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Abstract

Context Arid rangelands have been severely

degraded over the past century. Multi-temporal remote

sensing techniques are ideally suited to detect signif-

icant changes in ecosystem state; however, consider-

able uncertainty exists regarding the effects of changing

image resolution on their ability to detect ecologically

meaningful change from satellite time-series.

Objectives (1) Assess the effects of image resolution

in detecting landscape spatial heterogeneity. (2)

Compare and evaluate the efficacy of coarse (MODIS)

and moderate (Landsat) resolution satellite time-series

for detecting ecosystem change.

Methods Using long-term (*12 year) vegetation

monitoring data from grassland and shrubland sites

in southern New Mexico, USA, we evaluated the

effects of changing image support using MODIS (250-

m) and Landsat (30-m) time-series in modeling and

detecting significant changes in vegetation using time-

series decomposition techniques.

Results Within our study ecosystem, landscape-

scale ([20-m) spatial heterogeneity was low, resulting

in a similar ability to detect vegetation changes across

both satellite sensors and levels of spatial image

support. While both Landsat and MODIS imagery

were effective in modeling temporal dynamics in

vegetation structure and composition, MODIS was

more strongly correlated to biomass due to its cleaner

(i.e., fewer artifacts/data gaps) 16-day temporal signal.

Conclusions The optimization of spatial/temporal

scale is critical in ensuring adequate detection of

change. While the results presented in this study

are likely specific to arid shrub-grassland ecosys-

tems, the approach presented here is generally

applicable. Future analysis is needed in other

ecosystems to assess how scaling relationships will

change under different vegetation communities that

range in their degree of landscape heterogeneity.

Keywords Time series � MODIS � Landsat � Image

support � Arid ecosystems � Breaks for additive season
and trend

Introduction

Among the Earth’s ecosystems, arid and semi-arid

regions (*30 % of Earth’s land area) have
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experienced significant degradation over the past

century due to intensive land-use practices (e.g.,

livestock overgrazing, recreation) and the increasing

effects of drought and climate change. Many of these

dryland ecosystems have experienced widespread

displacement of perennial grasses by invasive shrubs,

resulting in a significant reduction in important

ecosystem services such as erosion control, carbon

sequestration, and livestock forage (Bestelmeyer et al.

2015). Consequently, it is important to improve our

understanding of how dryland ecosystems are

responding to current management and climatic con-

ditions. However, given the rate at which dryland

systems are changing (Safriel et al. 2005), there is a

critical need to develop methods that can detect

changes in ecosystem properties and function in near-

real time from local to regional scales.

Remote sensing is widely recognized as an impor-

tant tool in detecting long-term landscape change and

is capable of characterizing several classes of distur-

bance, including: (i) abrupt changes (e.g., deforesta-

tion, fires); (ii) gradual changes (e.g., prolonged

drought, gradual land degradation); and (iii) seasonal

changes (e.g., changing plant phenology due to intra-

annual climatic variability or changing proportion of

plant functional types) (Verbesselt et al. 2010b).While

previous assessments of land cover change relied upon

measurable difference between two satellite images

(Coppin et al. 2004), current approaches are utilizing

high temporal resolution image stacks to characterize

temporal response functions (e.g., Kennedy et al.

2010; Verbesselt et al. 2010a; Wylie et al. 2012).

These functions can provide information on the type of

disturbance (e.g., fire, drought), the magnitude of the

change (i.e., ecosystem resistance), the recovery or

response of the system after disturbance (i.e., ecosys-

tem resilience), and can be used to evaluate these

temporal dynamics in relation to a historical baseline.

Recent technological and methodological advance-

ments in the mapping and monitoring of land cover

change are providing new opportunities for utilizing

high temporal frequency satellite imagery (e.g.,

MODIS, Landsat). The most prominent among these

include: (i) free and open distribution of imagery,

allowing the creation of dense pixel-based time-series;

(ii) significant advancements in image pre-processing

(e.g., Landsat ecosystem disturbance adaptive pro-

cessing system (LEDAPS) algorithm) creating com-

parable imagery across time; (iii) increases in

computation capacity, in particular cloud-based com-

puting platforms such as Google Earth Engine; and

(iv) advances in change detection algorithms using

high temporal resolution satellite image stacks (Ken-

nedy et al. 2010; Verbesselt et al. 2010a, 2012). In

light of these developments, a quantitative evaluation

of the effects of spatial image support (e.g., Landsat

vs. MODIS) on high temporal frequency change

detection is needed.

Accurate detection of landscape change requires

the optimization of spatial and temporal scales in

remote sensing imagery to match the characteristic

scale (i.e., typical spatial extent or temporal frequency

that characterize an environmental pattern or process)

of the phenomenon of interest (Wu and Li 2006;

Kennedy et al. 2014). The effects of optimizing the

spatial scale of remote sensing imagery have been well

documented (Hay et al. 2001; Wu and Li 2006; Karl

and Maurer 2010). Identifying an optimal pixel size is

influenced by the spatial structure of the object of

interest and the conditions required by the chosen

analysis technique (Addink et al. 2007; Karl and

Maurer 2010). The influence of these scaling effects in

detecting landscape objects and their spatial charac-

teristics can be interpreted using Strahler et al.’s

(1986) two scene-resolution models for representing

vegetation patterns in image data. Low-resolution (L-

res) models apply where scene-elements are smaller

than image pixels, and high-resolution (H-res) models

apply where scene-elements are larger than image

pixels. The application of these models is dependent,

in part, upon the native resolution of the imagery

relative to the characteristic scales of landscape

objects. If the native image resolution is excessively

coarse relative to the object of interest (L-res model),

the ability to detect objects and patterns occurring at

finer scales is limited. However, if the native image

resolution is excessively fine relative to a landscape

object (H-res model), an optimal pixel scale can be

identified that matches the characteristic scale of the

object using techniques such as average local variance

(ALV) analysis (Woodcock and Strahler 1987).

The effects of the temporal scale or frequency of

imagery on the ability to detect ecologically important

biophysical changes of the Earth’s surface (e.g., fires,

insect damage, plant phenology) has been less studied.

Previous limitations on computation capacity, a lack

of sufficient analytical techniques, and financial

constraints on image access, have historically
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prevented studies from utilizing high temporal reso-

lution image time-series. However, since landscape

change occurs continuously through time, the ability

to adequately characterize ecological change depends

on the frequency of remote sensing measurements

relative to the rate and shape of the response function

(e.g., loss or growth of vegetation) (Kennedy et al.

2014). Conceptually, Strahler et al.’s (1986) spatial

scene models can also be used to understand temporal

scaling of remote sensing measurements. If the

frequency of measurements is coarse relative to the

studied phenomena (L-res model) it will fail to

adequately characterize changes over time. Addition-

ally, if the measurements have a very low signal-to-

noise ratio (i.e., environmental factors affecting image

quality or indicators with a low spectral response),

then characterizing temporal response in a L-res

model will be even more challenging due to the

presence of artifacts, outliers, or a highly muted signal.

Alternatively, measurements taken at a very high

frequency relative to the studied phenomena (H-res

model) will either accurately characterize its temporal

dynamics (high signal-to-noise ratio) or contain

excessive noise that must be filtered out by temporally

scaling the time series before the rate and shape of the

response function can be adequately defined.

The emergence of time-series decomposition tech-

niques for uncoupling the seasonal and long-term

signals from time-series image stacks, now allow for

the detection of significant changes (i.e., abrupt,

gradual, seasonal) in long term trends. The breaks

for additive season and trend (BFAST) algorithm

identifies seasonal and long-term trends in imagery

time-series as well as significant changes (i.e., break-

points) in modeled trends. BFAST integrates methods

for change detection with the iterative decomposition

of time-series into trend, seasonal, and noise compo-

nents and can effectively separate seasonal and trend

signals from noise and thus provides a method for

optimizing temporal scale (Verbesselt et al. 2010a; see

‘‘Methods’’ section for greater detail). In contrast to

temporal variability, vegetation exhibits a much

higher degree of spatial variability due to a wide

range of regulating controls, including edaphic, topo-

graphic and climatic factors that can vary across

several orders of magnitude frommeters to kilometers.

Consequently, optimizing spatial image support is a

more challenging task and requires an explicit under-

standing of characteristic scales, scaling domains (i.e.,

patch vs landscape), and how temporal response

functions change across spatial scales.

While many studies have addressed the effect of

spatial scale on the coupling of remote sensing and

field-based data, simultaneous examinations of spatial

and temporal scaling effects by coupling multi-tem-

poral field data sets with time-series image stacks is

lacking. To maximize quantitative detection of veg-

etation change, an optimal spatial resolution of

satellite based time-series indices is needed. Conse-

quently, the main objective of this study was to

explicitly test the effects of changing image resolution

on the ability of time-series indices to detect observed

long-term (i.e., *12 years) changes in plant biomass.

The optimal spatial resolution was then related to the

spatial characteristics of the landscape, as well as the

temporal response of seasonally measured biomass.

Specific objectives were to (i) assess the effects of

image resolution in detecting landscape spatial hetero-

geneity, and (ii) assess the utility of multi-temporal

Landsat vs. MODIS imagery for detecting vegetation

change using the BFAST change detection algorithm.

Study area

The study was conducted at the Jornada Basin Long

Term Ecological Research (JRN) site in southern New

Mexico, USA (32.58N, 106.458W). The JRN encom-

passes approximately 100,000 ha of semi-arid/arid

grass-shrubland in the northern region of the Chihua-

haun desert (Fig. 1). This study focused on two

dominant ecosystem types within the study area: (1)

upland grasslands dominated by black grama (Boute-

loua eriopoda (Torr.) Torr.), mesa dropseed (Sporobo-

lus flexuosus (Thurb. Ex Vasey) Rydb.), and several

threeawn species (Aristida spp. L.); and (2) mesquite

(Prosopis glandulosa Torr.) shrublands. Black grama

grasslands are found on level locations with loamy

sand to sandy loam soils, while mesquite shrublands

are located on level uplands with loamy sand soils.

Vast regions of southern New Mexico have transi-

tioned from Bouteloua-dominated semi-desert grass-

lands to desert shrub (mesquite, creosote bush, and

tarbush) ecosystems during the past 100 years (Gib-

bens et al. 2005; Browning et al. 2012). This pattern of

conversion from grassland to shrubland has been well

documented at the JRN (Browning et al. 2012) and is

representative of patterns of vegetation transitions
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occurring in arid and semi-arid ecosystems globally

resulting from long-term historical environmental

change (Eldridge et al. 2011). The climate is arid to

semiarid with mean annual precipitation of 25 cm

over the past 30 years, with the majority of rainfall

occurring between 1 July and 1 October. Mean

monthly temperatures range from 6 �C in January to

26 �C in June, with an annual mean of 15 �C.

Methods

Field data collection

To examine how changing image support within

satellite time-series affected the ability to detect

vegetation change, we selected three upland grassland

and three mesquite shrubland locations within the JRN

(Fig. 1). Grassland and shrubland sites examined in

this study are a subset of the JRN long-term ecosystem

monitoring network established in 1989 that were

initially established to encompass the range of natural

variation within each ecosystem type. For example, in

addition to differences in soils, geomorphic surface,

and landscape position across all sites, grassland

locations differed in abundance of the dominant black

grama and shrublands exhibited a range of shrub sizes

and densities. All study locations have been fenced

since 1989 to exclude livestock. Each study location is

comprised of a 7 9 7 grid of 49 permanent 1-m2

quadrats, separated by 10-m in each cardinal compass

direction. Within each quadrat, plant biomass was

estimated nondestructively by measuring the dimen-

sions (cover and height) of individual plants or plant

parts (see Huenneke et al. 2001). Previously developed

allometric equations were used to convert plant

volume measurements to aboveground biomass.

Biomass sampling occurred three times per calendar

year (winter, spring, fall) between 2000 and 2012 to

account for the distinctive seasonality of the Chihua-

haun desert.

Time-series image acquisition and pre-processing

All available Landsat 5-Thematic Mapper (TM)

imagery was acquired between 2000 and 2012 (16-

day frequency), totaling 269 scenes (Path 33/Row 37).

The Landsat imagery was ortho-corrected and radio-

metrically calibrated to surface reflectance with the

LEDAPS algorithm (Masek et al. 2006). Cloud and

cloud shadow masking were performed on all scenes

using LEDAPS exclusion masks. Missing observa-

tions due to clouds, shadows or missing scenes (i.e.,

0 150 225 300km

Chihuahuan Desert

Arizona New Mexico

United States

Mexico

0 3000 m

S1
S2S3

G1

G2

G3

Fig. 1 Study site location in southwestern NM, USA and insert showing the location of the three grassland (G1–G3) and shrubland

(S1–S3) sampling sites within the Jornada LTER
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Landsat 5 scenes processed through NLAPS), were

infilled using linear interpolation.

We acquired all available MODIS 250 m imagery

(MOD13Q1) between 2000 and 2012 (16-day resolu-

tion), totaling 269 scenes (H09V05). The MOD13Q1

product is a 16-day composite which uses a con-

strained view-angle maximum value composite (CV-

MVC) method. The CV-MVC method takes the

highest quality value for each pixel within each

16-day window, thereby reducing anomalies associ-

ated with cloud cover and low sensor view angles

(Huete et al. 2002). All images were corrected to

surface reflectance, correcting for molecular scatter-

ing, ozone absorption, and aerosols. The MOD13Q1

product includes quality assurance (QA) flags with

statistical data that indicate the quality of the indices

and input data. The QA flags were used to only select

cloud-free data of optimal quality. Missing data were

replaced by linear interpolation within each pixel time

series. MODIS data acquisition and preprocessing

were performed using the ‘MODIS’ R package

(version 0.10-11).

Normalized difference vegetation index (NDVI) is

the most commonly used band ratio in ecological

research and has been widely used in rangeland

studies, although with varying levels of success

(Anderson et al. 1993; Wylie et al. 2002; Sankey and

Weber 2009). NDVI measurements are influenced by

vegetation structure, texture and shadow and thus are

indirectly correlated with above ground biomass

(AGB) (Eisfelder et al. 2012). Numerous studies have

successfully correlated maximum NDVI and/or time-

integrated NDVI to AGB in arid ecosystems using

both coarse scale (Sannier et al. 2002; Verbesselt et al.

2006; Wessels et al. 2006) and moderate-scale (An-

derson et al. 1993; Wylie et al. 2002; Samimi and

Kraus 2004) imagery. The limitations of using NDVI

in arid ecosystems have been well documented,

including the effects of exposed soil, standing dead

vegetation and litter on the spectral response (Huete

1988; Gao et al. 2000). Despite its limitations, we have

chosen to use NDVI in this study due to its widespread

use. Additionally, prior research in a semi-arid envi-

ronment showed that the choice of vegetation index

did not affect modeled output from the BFAST time-

series decomposition algorithm (Watts and Laffan

2013). NDVI was calculated from the red and NIR

band values using the standard formula of:

NDVI ¼ qNIR� qRedð Þ= qNIRþ qRedð Þ ð1Þ

NDVI was calculated using Eq. 1 for Landsat TM

imagery. The MODIS MOD13Q1 product contains a

precomputed NDVI layer.

For all 49 subplot locations within each of the

70 9 70 m2 grassland and shrubland study sites, we

extracted the pixel value that each subplot intersected

on each image acquisition date, resulting in 49 pixel

values per date. Due to the larger footprint of MODIS

(250 m) all subplots fall within one or two pixels,

resulting in one or two repeating pixel values across

the 49 subplots. In contrast, nine to eighteen unique

Landsat pixels intersect with the 49 subplots resulting

in varying combinations of sampling intensities across

the pixels depending on where the subplot grid falls

(Figs. 2a, 3a, S1a–S4a). All 49 subplot pixel values are

averaged producing a spatially weighted mean NDVI

value per sampling date.

Landscape heterogeneity and spatial image

support

A QuickBird satellite image was acquired over the

study area on 01 May 2003. The QuickBird imagery

has a panchromatic band (0.6-m ground resolution)

and four multispectral bands (2.4-m ground resolu-

tion). To extend the possible spatial range of our

analysis, images were pan sharpened using the prin-

cipal component method in Erdas Imagine� 8.7.,

resulting in a final resolution of 0.6-m for all bands.

NDVI was calculated for QuickBird imagery using

Eq. 1.

To examine the effect of spatial image support in

detecting landscape heterogeneity we used average

local variance analysis (ALV). The ALV function is a

graph of the mean local variance in an image as a

function of the pixel size of the image (Woodcock and

Strahler 1987). ALV analysis was calculated from the

QuickBird imagery in three steps: (1) a series of

images with increasing pixel size were created by

mean resampling of the original pixels; (2) standard

deviation was calculated within a 3 9 3 moving

window across each resampled image; and (3) the

mean standard deviation across the entire image (i.e.,

ALV) was plotted against the coarsened pixel size.

These graphs were used to measure spatial structure in

images, with the peak of maximal variance at a spatial
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Fig. 2 Schematic of plot

level variability at G1

showing: a the location of

the 70 9 70 m2 biomass

sampling plot relative to the

overlaying MODIS (n = 1)

and Landsat (n = 9) pixels;

b the biomass sampling plot

and 49 1 9 1 m2 biomass

subplots, underlain by pan-

sharpened Quickbird

derived NDVI (0.6 m

resolution); c a comparison

NDVI variability for the

entire plot (Quickbird plot),

at the subplot locations

(Quickbird subplot), and

from the overlaying MODIS

and Landsat pixels; and d a

plot photo by D. Browning

taken September 2009

illustrating fine-scale

variability in vegetative

cover
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(b) (d)
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Fig. 3 Schematic of plot

level variability at S1

showing: a the location of

the 70 9 70 m2 biomass

sampling plot relative to the

overlaying MODIS (n = 1)

and Landsat (n = 9) pixels;

b the biomass sampling plot

and 49 1 9 1 m2 biomass

subplots, underlain by pan-

sharpened Quickbird

derived NDVI (0.6 m

resolution); c a comparison

NDVI variability for the

entire plot (Quickbird plot),

at the subplot locations

(Quickbird subplot), and

from the overlaying MODIS

and Landsat pixels; and d a

plot photo by D. Browning

taken September 2009

illustrating fine-scale

variability in vegetative

cover
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resolution that is closely related to the dominant size

of pattern elements in the image (Woodcock and

Strahler 1987; Nijland et al. 2009). In their analysis of

satellite imagery from different sensors (e.g., Landsat,

SPOT, AVHRR) and from different land cover classes

(e.g., forest, agriculture, urban), Woodcock and

Strahler (1987) found that the ALV function peaked

at half to three quarters of the object size in the image.

The ALV function can thus be used to quantify the

spatial variability of a landscape, determine the source

of variability (i.e., landscape component) and deter-

mine an optimal pixel size. ALV analysis is easy to

calculate and interpret relative to alternative measures

of image variance and spatial structure (e.g. geosta-

tistical regularization), thus making it a suitable metric

for the purposes of this study. Mean resampling of

pan-sharpened QuickBird imagery was coarsened at

2-m increments from 2 to 40 m and 10-m increments

from 50 to 1000 m; and standard deviation calculated

within a 3 9 3 moving window for each image using

the ‘raster’ package for R (Hijmans and van Etten

2014) (version 2.2-31).

Statistical analysis

We calculated a time-integrated NDVI (NDVI-I) on a

per-pixel basis by summing all NDVI values for each

period between biomass sampling events, resulting

three NDVI-I values per year (i.e., dormant late winter:

October–February; spring peak growth: March–May;

and Fall peak growth: June–September). Each sum was

divided by the number of NDVI observations within

each sampling period to report NDVI-I values on the

more familiar -1 to 1 NDVI scale. Landsat imagery

was coarsened using mean resampling from its native

30 m resolution to 90, 240, 480 and 990 m; and

MODISwas coarsened from its native 250 m resolution

to 500 and 1000 m. An ordinary least-squares regres-

sion model was fit between the biomass and NDVI-I

time-series with increasing spatial support size, to

determine the optimal resolution for estimating biomass

from NDVI imagery.

Satellite time-series decomposition

Time series decomposition was performed using the

BFAST algorithm, implemented using the ‘bfast’

package for R (Verbesselt et al. 2010a) (version

1.5.7). The BFAST algorithm implements an additive

decomposition of a time series into trend, seasonal and

noise components through iteratively fitting a piece-

wise linear trend and seasonal model. The BFAST

algorithm also has methods for detecting and charac-

terizing abrupt changes (i.e., breaks) within both the

trend and seasonal components. A test for the presence

of abrupt changes in the data is performed prior to

estimating the seasonal and trend components using an

ordinary least squares (OLS) residuals-based moving

sums (MOSUMs) test (Zeileis and Kleiber 2005). If a

significant change is detected at a given alpha, the

optimal number and position of breakpoints within the

time series are returned based on the method of Bai

and Perron (2003). The magnitude and direction of

breaks are calculated from the intercept and slope of

the trend component model and can occur at different

times in the trend and seasonal components. For

additional details on BFAST and model equations, see

the SI Methods section.

A near-real time season-trend model for detecting

significant disturbance in a satellite time-series repre-

senting both gradual and phenological changes was

developed by Verbesselt et al. (2012). In this method,

termed BFAST-Monitor, disturbances are detected

within newly acquired time-series data (i.e., monitor-

ing period) by automatically identifying a stable his-

torical period (i.e., history period) to model the

season-trend variation against which disturbances are

detected.

Once the season-trend model is fit to a stable his-

torical period, a MOSUM test is used to test whether

all newly acquired data conforms to the existing

model. The model is stable if the MOSUM process

stays close to zero, however, if it deviates systemat-

ically from zero a structural break can occur

(Verbesselt et al. 2010b). In this study, we set the

history period between 2000 and 2003, as this was a

relatively stable drought period characterized by

abnormally low rainfall. In contrast, the monitoring

period (2004–2012) was characterized by a period of

abnormally wet years (2004–2010), followed by a

return to dry conditions (2011–2012). Since the

objective of this study was to evaluate the effects of

changing image support on the ability to detect

observed long-term changes in ecosystem properties,

the selection of an abnormal (i.e., drought) period as

our baseline (i.e., history period) was not an issue for

this study. Our selection of the history period from

2000 to 2003 provided a 3–4 year stable baseline from
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which subsequent changes (i.e., significant greening

from 2004 to 2010) could be evaluated, thus allowing

us to compare model results from both Landsat and

MODIS sensors. For additional details on BFAST-

Monitor and model equations, see the SI Methods

section.

Results

Aboveground biomass estimation

Mean annual aboveground biomass (AGB) between

2000 and 2012 ranged from 48 to 412 g m-2 at

grassland sites and from 62 to 422 g m-2 at shrubland

sites (Fig. S5). Peak biomass usually occurred in the

fall at grassland sites, while shrubland sites generally

experienced peak biomass during spring sampling

dates.

Plot level variability

Pan-sharpened QuickBird NDVI imagery of each

grassland/shrubland plot revealed adequate discrimi-

nation between land cover types (e.g., shrubs, grasses,

bare soil interspaces). For example, in the grassland

sites, patches of bare soil (NDVI: 0.02–0.08) were

intermixed with patches of black gramma grass

(NDVI: 0.08–0.12), and the occasional shrub or

succulent (NDVI: 0.12–0.18) (Figs. 2b, S1b, S2b).

These patterns can be visually seen in the site

photographs (Figs. 2d, S1d, S2d). In the shrubland

sites, clear delineations can be made between shrubs

(NDVI: 0.2–0.45) and bare soil interspaces (NDVI:

0.05–0.15) (Figs. 3b, S3b, S4b), which is further

confirmed through visual assessment of site pho-

tographs (Figs. 3d, S3d, S4d).

To evaluate the effectiveness of the 49 1 9 1 m2

sub-plots in characterizing the 70 9 70 m2 within plot

variability, we compared the distribution of all pan-

sharpened QuickBird NDVI values within the main

plot (n = 1113) to the NDVI values within the 49

subplots (n = 49). In general, the distribution of the

49 subplots had a similar median value and interquar-

tile range to the distribution of all values within the

main plot, indicating that the subplot sampling ade-

quately characterized the within plot variability

(Figs. 2c, 3c, S1c–S4c). The distributions of Landsat

pixels (acquired on 5/10/2003) that intersect with the

biomass plots had a small interquartile range, with

NDVI values appreciably higher relative to QuickBird

imagery. MODIS imagery (acquired on 5/09/2003)

only intersected biomass plots with 1–2 pixels and had

higher value(s) relative to either Landsat or QuickBird

imagery. MODIS imagery covered *9–18 times the

area of the biomass plots and thus was detecting the

average NDVI signal over a much larger extent.

Average local variance analysis

In general, ALV decreased rapidly from the 0.6 m

resolution of the pan-sharpened QuickBird imagery,

reaching a minimum by 30–50 m (Figs. 4, S6). The

smallest pixel size corresponded to the highest ALV,

thus indicating that the dominant patch size of

landscape elements was less than or equal to the

0.6 m QuickBird imagery. Visual inspection of NDVI

values across each biomass plot (Figs. 2, 3, S1–S4)

showed a coarse but adequate delineation of landscape

elements (e.g., shrubs, grasses, bare soil interspaces).

For all three shrubland sites the ALV reached a

minimum at a pixel size of 20–50 m and then

remained constant as the pixel size was gradually

coarsened out to 1000 m, indicating that both Landsat

and MODIS imagery were characterizing the same

degree of landscape heterogeneity and were thus

operating at a similar landscape scale (Figs. 4, S6).

The three grassland sites, however, showed different
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patterns in ALV with increasing pixel size. While G1

followed a similar pattern to the shrubland sites, G2

and G3 showed a gradual increase in ALV following a

minimum at *40-m, with G2 continuing to increase

up to 1000 m and G3 beginning to decline again

between 800 and 1000 m (Figs. 4, S6). In general,

shrubland sites had 2–3 times higher maximum ALV

(ALV max: 0.020–0.025) relative grassland sites

(ALV max: 0.008–0.016), with the exception of S3

which had a maximum ALV similar to the grassland

sites (ALV max: 0.009) due to sparse shrub cover

(Fig. S4b). This higher fine-scale spatial heterogeneity

(i.e.,\20-m) at shrubland sites is also shown by the

wider interquartile range of QuickBird NDVI values

relative to grassland sites (Figs. 2c, 3c).

Regression analysis of NDVI-biomass

relationships

In this study, both Landsat and MODIS products were

standardized to a 16 day temporal frequency. With

Landsat, only one image was acquired within each

16-day period, whereas with the MODIS CV-MVC, a

maximum of 64 images were acquired resulting in the

highest quality image during that period. Conse-

quently, Landsat time-series contain many sections of

missing values due to periods of poor image quality.

Landsat time-series were missing 27 % (n = 72) and

30 % (n = 80) of observations at G1 and S1, respec-

tively (Fig. 5; Table 1). The other grassland and

shrubland sites were missing between 29 and 31 %

of observations (Fig. S7; Table 1). Despite missing

values, visual comparison between Landsat and

MODIS NDVI time-series showed good correspon-

dence between inter-annual fluctuations (Fig. 5).

The strength of the relationship between biomass

and NDVI-I was relatively invariant with increasing

spatial support across all three grassland and shrubland

sites (Fig. 6). Correlations between biomass and

MODIS NDVI-I were consistently higher (r2: *0.3–

0.5) than biomass * Landsat NDVI-I correlations

(r2: *0.2–0.3) (Table 1). In general, MODIS pro-

duced stronger biomass * NDVI-I correlations at

shrubland sites. However, Landsat produced similar

correlations across both shrubland and grassland sites.

Considerable variation existed in the correspondence

between biomass correlations from MODIS and Land-

sat at each site. For example, MODIS and Landsat gave

very similar coefficients of determination (r2) at G1

(Fig. 6a), while MODIS has appreciably higher r2

relative to Landsat at S1 (Fig. 6d). When all sites were

combined, however, biomass * NDVI-I relationships

were similar for both MODIS and Landsat, with r2 of

0.45 and 0.41 for MODIS and Landsat, respectively

(Table 1).

Time-series decomposition

BFAST decomposition of the NDVI time-series for

G1 (Fig. 7a, b) and S1 (Fig. 7c, d) revealed similar

linear models of the trend fitted to both Landsat and

MODIS. Three significant breaks in the modeled trend

were identified at G1 and one significant trend break

identified at S1. Seasonal models, however, differed

between MODIS and Landsat; with one significant

seasonal break in theMODIS time-series at G1 and S1,

and no seasonal breaks in the Landsat time-series at

either site (Fig. 7). Similar dynamics were also

observed at the other grassland and shrubland sites

(Figs. S8, S9, respectively).

The effect of increasing spatial support on BFAST

model results for Landsat and MODIS imagery can be

seen in Fig. 8. The root mean squared error (RMSE) of

residuals from BFAST models was relatively constant

with increasing spatial support for both Landsat and

MODIS (Fig. 8a, b). This indicates that within the

spatial domain examined in this study (i.e., 30- to

1000-m), the spatial resolution of our time-series

image stacks does not affect BFAST model results.

This is confirmed by the detection of significant breaks

in the trend component of BFAST models, where the

number and timing of breaks is shown across a range

of spatial support for Landsat (ls) and MODIS (m) at

grassland (Fig. 8c) and shrubland (Fig. 8d) sites.

Grassland sites show highly consistent breaks across

all sites, sensors, and levels of image support.

Shrubland sites display slightly greater variability in

the number and timing of breaks, although consistent

patterns are still clear.

To determine the effects of satellite sensor and

spatial support in detecting land cover change, we

examined spatial patterns in the magnitude and timing

of significant changes across our study site utilizing

the BFAST-Monitor algorithm. Similar patterns in the

magnitude of change were detected from both Landsat

(Fig. 9a) and MODIS (Fig. 9b) sensors, with 97 and
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99 % of all breaks having positive magnitudes for

Landsat and MODIS, respectively, because the base-

line period (2000–2003) was one of the driest multi-

year periods of recent record. Similar spatial patterns

were also observed with the timing of breaks between

Landsat (Fig. 9c) and MODIS (Fig. 9d). BFAST-

Monitor results from Landsat had areas with higher

magnitudes of change as well as change occurring in

more recent years (i.e.,[2008) relative to MODIS

results. This is largely a result of the higher spatial
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series between Landsat and MODIS at G1 and S2 from 2000 to

2012. Segments of the Landsat NDVI time-series drawn in red

indicate periods of missing data where linear interpolation was

used to infill missing values

Table 1 Coefficients of determination (r2) for linear regres-

sions of seasonally measured biomass and time-integrated

NDVI, shown at each grassland (G1–G3) and shrubland

(S1–S3) site, across all grassland (G-All) and shrubland (S-

All) sites, and across all sites (All). The percentage of each

12-year time-series that required linear infilling is also shown

Support G1 G2 G3 G-All S1 S2 S3 S-All All

m r2

Landsat

30 0.34 0.17 0.20 0.15 0.19 0.27 0.30 0.24 0.16

90 0.34 0.17 0.21 0.16 0.20 0.27 0.34 0.26 0.17

240 0.41 0.21 0.18 0.18 0.20 0.27 0.24 0.24 0.17

480 0.40 0.16 0.22 0.20 0.22 0.32 0.25 0.26 0.18

990 0.41 0.19 0.16 0.20 0.20 0.35 0.31 0.28 0.23

MODIS

250 0.45 0.39 0.35 0.27 0.51 0.54 0.52 0.52 0.24

500 0.45 0.41 0.33 0.27 0.52 0.53 0.53 0.51 0.25

1000 0.45 0.42 0.32 0.27 0.52 0.52 0.50 0.51 0.35

% Infill�

MODIS 0 0 0 0 0 0 0 0 0

Landsat 27 29 31 29 30 29 30 29 29

� Percentage of missing scenes infilled by linear interpolation
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resolution of Landsat which allows it to detect smaller

areas of significant change (i.e., hotspots) that are

muted within the larger pixel area of MODIS.

Discussion

Assessing landscape heterogeneity

The spatial structure of the study landscape as

determined using ALV analysis of Quickbird imagery

revealed two characteristic scales, the patch scale

where individual landscape elements can be detected

(i.e., shrubs and perennial grass patches,\1-m) and

the landscape scale where the spectral signal from

multiple landscape elements are averaged ([20-m). A

previous assessment of patch scale (1-m2) spatial

heterogeneity at this site found that shrub-dominated

systems had significantly greater heterogeneity in

biomass relative to grass-dominated systems (Huen-

neke et al. 2002). Our results confirm these findings

where shrublands had 2–3 times higher local variance

at the patch scale relative to grassland sites. Differ-

ences in patch scale variability between sites within

each ecosystem type are reflective of the initial study

design where sites were selected to represent the range

of natural variation. Thus variation in rainfall, land-

scape position, and soil properties are important

drivers of patch scale variability.

At the landscape scale ([20-m) shrubland sites had

consistently low local variance while grasslands sites

were more variable, in particular study sites G2 and

G3. The widespread conversion of perennial grass-

lands to desert shrublands at the JRN over the past
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century has been well documented (Gibbens et al.

2005; Browning et al. 2012), resulting in remnant

patches of native grasslands that have varying spatial

extents. Grassland sites G2 and G3 are located on a

different geomorphic landform (than site G1) on the

southern portion of the JRN where grassland areas

exist on landscapes with different potential for shrub

proliferation. These fragmented grass-dominated

areas result in increasing local variance as the image

resolution increases and local variance calculations
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Fig. 7 Comparison of results from BFAST time series decom-

position of the Landsat and MODIS time-series at G1 (a, b) and
S1 (c, d). The time series data (solid black line in data panel) is

the sum of the seasonal, trend and residuals time series. Vertical

dashed black lines in either trend or seasonal panels indicate

significant breaks in the time series
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are made between pixels of contrasting vegetation

composition.

Optimizing spatial image support

for multi-temporal analysis

A fundamental premise in the estimation of biophys-

ical properties using remotely sensed data is the

existence of a predictable relationship between the

spectral response measured by the sensor and the

magnitude of the property of interest (Wulder et al.

2004). Several factors affect this relationship includ-

ing the optical properties of the vegetation (e.g.,

vegetation structure, leaf spectral properties, area of

bare soil), the effects caused by the spatial and

temporal resolution of the sensor relative to the spatial

structuring and temporal dynamics of the landscape,

and finally environmental factors such as topography,

sun elevation, haze, wind speed, and the view angle

between the satellite and land surface. A common

problem in validating remote-sensing based biomass

estimates is the mismatch between the spatial resolu-

tion of the satellite data and the field plot size.

Consequently, an important consideration when cou-

pling remote sensing imagery with field-based data is

the issue of registration error (i.e., misalignment of
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plot data and its corresponding remotely sensed image

pixels). Registration errors can be particularly severe

in highly heterogeneous landscapes. To account for

plot level heterogeneity, previous studies have applied

different field sampling strategies, including, transects

(e.g., Sannier et al. 2002; Samimi and Kraus 2004;

Wessels et al. 2006), nested sampling designs (e.g.,

Addink et al. 2007; Nijland et al. 2009), clustered

measurement plots (e.g., Wylie et al. 1991; Sannier

et al. 2002), and systematic grid sampling (e.g.,

Huenneke et al. 2001, 2002). In this study, the use of a

systematic grid sampling design effectively charac-

terized plot level variability (Figs. 2c, 3c). By extract-

ing the intersecting pixel values corresponding to each

of the 49 1-m biomass quadrats, a coarser resolution

representation of the landscape was obtained, deter-

mined by the sensor resolution and the number of

pixels aggregated. However, these aggregated spatial

Fig. 9 Comparison of

results from BFAST

monitor for the Landsat (a,
c) and MODIS (b,
d) sensors, showing maps of

a, b the magnitude of change

(±) between 2004 and 2012,

and c, d the year that

significant change occurred
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scales still fell within our characterized spatial range

(0.6–1000 m) and thus remained within the same scale

domain.

We determined the optimal spatial resolution for

detecting temporal changes in plant biomass by the

spatial structure of the landscape and the temporal

frequency of the time series for obtaining a high

quality signal free of environmental contamination

(e.g., clouds, atmospheric distortion). For our study

ecosystem, ALV analysis indicated both Landsat and

MODIS characterized the landscape scale and pro-

vided similar information on landscape structure.

However, because Landsat is limited to a single

observation within a 16-day cycle, it is highly

susceptible to missing data resulting from environ-

mental interference. In contrast, due to orbit overlap,

the MODIS sensor can in theory collect a maximum of

four observations per day or 64 observations within a

16-day cycle, and is thus able to extract the highest

NDVI value within this period that has the smallest

view angle (i.e., closest to nadir). Consequently,

MODIS NDVI has a cleaner temporal signal and thus

a better prediction of vegetation biomass.

Aboveground biomass estimation

Semi-arid and arid ecosystems express a high degree of

temporal variability in vegetation distribution and

dynamics in response to precipitation. Previous

research has shown that NDVI time-series are closely

related to rainfall dynamics in water limited ecosystems

(Funk and Budde 2009; Vrieling et al. 2011). Addi-

tionally, vegetation communities have adapted different

seasonal growth patterns; for example, shrublands

consistently experience earlier (spring) peaks of pro-

duction relative to grasslands (Huenneke et al. 2002).

This high degree of intra-annual variability requires

adequate temporal resolution to identify significant

phenological changes in vegetation response. In this

study, seasonally measured AGB allowed us to explic-

itly examine the relationship between intra-annual

variability in AGB and NDVI-I derived from moderate

(e.g., Landsat) and coarse (e.g., MODIS, AVHRR)

resolution imagery. Several studies in arid ecosystems

found strong correlations between AGB and both

NDVI-I and maximum NDVI (Tucker et al. 1985;

Wylie et al. 1991; Hobbs 1995), although these

relationships have been shown to break down at low

(i.e.,\250 kg ha-1) biomass levels (Tucker et al.

1985). Biomass levels within our study region fell

within the lower range of values reported in the

literature, with maximum annual values ranging

between *500 and 4000 kg ha-1 across all sites and

the median of all maximum annual values falling below

2000 kg ha-1 at all sites. Correlations between NDVI-I

and AGB in this study were not improved by restricting

the range of biomass values to exclude low values

(\250 kg ha-1) within regression relationships.

Previous studies examining AGB in semi-arid

environments have primarily focused on peak biomass

within a single year or occasionally over multiple

years. Few studies have examined either intra- or

inter-annual changes in AGB and the ability of remote

sensing to detect these changes. Strong inter-annual

climatic variability in arid and semi-arid ecosystems

can result in dramatic fluctuations in AGB between

years. Using AVHRR data, Diouf and Lambin (2001)

examined the relationship between annual NDVI-I and

biomass over a 10-year period and concluded that,

while separate regressions for each year resulted in

good relationships, strong inter-annual variation

resulted in a weak relationship between NDVI-I and

biomass over the entire 10-year period. Wylie et al.

(1991) observed similar results where strong inter-

annual variability in drought conditions resulted in

highly different relationships between NDVI-I and

biomass in different years. Wessels et al. (2006) found

NDVI-I produced relatively strong predictions of

inter-annual variation in biomass at single sites, but

failed to accurately predict biomass on an annual basis

from all sites. In contrast to previous studies that have

examined only inter-annual variability, this study

examined both intra- and inter-annual variability in

NDVI and biomass. Results from this study found that

NDVI-I produced significant, although moderate-to-

weak predictions of intra- and inter-annual variation in

biomass both at individual sites, as well as across all

sites using both moderate and course resolution

imagery. High intra- and inter-annual variability in

NDVI-I and biomass measurements likely resulted in

the moderate to low coefficients of determination

found in this study.

Assessing temporal frequency

The ability to detect significant changes (e.g., distur-

bance) within an NDVI time-series using the BFAST

algorithm has been shown to be dependent upon the

Landscape Ecol (2016) 31:2045–2062 2059

123



signal-to-noise ratio (Verbesselt et al. 2012). Thus,

adequate data preprocessing is necessary to improve

the quality and reliability of remotely sensed time-

series datasets for detection of significant landscape

change. In this study we used a simple linear

interpolation to fill data gaps within the Landsat

time-series. In general, this simplistic approach pro-

vided a complete time-series that corresponded well

with the higher quality MODIS time-series, however,

correlations between Landsat and seasonal biomass

were often appreciably lower than correlations

between MODIS and seasonal biomass. Lower corre-

lations between seasonal biomass and Landsat were

likely the result of the infilling process and/or the fact

that for any 16-day period MODIS produces a higher-

quality set of data via the CV-MVC.

Several data fusion techniques have been devel-

oped to deal with missing data or to increase the

frequency of satellite time-series by linking MODIS

and Landsat sensor data (Gao et al. 2006; Sedano et al.

2014). Among these data fusion techniques, the spatial

and temporal adaptive reflectance fusion model

(STARFM) (Gao et al. 2006; Hilker et al. 2009;

Schmidt et al. 2012) and Kalman filtering (Sedano

et al. 2014) have been successfully used to both

increase the temporal frequency and improve the

temporal signal (i.e., removing environmental arti-

facts) of moderate resolution sensors such as Landsat.

Time-series of synthetic NDVI images derived from

the STARFM and Kalman filter methods were shown

to capture seasonal land surface dynamics while

maintaining the spatial structure of the landscape but

at a higher spatial resolution (Schmidt et al. 2012;

Sedano et al. 2014). Data fusion techniques provide

new opportunities to examine land surface processes

at more ecologically relevant scales. Future work at

the JRN using data fusion techniques is needed given

the large number of data gaps (*30 %) within the

Landsat time series resulting from periods of cloud

cover.

Implications for monitoring ecosystem change

The spatial resolution of satellite imagery is important

in the ability to quantify landscape change, for it

affects both the degree to which landscape features can

be differentiated and the strength of the relationship

between satellite imagery and field data. The impor-

tance of spatial scale, however, is largely dependent

upon the spatial heterogeneity of the landscape.

Results from this study showed that both Landsat

and MODIS performed similarly in terms of modeling

temporal shifts in vegetation composition. In land-

scapes of greater heterogeneity where vegetation

composition varies over smaller scales, greater differ-

ences may occur between Landsat and MODIS

imagery as MODIS pixels span multiple ecosystem

types. Thus while Landsat cannot provide real time

monitoring of ecosystem change across broad extents

due to its long repeat interval (16–18 days), with its

long data record (1972-present) and high spatial

resolution it is capable of detecting subtle environ-

mental changes that would be missed by coarser

spatial resolution satellites (Kerr and Ostrovsky 2003).

Vegetative composition of the land surface has

been shown to influence the utility of remotely sensed

imagery as a proxy for surface properties. For

example, Sankey and Weber (2009) found that when

bare ground reached or exceeded 20 %, SPOT derived

NDVI was no longer statistically significant as a

predictor variable for biomass in two semi-arid

rangeland ecosystems. This was likely the result of a

low signal-to-noise ratio, since the seasonal amplitude

in NDVI decreases with increasing bare ground and

the SPOT imagery acquired was from a single date

rather than a higher quality composite. The BFAST

algorithm is a signal-to-noise driven method which

analyzes the full time-series and detects abnormal

changes based on the signal versus noise distribution

(Verbesselt et al. 2012). Thus in areas where the

seasonal amplitude in NDVI is low (i.e.,\0.1) due to a

high percentage of bare ground, the ability to detect

significant change is reduced. This is particularly

problematic when the noise level (e.g., from clouds,

atmospheric distortion) is high as is the case in

satellites with coarse temporal resolution (e.g.,

Landsat).

Conclusions

Recent developments in remote sensing, including

advances in data access, data preprocessing, analytical

techniques, and computational capacity have greatly

improved the ability to detect and quantify landscape

change. While these advancements provide new

opportunities for understanding ecosystem changes

at finer spatial and temporal resolutions, there is still a
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critical need to understand the effects of scale (i.e.,

spatial and temporal) on modeled results and select

scales optimal for stated monitoring and management

objectives. Within our study area, ALV analysis

revealed two characteristic scales: patch scale

(\1 m) and landscape scale ([20 m). Thus the

optimal spatial scale for detecting vegetation patch

structure in this grass-shrub ecosystem was deter-

mined to be less than 1 m and that by 30 m the spatial

variability was minimized resulting in each pixel

characterizing the average landscape structure. To

accurately correlate satellite time series to field data,

the spatial variability must be similar at both the

resolution of the satellite sensor and spatial scale of the

field sampling. Our use of a systematic grid sampling

design effectively characterized each plot at the

landscape scale. While both Landsat and MODIS

imagery were effective in modeling temporal dynam-

ics in vegetation structure and composition, MODIS

was more strongly correlated to biomass measure-

ments due to its higher temporal resolution, thus

producing a cleaner 16-day temporal signal upon

compositing (CV-MVC). Advances in multi-temporal

remote sensing are resulting in a more refined

quantification of landscape change aligned with eco-

logical concepts and models, but the optimization of

spatial and temporal scale is critical in ensuring

adequate detection of change. While the results

presented in this study are likely specific to the

ecosystem type it represents (i.e., arid shrub-grass-

lands), the approach presented here is generally

applicable. Future analysis is needed in other ecosys-

tems to assess how scaling relationships will change

under different vegetation communities that range in

their degree of landscape heterogeneity.
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