in this research comes from a study of
aboveground net primary production (NPP) that began
in 1989 (see Huenneke et al. 2002, Peters et al. 2012).
The NPP study encompasses 15 sites established to cap-
ture a range of variability in species composition, bio-
mass, soils, and landscape position at the JRN. Fourteen
of 15 long-term sites are 70 9 70-m in area and include
49 1 9 1 m subplots; one playa site plot is 30 9 150 m
in area with 48 1 9 1 m subplots. Biomass is estimated
within subplots using allometric relationships defined in
Huenneke et al. (2002) and refined by Peters et al.
(2012). Biomass measurements are made three times a
year: in winter (i.e., February) when perennial deciduous
species are dormant, in spring (i.e., early to mid May)
when C3 shrubs have leafed out, and in late summer or
early fall to capture peak biomass (i.e., mid to late
September) when C4 grasses are green.
To evaluate BFAST break dates with field-estimated

biomass, we calculated the change in total mean biomass
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as the difference between successive field campaigns for
each site. The median date for latest field campaign was
assigned to the change in biomass value. To examine sea-
sonal breaks, biomass was summarized by functional
groups used in Peters et al. (2012) constituting species
that demonstrate similar patterns of resource use. The
four functional groupings were based on photosynthetic
pathway and growth form to include perennial C4

grasses, shrubs (deciduous and evergreen C3 and CAM
species), annual grasses, and annual and perennial forbs.

MODIS imagery.—The BFAST analysis of the 15 long-
term sites was based on time series NDVI (Tucker 1979)
from MODIS pixels covering the study sites. We acquired
all 250-m resolution MODIS NDVI images (MOD13Q1
data product) between 2000 and 2012 (16-d resolution),

FIG. 1. (A) Jornada Basin LTER (JRN) with 15 long-term study sites (yellow triangles) atop a Landsat image acquired 17 Octo-
ber 2009 with (B) long-term patterns in Palmer Drought Severity Index (PDSI). PDSI was calculated monthly for the National Cli-
mate Data Center Southern Desert region (NM 8 at 46,495 km2) for the Jornada Basin (http://www1.ncdc.noaa.gov/pub/data/cirs/c
limdiv/) for the period 1999–2014. Negative values indicate drought and positive values denote wet months. [Color figure can be
viewed at wileyonlinelibrary.com]
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totaling 269 scenes (H09V05). The MOD13Q1 NDVI
product is a 16-d composite that uses a constrained view-
angle maximum value composite method to reduce
anomalies associated with cloud cover and low sensor
view angles (Huete et al. 2002). The MOD13Q1 NDVI
product includes quality assurance (QA) flags with statis-
tical data that indicate the quality of the indices and input
data. We used the QA flags to select only cloud-free data
of optimal quality and replaced missing cloud-covered
pixels by linear interpolation within each pixel time series
to ensure a regular temporal measurement frequency for
all pixels. MODIS data acquisition and preprocessing
were performed using the MODIS R package (Mattiuzzi
2015, version 0.10-11).
We chose NDVI as the remote-sensing variable in this

study for two reasons despite its limitations in arid envi-
ronments due to effects of exposed soil, standing dead
vegetation, and litter on the spectral response (Richard-
son and Wiegand 1977, Huete 1988, Gao et al. 2000).
First, it is widely used as a relative and indirect indicator
of the amount of photosynthetic biomass (Tucker et al.
1979) and second, prior research in a semiarid environ-
ment has shown that the choice of vegetation index did
not affect modeled output from the BFAST time-series
decomposition algorithm (Watts and Laffan 2014). Sim-
ilarly, we chose MODIS imagery as the NDVI data
source over Landsat imagery because recent research at
this site indicated that MODIS NDVI was more strongly
correlated to biomass measurements due to its higher
temporal resolution and thus cleaner temporal signal
(i.e., fewer artifacts and data gaps; Maynard et al. 2016).
For all 49 subplot locations at each site, we extracted the
MODIS NDVI pixel value that each subplot intersected
for each image acquisition date. All study sites fell with
one or two MODIS pixels, resulting in one or two
repeating pixel values across the 49 subplots. At each
study site all 49 subplot pixel values were then averaged
producing a spatially weighted mean NDVI value per
sampling date.

Satellite time-series decomposition

Time-series decomposition was performed using the
BFAST algorithm, implemented using the bfast package
for R (Verbesselt et al. 2010a; version 1.5.7). The
BFAST algorithm implements an additive decomposi-
tion of a time series into trend, seasonal, and noise com-
ponents through iteratively fitting a piecewise linear
trend and seasonal model. For the time period t = 1,. . .,
n, the BFASTmodel takes the form

Yt ¼ Tt þ St þ et (1)

where Yt is the observed datum (NDVI for this study) at
time t, Yt is the trend component, St is the seasonal com-
ponent, and et represents the remainder.
The BFAST algorithm is designed to detect and char-

acterize abrupt changes (i.e., breaks) within both the

trend and seasonal components. The algorithm tests for
the presence of abrupt changes in the data prior to esti-
mating the seasonal and trend components using an
ordinary least squares (OLS) residuals-based moving
sums (MOSUMs) test (Zeileis and Kleiber 2005). If a
significant change is detected at a given a, the optimal
number and position of breakpoints within the time ser-
ies are returned based on the method of Bai and Perron
(2003). The magnitude and direction of breaks are calcu-
lated from the intercept and slope of the trend compo-
nent model and can occur at different times in the trend
and seasonal components (Verbesselt et al. 2010a, b).
The BFAST model uses a numeric bandwidth scalar

parameter (h value) to determine potential number of
breaks that can be detected within a time series by
controlling the minimum segment size between breaks
(Verbesselt et al. 2010b). The h value affects the trend
component piece-wise linear model. We set the h value
at 0.15 based on the 12-yr time series and on our knowl-
edge of the life history characteristics of the vegetation,
which allowed the time series to be divided into a maxi-
mum of six trend segments, separated by five breaks,
maintaining a minimum of approximately 2 yr between
subsequent breaks. BFAST models were run using a har-
monic seasonal model, which is considered to be most
adapted to natural vegetation phenological change
detection (Verbesselt et al. 2010b).

Assessment of BFAST breaks

We compared changes in field-estimated biomass from
2000 to 2012 with BFAST trend and seasonal breaks for
the same period to quantify the ability of BFAST to
detect shifts in photosynthetic biomass. Trend break
dates were compared with changes in total biomass
between successive field campaigns while breaks in the
seasonal component were evaluated relative to change in
the proportion of total biomass by functional group.
Trend and seasonal breaks from the BFAST algorithm
were classified as successes or failures and seasonal
break success was further distinguished by plant func-
tional group.
Differences in sampling frequencies for MODIS and

field campaigns to estimate biomass required we estab-
lish rules to select the biomass sample interval (and asso-
ciated change in biomass) used to classify trend breaks
as successes or failures. The selection process involved
sequential criteria. We first identified the biomass sam-
ple interval closest to the BFAST break date. We then
assessed whether the median date for the biomass sample
period (representing the end of the biomass change
interval) occurred within the 95% CI surrounding the
BFAST break. If it fell outside of the 95% CI, the break
was classified as a “temporal mismatch” (further
described below). If it fell within the 95% CI, we assessed
whether the change in biomass coincided with the direc-
tion of change indicated by the BFAST break (increasing
or decreasing). If it did, the break was classified as a
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success; if it did not, it was classified as a failure. There
was one exception to this rule set made for increasing
BFAST breaks that occurred in late March, a time for
initial growth in several herbaceous species (D. M.
Browning et al., submitted manuscript). The February
biomass sample period represents decreases in biomass
from the following fall; therefore, in the three cases of
late March trend breaks, we compared break dates to
the spring (May) biomass sample interval.
A similar process was used to identify the biomass

sample interval for comparison with seasonal breaks.
Success for seasonal breaks was defined as the case in
which the 95% confident interval overlapped changes in
the proportion of total biomass (>0.10) for one or more
plant functional groups. Successful seasonal breaks were
designated further to identify the functional group with
the largest increase or decrease in biomass contributing
to the shift in the seasonal signal in NDVI. Failure was
assigned to those seasonal breaks that did not
correspond to perceivable changes in functional group
contributions to total biomass. Similarly, “temporal mis-
match” was assigned to seasonal breaks that experienced
shifts in functional group contribution to biomass out-
side the 95% confidence interval.

RESULTS

Trend breaks as indicators of changes in biomass

There were 45 trend breaks across all sites between
2002 and 2012 (Fig. 2) and each was assigned to one of
three categories. Fifty-one percent (23/45) of trend
breaks were classified as successes, 22% (10/45) as fail-
ures, and the 27% (12/45) as temporal mismatches. Ele-
ven of the 12 trend breaks classified as mismatches
occurred between 28 July 2006 and 29 August 2006 in
response to record-breaking rainfall in 2006. In these 11
cases, CIs were narrow (mean of 81 d) relative to the 90-
or 120-d intervals for biomass sampling. Fall season bio-
mass sampling is conducted in mid September to early
October as part of the long-term study of net primary
production (Peters et al. 2012). We therefore grouped
the 11 increasing temporal mismatch breaks in 2006 with
successes as field-verified breaks in results that follow.
Changes in field-estimated biomass for successful

BFAST breaks revealed patterns in NDVI across vegeta-
tion zones. Grass-dominated sites in upland and playa

zones were more dynamic with more increasing breaks
characterized by maximum change in biomass values and
greater variation about the mean (Table 1, Fig. 3). Mes-
quite-dominated sites demonstrated higher variability
than other shrubland sites and is likely in response to
2006 increases in biomass driven by the response of
annual grasses at sites in those vegetation zones. The
upland grassland site at IBPE experienced an increasing
break 12 July 2006 that coincided with a 213.2 g/m2

change (Fig. 4B) and the mesquite-dominated site NORT
experienced a 26 July 2006 increasing break coinciding
with a 215.7 g/m2 change, Fig. 4C. Decreasing breaks at
creosote-dominated sites were marked by larger magni-
tude changes in mean biomass (�74.9 g/m2) than for
increasing breaks (19.2 g/m2). Mesquite-dominated sites
exhibited the highest magnitude changes in biomass asso-
ciated with decreasing breaks (�247.0 g/m2; Table 1).
Twenty-two percent (10/45) of trend breaks were classi-

fied as failures. Nine of the 10 failures were decreasing
breaks and eight of these occurred in 2009, 2011, and
2012. Of the 10 breaks classified as failures three occurred
on upland and four on playa grassland sites. Three break
failures occurred at the SMAL playa grassland site
(Fig. 4A) and failures at upland grassland sites occurred
at IBPE (Fig. 4B in 2012), BASN (Appendix S1:
Fig. S5A in 2009), and SUMM (Appendix S1: Fig. S5B
in 2011).

Patterns in long-term trend in the context of rainfall

Sites experienced between two to four breaks in the
long-term trend between 2000 and 2012 with general pat-
terns of synchrony relative to periods of high rainfall and
asynchrony relative to periods of low to no rainfall
(Fig. 2A). There was a general pattern across nine of 15
sites of significant increase in NDVI coinciding with the
first rainfall in 2004 following the 2000–2003 drought
period. The nine sites included five of six grassland sites,
all three creosote shrubland sites and one of three
mesquite dune shrubland sites. There was an even more
pronounced synchronous pattern of breaks in the trend
that reflected increases in NDVI occurring in 2006
following record-breaking rainfall in 2006 (hereafter
“2006 increase”). Thirteen sites experienced this marked
increase in NDVI; the only two sites that did not experi-
ence the 2006 increase in NDVI were two creosote shrub-
land sites that experienced a previous increase in 2004.

FIG. 2. (A) Monthly rainfall occurring at 15 long-term research sites from January 2000 through December 2012. Temporal
distribution of breaks in the trend derived from Breaks for Additive Season and Trend (BFAST) analysis of 16-d composite
Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI; at 250-m resolution).
Breaks denote significant deviations in the NDVI compared with the model fitted to the long-term trend component of the time
series and are displayed in green (significant increase in NDVI) and orange (significant decrease in NDVI). Up-facing triangles
denote an increasing break and down-pointing triangles denote a decreasing break. Solid triangles without interior symbols were
classified as successes. Triangles with a black interior signify breaks that were classified as failures; those with white interior trian-
gles signify breaks classified as successes with temporal mismatch. See classification details in Methods. (B) BFAST trend breaks
displayed atop the proportion of maximum total biomass for each site over the 13-yr period with increasing and decreasing breaks
denoted with blue and red triangles, respectively. [Color figure can be viewed at wileyonlinelibrary.com]
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Patterns in the NDVI trend encompassed cases of
synchrony and asynchrony ranging from low to high
variability in timing of breaks across sites. Timing of
trend breaks that reflected decreases in NDVI coincid-
ing with drought conditions in 2009 and 2011–2012
(Fig. 1B) were more variable and less synchronous
across sites. Notable dry conditions occurred both in
2009 following record-breaking high rainfall in 2008
as well as from October 2010 to July 2011 of little or
no recorded rainfall. The drought period in 2011 also
spanned a record-breaking hard freeze in February
2011 (Hardiman 2011). Two of six grassland sites (one

playa and one upland) experienced decreasing breaks
in the trend in 2009 while seven of nine shrubland sites
(two mesquite, two creosote, three tarbush) experi-
enced breaks reflecting decreasing NDVI in 2011, with
six of those seven breaks occurring between 10 June
2011 and 12 July 2011 (Fig. 2).
The prevailing pattern in the NDVI trend from 2000

through 2012 was that of relatively fast biological
response to rainfall following drought conditions in
2004 and/or 2006, resulting in highly synchronous posi-
tive breaks across sites. These trends were followed by
subsequent decreases in NDVI trend between 2009 and
2012 with the onset of drier conditions and more vari-
able timing of negative breaks across sites (Fig. 2).
Functional group contributions to total biomass lent
insight to breaks in the long-term trend. The six of 11
increasing trend breaks in 2006 coincided with changes
in annual grasses while the remaining five reflected
changes in biomass for perennial grasses. Subsequently
high proportions of maximum total biomass that were
most prominent in 2008 at shrubland sites (Figs. 2B, 4C,
E) were largely due to a strong perennial grass response
to a sequence of wet years reported by Peters et al.
(2012). The decreasing breaks that occurred between
2009 and 2012 coincided with decreases in biomass
among all functional groups although decreases in bio-
mass of grass, annual, and forb species (hereafter
“herbaceous”) were generally steeper.

TABLE 1. Summary statistics for 34 BFAST breaks in the
trend that were classified as successes with field-estimated
plant biomass at 15 long-term study sites.

Zone

Increasing breaks Decreasing breaks

Area
(g/m2)

No.
breaks

Area
(g/m2)

No.
breaks

Upland 112.3 � 132.1 8 0
Playa 124.2 � 93.6 5 0
Mesquite 133.2 � 85.8 5 �247.0 � 122.1 2
Creosote 19.2 � 9.2 4 �74.9 � 84.7 4
Tarbush 67.7 � 45.6 4 �17.6 � 13.1 2

Notes: There are three study sites in each zone. Area is
presented as mean � SD.

FIG. 3. Box plots for mean change in field-estimated plant biomass (g/m2) for 34 successful BFAST breaks in the long-term
trend. Biomass is estimated at 15 long-term study sites distributed three per each of five vegetation zones. Boxes represent the inter-
quartile range, the mid line is this the median, and whiskers correspond to the minimum and maximum values. Dark gray boxes cor-
respond to shrub-dominated sites and light gray boxes correspond to grass-dominated sites.
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Seasonal breaks as indicators of shifts in phenology

Functional group contributions to biomass elucidated
seasonal breaks corresponding to changes in the periodic-
ity of NDVI spectral response. Plant functional group
contributions to total biomass revealed that 16 of 19 sea-
sonal breaks coincided with changes in herbaceous bio-
mass that included annual and perennial grasses and
forbs. There were two cases of temporal mismatch for sea-
sonal breaks and three failures (Fig. 5). We identified five
classes of change for the 16 seasonal trends classified as
“successes” that characterize observed shifts in biomass:
increase in annuals or forbs (8/16), increase in perennial
grass (2/16), increase in all herbaceous functional groups
(1/16), decrease or collapse of annuals or forbs (1/16), and
collapse of perennial grasses (4/16) (Fig. 5). Given the
prominence of change in grass, annual, and forb func-
tional groups, we display classifications in relation to the
proportion of maximum herbaceous biomass at each site
over the study period and interpolated the three annual
measurements to monthly estimates (Fig. 5).
Patterns driven by changes in herbaceous group bio-

mass emerged across sites. Increases in annuals were most

widespread at grasslands sites (BASN, IBPE, SUMM,
and SMAL, Figs. 4A,B, 5) with increases occurring at
three of nine shrubland sites (Fig. 5). Increases in peren-
nial grasses were the second most common seasonal break
pattern occurring at grasslands IBPE (Fig. 4B) and
TOBO (Appendix S1: Fig. S2A). One mesquite site
(NORT) saw increases in perennial grasses coincidently
with increases in annuals or forbs in 2007 (NORT,
Fig. 4C). Several sites experienced a subsequent collapse
in annuals or forbs or collapse in perennial grasses (NORT
and RABB, Figs. 4C, 5 and Appendix S1: Fig. S1A).

DISCUSSION

Image-based analytical methods for identifying vege-
tation changes have potential to greatly benefit dryland
research and management by providing spatially explicit
indicators of change across broad extents at time steps
commensurate with the ecological processes driving
them (Browning et al. 2015). This study assessed long-
term and seasonal vegetation change metrics derived
from satellite imagery with independent field-measured
biomass and found success in 78% and 84% of cases

FIG. 4. BFAST output from MODIS NDVI data with mean seasonal biomass for five long-term sites, each characterized by
different dominant vegetation in southern New Mexico. Panel (A) is a grass-dominated dry lake bed; (B) is an upland perennial
grassland site dominated by Bouteloua eriopoda (black grama); (C) is a shrubland dominated by the deciduous shrub Prosopis
glandulosa (mesquite); (D) is dominated by the evergreen shrub Larrea tridentata (creostote); and (E) is dominated by the deciduous
shrub Flourensia cernua (tarbush). Biomass values were not scaled to a common y-axis extent to prevent loss of information.
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relative to the long-term trends and seasonal cycles in
land surface phenology, respectively. In addition, metrics
associated with long-term trend and seasonal compo-
nents of the image time series confirmed previously
described vegetation changes derived from field esti-
mates of net primary and litter production (Peters et al.
2012, 2014). In the following sections, we discuss pat-
terns in functional group contributions to long-term
vegetation dynamics in the context of temperature and
rainfall events that coincided with breaks in the NDVI
trend and seasonal patterns. We then describe method-
ological strengths and limitations of BFAST as an
image-based change detection method for assessing eco-
logically meaningful turning points in vegetation.

Functional group contributions to long-term trends in
greenness

Greater than 77% of the trend breaks in the MODIS
NDVI time series identified turning points (i.e., increasing
or decreasing BFAST breaks) in plant biomass in this arid

ecosystem, thus supporting our prediction that BFAST
trend breaks would coincide with large net increases or
decreases in overall plant biomass. The ability to identify
trend and seasonal breaks in the image time series pro-
vided added insight regarding the timing of known transi-
tions (e.g., influx of Sporobolus flexosus grass at mesquite-
dominated sites coinciding with maximum biomass in
September 2008; Peters et al. 2012) and the occurrence of
previously undocumented shifts (e.g., the transition from
perennial to annual grasses at the SMAL playa site).
The high level of success and synchrony with positive

trend breaks associated with high rainfall can be
explained as the response of plants adapted to water-lim-
ited environments (Lehouerou 1984). In contrast, greater
variability or higher asynchrony in the timing of negative
breaks during the subsequent dry periods between 2009
and 2012 could be caused by differential susceptibility to
detrimental effects of drought between deep-rooted C3

shrubs and more shallow-rooted C4 grasses (Kemp 1983,
Gibbens and Lenz 2001). Decreasing trend breaks that
occurred at grassland sites BASN and SMAL in 2009

FIG. 5. Temporal distribution of seasonal breaks derived from BFAST analysis of 250-m MODIS NDVI at 15 long-term sites
displayed atop the proportion of maximum herbaceous (perennial and annual grasses and forbs) biomass for each site over the 13-
yr period. Breaks denote significant deviations in the NDVI compared with the model fitted to the seasonal model component of
the time series. Symbols are color coded by the plant functional group that were associated with the shift in the seasonal model.
Black circles surrounding symbols indicate the seasonal break was classified as “temporal mismatch.” See Methods for more details.
[Color figure can be viewed at wileyonlinelibrary.com]

1688 DAWNM. BROWNING ET AL.
Ecological Applications

Vol. 27, No. 5



reflected declines in annual grass biomass. Conversely,
decreasing trend breaks in 2011 across six of nine shrub-
land sites were due to the collapse of annual and peren-
nial grass biomass accompanied by decreases in shrub
biomass, most likely in response to a period without
rainfall from October 2010 to July 2011 and hard-freez-
ing temperatures in February 2011. This combination of
drought and extreme low temperature affected shrubs
and herbaceous plants differently. Differences in phenol-
ogy (e.g., evergreen C3 shrub Larrea tridentata vs. C4

warm season grasses) and growth form expressed as
structural damage sustained by woody but not herba-
ceous plants (D. M. Browning, unpublished data).
Differences in species composition and richness at the

15 sites in this study offer interpretation of functional
group contributions to vegetation change metrics
derived from MODIS NDVI. Across the five vegetation
zones, grass-dominated sites were most dynamic and
exhibited highly variable increases in biomass over these
13 years. Shrub-dominated sites, generally, did not
demonstrate the same degree of increase in biomass for
increasing breaks; however, mesquite-dominated sites
did experience changes in biomass more similar to grass
sites than to other shrub sites. This similarity is due by
the fact that the increases and decreases in biomass at
mesquite sites were largely driven by perennial grass bio-
mass. High variation and large ranges in change in bio-
mass across vegetation zones precludes the ability to
define a minimum change in biomass needed to yield a
BFAST trend break. While we note that such insight
would be highly valuable for land management decision-
making it requires additional research.

Functional group contributions to seasonal vegetation
dynamics

The combination of BFAST trend and seasonal breaks
captured vegetation dynamics between 2000 and 2012, a
period that encompassed above-average rainfall conditions
preceded and followed by drought conditions. Successful
trend breaks reflected responses across all plant functional
groups (i.e., herbaceous and shrub species) while seasonal
breaks were driven by responses of annual and perennial
grasses and forbs. This finding has implications for moni-
toring plant community composition and phenology
through more ecologically based interpretations of remote
sensing time series. It could also help in the development
of techniques for interpreting infrequently collected field
data and separating vegetation changes related to manage-
ment activities from those related to climatic variability.
In this water-limited environment, BFAST trend

breaks more effectively captured boom and bust cycles
in herbaceous biomass than increases in shrub biomass.
This may be due to differences in how growth occurs in
herbaceous and shrub species. In response to wet condi-
tions that favor grass establishment and production
(Peters 2000), grass patches tend to expand laterally into
plant interspaces whereas shrubs respond to these

conditions to increase canopy leaf area rather than
expansion in ground cover (Peters 2002, Peters et al.
2010, Browning et al. 2012). Conversely, under dry con-
ditions deep-rooted shrubs such as Prosopis glandulosa
have been shown to be more resilient to drought periods
than grasses (Browning et al. 2012, Gherardi and Sala
2015b). Overall, shrub biomass within grass-dominated
areas between 2000 and 2012 was more stable than
herbaceous landscape components.
BFAST is likely better suited to capture decreasing

shrub biomass due to die-off (e.g., Allen and Breshears
1998, Breshears et al. 2005) or disturbance (e.g., Verbes-
selt et al. 2012) than increases in shrub biomass that occur
as slower processes requiring a longer time series (Brown-
ing et al. 2008, 2012). Land surface phenology captures
the composite spectral response of plant functional
groups present. As such, it is worth noting that large
increases or decreases in biomass in one plant functional
group have the potential to yield both seasonal and trend
breaks if the change in biomass shifts the frequency and
phase in NDVI. In such cases, a shift in functional group
dominance can yield both seasonal breaks derived from
the cyclical component of the time series NDVI signal
and trend breaks if the change in biomass is sufficiently
large (e.g., 2007 increasing trend break at IBPE, Fig. 4B).
The capability of BFAST seasonal breaks to identify

discernible shifts in the periodicity of NDVI is valuable
in systems such as ours where plant functional groups
or species contrast in their responsiveness to fluctua-
tions in environmental conditions such as rainfall or
temperature (Sherry et al. 2007, Cook et al. 2012, Gher-
ardi and Sala 2015a, b). For landscapes in this study,
water is the limited resource and high temperatures
increase evaporative losses to plants in late spring and
early summer (Wainwright 2006). Plant communities
featured in this study comprise a mixture of growth
forms that differ in physiognomy and life history traits
(e.g., photosynthetic pathway and phenology) that man-
ifest as differential responses to environmental events
and conditions. For example, annual grasses respond
most quickly to favorable rainfall conditions while
perennial grasses respond faster than shrubs (Kemp
1983). As shown here, where functional group pheno-
logical responses are understood, BFAST seasonal
breaks can capture shifts in relative abundance among
plant functional groups.

Methodological considerations and limitations of BFAST

BFAST has been widely used to identify time series
breaks in studies ranging from local to regional to global
spatial extents (de Jong et al. 2011, 2012, Horion et al.
2016). Despite its widespread use, the BFAST algorithm
has been most commonly applied over large study areas,
with model validation performed on trend breaks using a
variety of geospatial data layers including very high
spatial resolution imagery (DeVries et al. 2015), aerial
imagery (Lambert et al. 2015), and data products
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derived from satellite imagery (e.g., MOD14A2 fire pro-
duct), as well as ocular field assessments (Watts and Laf-
fan 2014). Few studies have evaluated BFAST trend and
seasonal breaks using independent quantitative field data
although DeVries et al. (2016) is one recent exception.
Results from this study represent a first-of-its-kind

evaluation linking BFAST trend and seasonal breaks to
long-term field-based measurements of plant biomass
quantified by plant functional type. The BFAST algo-
rithm performed well to identify ecologically meaningful
changes in total biomass and in functional group contri-
bution to biomass. However, the algorithm also resulted
in a few cases where big changes in biomass occurred
with no trend break and cases of trend breaks for which
there was no discernible change in biomass. Addition-
ally, successful seasonal breaks in two cases did not
appear to coincide with changes in functional group con-
tributions to biomass, but rather signified ecologically
relevant increases from zero plant biomass (e.g., seasonal
breaks in 2007 and 2010 at SMAL reflected a net
increase from zero biomass and one of the breaks denot-
ing a shift from perennial to annual grass dominance).
Three factors may explain our observed discrepancies

between BFASToutputs and field-estimated biomass: (1)
NDVI as a spectral index, (2) mismatches in temporal
and spatial resolution, and (3) the h value parameter in
the BFAST model. First, NDVI is a spectral index and
robust proxy to capture vegetation greenness or photo-
synthetic vigor (e.g., Tucker et al. 1985). Yet, because it is
an index, there is no “ground truth” for NDVI. Even
though, it has been shown to be an effective proxy for
biomass and net primary production as a biophysical
parameter commonly linked to remote sensing data prod-
ucts with relevance to ecosystem function and landscape
monitoring (Scanlon et al. 2002, Wylie et al. 2012).
Second, all studies comparing data that differ in fre-

quency and granularity involve cases of mismatch. In
our case, we used field measurements of aboveground
biomass to assess the performance of BFAST breaks as
indicators of vegetation change. Biomass data were col-
lected as part of a study designed to characterize long-
term patterns in net primary productivity (Huenneke
et al. 2002). Field data collected within 49 1 9 1-m
quadrats at sites sampled three times a year were not
designed to test outcomes from satellite image products
with 250-m spatial resolution and 16-d temporal resolu-
tion. However, by using 95% confidence intervals
around the timing of the image breaks to account for
temporal uncertainty, we could identify coincident pat-
terns between biomass change and image-based vegeta-
tion change dates.
Differences in the sample frequency of the MODIS

sensor and field data collection imposed time lags on
clear assessment of some BFAST breaks. The effects of
these time lags were most pronounced during periods of
elevated rainfall where the temporal response of herba-
ceous vegetation was rapid, producing high magnitude
positive breaks in the NDVI trend with narrow CIs

around the timing of each break. Our established ruleset
resulted in “temporal mismatches” for breaks with nar-
row CIs when compared to the 3–4 month biomass sam-
pling interval. However, visual interpretation of the
changes in NDVI and biomass showed a high level of
correspondence between the temporal increases and
decreases of the field and satellite time series. Conse-
quently, the responsiveness of vegetation to environmen-
tal conditions demonstrated in this study indicates data
collected on a more frequent basis may improve accu-
racy assessment efforts.
With respect to spatial resolution, prior work in this

system showed that the grid sampling scheme for esti-
mating biomass employed at these study sites effectively
characterized the spatial variability present within corre-
sponding 250-m MODIS pixels (Maynard et al. 2016).
Patterns in vegetation heterogeneity at shrub- and grass-
dominated sites are considerably <30 m and the tempo-
ral consistency of MODIS imagery made it more suit-
able for time series analysis than finer-resolution
satellites such as Landsat with more temporal data gaps.
There are opportunities for bridging the gaps in spatial
and temporal resolution that exist between long-term
studies and those based on satellite image data products.
Data streams now exist that may be more commensurate
with processes acting at playa grassland sites such as
phenocams, repeat ground photographs, and high spa-
tial resolution imagery from drones (Browning et al.
2015, Brown et al. 2016, Cunliffe et al. 2016).
Third, the single parameter required to run the

BFAST model, the h value, influences the number of
breaks that can occur by specifying the amount of data
or time interval between breaks. Smaller h values allow
for a larger number of breaks to be identified in the
piecewise regression model that characterizes long-term
trends, but the number of breaks (up to the maximum
the time series can accommodate) is determined by the
regression model. Watts and Laffan (2014) examined the
effect of the h value in determining the number of poten-
tial breaks in a MODIS time series from a semiarid
region in New South Wales and Queensland, Australia
and found that while the h value influences time series
decompositions, a single optimal value applicable across
widely variable landscapes could not be identified. In
future efforts, we suggest evaluating the temporal distri-
bution of trend and seasonal breaks generated using a
range of h values as a guide for h value selection.

Management implications

The ability to identify ecologically meaningful breaks
(i.e., turning points) in image time series using BFAST
and its spatially explicit outputs offer several advantages
over field measurements or modeling techniques that
require field-based data: (1) it is less costly than field
observations and easily reformulated as new data
become available, (2) it allows for broader spatial extents
to be studied and as such can capture greater variability
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in the land surface, and (3) it can identify “hotspots” in
space and time that can be used to inform land manage-
ment decisions to remove stressors (e.g., livestock),
target monitoring efforts, or inform study design to
determine optimal sampling periods or ideal locations
for sampling. Some field information is needed for inter-
preting BFAST outputs, but data needs for interpreting
image products are lower than those for detecting land-
scape change using field-based research and monitoring
methods in heterogeneous landscapes.
The demonstrated effectiveness of BFAST breaks to

identify ecological turning points provides opportunities
for the method to bolster ongoing natural resource moni-
toring programs (e.g., Herrick et al. 2010, Taylor et al.
2012). This study offers evidence that BFAST yields eco-
logically meaningful breaks at the arid JRN site, which
occurs at the low end for the annual amplitude in NDVI
of 0.1 recommended by Verbesselt et al. (2010a). Multi-
temporal remote sensing methods like BFAST offer the
potential for research and monitoring programs to put
traditionally infrequent field measurements in the con-
text of long-term patterns and seasonal cycles. For exam-
ple, livestock seasons of use and stocking rates on U.S.
federal lands are typically determined based on field
observations of rangeland (or landscape) condition and
available forage assessed at intervals corresponding to
the term of a grazing permit (5–10 yr) or long enough
for management changes or activities to have an effect
on plant communities (BLM 2001). Interpretation of
changes in condition between sampling events in this
type of monitoring is challenging due to the lack of data
that track the fluctuations in monitoring indicators over
time. Alternatively, analysis of the frequency of trend
breaks in NDVI or other spectral indices over time could
identify highly dynamic or sensitive parts of a landscape
that could be targeted for additional monitoring effort.
BFASToffers real-time monitoring capabilities to further
assist with focused field reconnaissance efforts or
drought mitigation strategies (Verbesselt et al. 2012). To
expand on the idea of differential resilience or suscepti-
bility to drought, future research is needed to investigate
the potential for BFAST breaks as an indicator of site
stability based on the frequency and magnitude of breaks
over time. Remote sensing analytical tools like BFAST
that leverage image time series to capture and character-
ize vegetation change offer the opportunity to not only
augment existing monitoring efforts, but expand the spa-
tial and temporal scales of landscape monitoring.
Future research could expand the utility of BFAST for

management applications by exploring more fully cases in
which seasonal breaks capture shifts in abundance of
plant functional groups and where seasonal breaks fall
short. A quantitative assessment of h values on the con-
sistency in timing and the temporal uncertainty of trend
breaks could lessen limitations associated with subjective
selection of this single BFAST model parameter. Remote
sensing tools and techniques like BFAST can be most
effectively implemented once their accuracy, performance,

and limitations of the algorithms are examined using the
best available data that continue to evolve. Such was our
motivation here.

ACKNOWLEDGMENTS

Funding for long-term field data collection was provided by
the National Science Foundation to the Jornada Basin Long
Term Ecological Research Program through New Mexico State
University (DEB-1235828) and USDA-ARS CRIS Project #
3050-11210-007-00D. Support for D. M. Browning, J. W. Karl,
and D. C. Peters was from appropriated funding to the USDA-
ARS Rangeland Management Research Unit, Jornada Experi-
mental Range. Funding for J. J. Maynard was from the USDI
Bureau of Land Management’s Assessment, Inventory and
Monitoring Program. R. Wu and D. James assisted with creat-
ing Fig. 2 and D. Morin assisted with edits to Fig. 4 and
Appendix S1. M. Buenemann provided constructive comments
on the manuscript as did two anonymous reviewers. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation. Mention
of a proprietary product does not constitute a guarantee or war-
ranty of the products by the U.S. Government or the authors
and does not imply its approval to the exclusion of other prod-
ucts that may be suitable.

LITERATURE CITED

Allen, C., and D. D. Breshears. 1998. Drought-induced shift of
a forest-woodland ecotone: rapid landscape response to
climate variation. Proceedings of the National Academy of
Sciences USA 95:14839–14842.

Bai, J., and P. Perron. 2003. Computation and analysis of
multiple structural change models. Journal of Applied
Econometrics 18:1–22.

Bestelmeyer, B. T., et al. 2011. Analysis of abrupt transitions in
ecological systems. Ecosphere 2(12):1–26.

BLM, Bureau of Land Management. 2001. Rangeland health
standards. Bureau of Land Management, Washington, D.C.,
USA.

Brandt, M., C. Mbow, A. A. Diouf, A. Verger, C. Samimi, and
R. Fensholt. 2015. Ground- and satellite-based evidence of
the biophysical mechanisms behind the greening Sahel.
Global Change Biology 21:1610–1620.

Breshears, D. D., et al. 2005. Regional vegetation die-off in
response to global-change-type drought. Proceedings of the
National Academy of Sciences USA 102:15144–15148.

Brown, T. B., et al. 2016. Using phenocams to monitor our
changing Earth: toward a global phenocam network. Fron-
tiers in Ecology and the Environment 14:84–93.

Browning, D. M., T. M. Crimmins, S. Spiegal, D. K. James,
M. A. Crimmins, and M. R. Levi. Submitted. Long-term pat-
terns reveal phenological guilds in a water-limited ecosystem.
Ecosphere.

Browning, D. M., S. R. Archer, G. P. Asner, M. P. McClaran,
and C. A. Wessman. 2008. Woody plants in grasslands: post-
encroachment dynamics. Ecological Applications 18:928–944.

Browning, D. M., M. C. Duniway, A. S. Laliberte, and
A. Rango. 2012. Hierarchical analysis of vegetation dynamics
over 71 years: soil-rainfall interactions in a Chihuahuan
desert ecosystem. Ecological Applications 22:909–926.

Browning, D. M., A. Rango, J. W. Karl, C. M. Laney, E. R.
Vivoni, and C. E. Tweedie. 2015. Emerging technological and
cultural shifts advancing drylands research and management.
Frontiers in Ecology and the Environment 13:52–60.

July 2017 SATELLITEMETRICS IDENTIFY STATE CHANGE 1691



Browning, D. M., and C. M. Steele. 2013. Vegetation index
differencing for broad-scale assessment of productivity under
prolonged drought and sequential high rainfall conditions.
Remote Sensing 5:327–341.

Bulloch, H. E. J., and R. E. Neher. 1980. Soil survey of Dona
Ana County Area, New Mexico. USDA-SCS, Washington,
D.C., USA.

Carpenter, S. R., et al. 2011. Early warnings of regime shifts: a
whole-ecosystem experiment. Science 332:1079–1082.

Cook, B. I., J. E. Smerdon, R. Seager, and S. Coats. 2014.
Global warming and 21st century drying. Climate Dynamics
43:2607–2627.

Cook, B. I., E. M. Wolkovich, and C. Parmesan. 2012. Diver-
gent responses to spring and winter warming drive commu-
nity level flowering trends. Proceedings of the National
Academy of Sciences USA 109:9000–9005.

Cunliffe, A. M., R. E. Brazier, and K. Anderson. 2016. Ultra-
fine grain landscape-scale quantification of dryland vegeta-
tion structure with drone-acquired structure-from-motion
photogrammetry. Remote Sensing of Environment 183:
129–143.

de Jong, R., S. de Bruin, A. de Wit, M. E. Schaepmann, and
D. L. Dent. 2011. Analysis of monotonic greening and
browning trends from global NDVI time-series. Remote
Sensing of Environment 115:692–702.

de Jong, R., J. Verbesselt, M. E. Schaepman, and S. de Bruin.
2012. Trend changes in global greening and browning: contri-
bution of short-term trends to longer-term change. Global
Change Biology 18:642–655.

de Jong, R., J. Verbesselt, A. Zeileis, and M. E. Schaepman.
2013. Shifts in global vegetation activity trends. Remote
Sensing 5:1117–1133.

DeVries, B., A. K. Pratihast, J. Verbesselt, L. Kooistra, and
M. Herold. 2016. Characterizing forest change using commu-
nity-based monitoring data and Landsat time series. PLoS ONE
11:e0147121. https://doi.org/10.1371/journal.pone.0147121

DeVries, B., J. Verbesselt, L. Kooistra, and M. Herold. 2015.
Robust monitoring of small-scale forest disturbances in a
tropical montane forest using Landsat time series. Remote
Sensing of Environment 161:107–121.

Gao, X., A. R. Huete, W. G. Ni, and T. Miura. 2000. Optical-
biophysical relationships of vegetation spectra without back-
ground contamination. Remote Sensing of Environment
74:609–620.

Gherardi, L. A., and O. E. Sala. 2015a. Enhanced interannual
precipitation variability increases plant functional diversity
that in turn ameliorates negative impact on productivity.
Ecology Letters 18:1293–1300.

Gherardi, L. A., and O. E. Sala. 2015b. Enhanced precipitation
variability decreases grass- and increases shrub-productivity.
Proceedings of the National Academy of Sciences USA
112:12735–12740.

Gibbens, R. P., and J. M. Lenz. 2001. Root systems of some
Chihuahuan Desert plants. Journal of Arid Environments
49:221–263.

Hardiman, M. 2011. Intense cold wave of February 2011.
National Weather Service, El Paso, Texas, USA.

Herrick, J. E., V. C. Lessard, K. E. Spaeth, P. L. Shaver, R. S.
Dayton, D. A. Pyke, L. Jolley, and J. J. Goebel. 2010.
National ecosystem assessments supported by scientific and
local knowledge. Frontiers in Ecology and the Environment
8:403–408.

Herrick, J. E., et al. 2013. The global Land-Potential Knowledge
System (LandPKS): supporting evidence-based, site-specific
land use and management through cloud computing, mobile
applications, and crowdsourcing. Journal of Soil and Water
Conservation 68:5A–12A.

Horion, S., A. V. Prishchepov, J. Verbesselt, K. D. Beurs,
T. Tagesson, and R. Fensholt. 2016. Revealing turning points
in ecosystem functioning over the Northern Eurasian agricul-
tural frontier. Global Change Biology 22:2801–2817.

Huenneke, L. F., J. P. Anderson, M. Remmenga, and W. H.
Schlesinger. 2002. Desertification alters patterns of above-
ground net primary production in Chihuahuan ecosystems.
Global Change Biology 8:247–264.

Huete, A. R. 1988. A soil-adjusted vegetation index (SAVI).
Remote Sensing of Environment 25:295–309.

Huete, A., K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and
L. G. Ferreira. 2002. Overview of the radiometric and
biophysical performance of the MODIS vegetation indices.
Remote Sensing of Environment 83:195–213.

Hufkens, K., T. F. Keenan, L. B. Flanagan, R. L. Scott, C. J.
Bernacchi, E. Joo, N. A. Brunsell, J. Verfaillie, and A. D.
Richardson. 2016. Productivity of North American grass-
lands is increased under future climate scenarios despite
increasing aridity. Nature Climate Change 6(7):710–714.

Karl, J. W., J. E. Herrick, and D. M. Browning. 2012. A strategy
for rangeland management based on best available knowledge
and information. Rangeland Ecology & Management 65:
638–646.

Kemp, P. R. 1983. Phenological patterns of Chihuahuan desert
plants in relation to timing of water availability. Journal of
Ecology 71:427–436.

Lambert, J., J. P. Denux, J. Verbesselt, G. Balent, and V. Cheret.
2015. Detecting clear-cuts and decreases in forest vitality using
MODIS NDVI time series. Remote Sensing 7:3588–3612.

Lehouerou, H. N. 1984. Rain use efficiency—a unifying concept
in aridland ecology. Journal of Arid Environments 7:213–247.

Maynard, J. J., J. W. Karl, and D. M. Browning. 2016. Effect of
spatial image support in detecting long-term vegetation change
from satellite time series. Landscape Ecology 9:2045–2062.

Mattiuzzi, M. 2015. MODIS: Acquisition and Processing of
MODIS Products: R package version 0.10-11.

Morisette, J. T., et al. 2009. Tracking the rhythm of the seasons
in the face of global change: phenological research in the 21st
century. Frontiers in Ecology and the Environment 7:253–260.

Overpeck, J., and B. Udall. 2010. Dry times ahead. Science
328:1642–1643.

Peters, D. P. C. 2000. Climatic variation and simulated patterns
in seedling establishment of two dominant grasses at a semi-
arid-arid grassland ecotone. Journal of Vegetation Science
11:493–504.

Peters, D. P. C. 2002. Plant species dominance at a grassland-
shrubland ecotone: an individual-based gap dynamics model
of herbaceous and woody species. Ecological Modelling
152:5–32.

Peters, D. P. C., B. T. Bestelmeyer, and M. G. Turner. 2007.
Cross–scale interactions and changing pattern–process rela-
tionships: consequences for system dynamics. Ecosystems
10:790–796.

Peters, D. P. C., J. E. Herrick, H. C. Monger, and H. T. Huang.
2010. Soil–vegetation–climate interactions in arid landscapes:
effects of the North American monsoon on grass recruitment.
Journal of Arid Environments 74:618–623.

Peters, D. C., J. Yao, D. M. Browning, and A. Rango. 2014.
Mechanisms of grass response in grasslands and shrublands
during dry or wet periods. Oecologia 174:1323–1334.

Peters, D. P. C., J. Yao, O. E. Sala, and J. P. Anderson. 2012.
Directional climate change and potential reversal of desertifi-
cation in arid and semiarid ecosystems. Global Change Biol-
ogy 18:151–163.

Richardson, A. J., and C. L. Wiegand. 1977. Distinguishing
vegetation from soil background information. Photogram-
metric Engineering and Remote Sensing 43:1541–1552.

1692 DAWNM. BROWNING ET AL.
Ecological Applications

Vol. 27, No. 5

https://doi.org/10.1371/journal.pone.0147121


Scanlon, T. M., J. D. Albertson, K. K. Caylor, and C. A.
Williams. 2002. Determining land surface fractional cover
from NDVI and rainfall time series for a savanna ecosystem.
Remote Sensing of Environment 82:376–388.

Sheppard, P. R., A. C. Comrie, G. D. Packin, K. Angersbach,
and M. K. Hughes. 2002. The climate of the U.S. Southwest.
Climate Research 21:219–238.

Sherry, R. A., X. H. Zhou, S. L. Gu, J. A. Arnone, D. S.
Schimel, P. S. Verburg, L. L. Wallace, and Y. Q. Luo. 2007.
Divergence of reproductive phenology under climate warm-
ing. Proceedings of the National Academy of Sciences USA
104:198–202.

Snyder, K. A., and S. L. Tartowski. 2006. Multi-scale temporal
variation in water availability: implications for vegetation
dynamics in arid and semi-arid ecosystems. Journal of Arid
Environments 65:219–234.

Taylor, J., G. Toevs, J. Karl, M. Bobo, M. Karl, S. Miller, and
C. Spurrier. 2012. AIM-monitoring: a component of the
BLM assessment, inventory, and monitoring strategy. In
BLM, U.S. Department of the Interior, editor. BLM National
Operations Center, Denver, Colorado, USA.

Tucker, C. J. 1979. Red and photographic infrared linear
combinations for monitoring vegetation. Remote Sensing of
Environment 8:127–150.

Tucker, C. J., C. L. Vanpraet, M. J. Sharman, and G. Vanittersum.
1985. Satellite remote sensing of total herbaceous biomass
production in the Senegalese Sahel—1980–1984. Remote
Sensing of Environment 17:233–249.

USDA-NRCS. 2010. Ecological site information system. National
Resource Conservation Service, Lincoln, Nebraska, New
Mexico, USA.

Verbesselt, J., R. Hyndman, G. Newnham, and D. Culvenor.
2010a. Detecting trend and seasonal changes in satellite time
series. Remote Sensing of Environment 114:106–115.

Verbesselt, J., R. Hyndman, A. Zeileis, and D. Culvenor. 2010b.
Phenological change detection while accounting for abrupt
and gradual trends in satellite image time series. Remote
Sensing of Environment 114:2970–2980.

Verbesselt, J., A. Zeileis, and M. Herold. 2012. Near real-time
disturbance detection using satellite image time series.
Remote Sensing of Environment 123:98–108.

Wainwright, J. 2006. Climate and climatological variations in
the Jornada Basin. Pages 44–80 in K. M. Havstad, L. F.
Huennecke, and W. H. Schlesinger, editors. Structure and
function of a Chihuahuan desert ecosystem. The Jornada
Basin long-term ecological research site. Oxford University
Press, Oxford, UK.

Watts, L. M., and S. W. Laffan. 2014. Effectiveness of the BFAST
algorithm for detecting vegetation response patterns in a semi-
arid region. Remote Sensing of Environment 154:234–245.

Wolkovich, E. M., and E. E. Cleland. 2011. The phenology of
plant invasions: a community ecology perspective. Frontiers
in Ecology and the Environment 9:287–294.

Woodcock, C. E., et al. 2008. Free access to Landsat imagery.
Science 320:1011.

Wylie, B. K., S. P. Boyte, and D. J. Major. 2012. Ecosystem per-
formance monitoring of rangelands by integrating modeling
and remote sensing. Rangeland Ecology & Management
65:241–252.

Zeileis, A., and C. Kleiber. 2005. Validating multiple structural
change models—a case study. Journal of Applied Economet-
rics 20:685–690.

SUPPORTING INFORMATION

Additional supporting information may be found online at: http://onlinelibrary.wiley.com/doi/10.1002/eap.1561/full

DATA AVAILABILITY

Data associated with this paper are available as follows: R files and NDVI data on GitHub: https://doi.org/10.5281/zenodo.
438715

Plant biomass data are available from the LTER Data Portal: https://doi.org/10.6073/pasta/6479586914e6a732381f46d16f173c45

July 2017 SATELLITEMETRICS IDENTIFY STATE CHANGE 1693

http://onlinelibrary.wiley.com/doi/10.1002/eap.1561/full
https://doi.org/10.5281/zenodo.438715
https://doi.org/10.5281/zenodo.438715
https://doi.org/10.6073/pasta/6479586914e6a732381f46d16f173c45

