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Direct effects dominate responses to climate
perturbations in grassland plant communities
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Theory predicts that strong indirect effects of environmental change will impact communities

when niche differences between competitors are small and variation in the direct effects

experienced by competitors is large, but empirical tests are lacking. Here we estimate

negative frequency dependence, a proxy for niche differences, and quantify the direct and

indirect effects of climate change on each species. Consistent with theory, in four of five

communities indirect effects are strongest for species showing weak negative

frequency dependence. Indirect effects are also stronger in communities where there is

greater variation in direct effects. Overall responses to climate perturbations are driven

primarily by direct effects, suggesting that single species models may be adequate for

forecasting the impacts of climate change in these communities.
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A
nticipating the consequences of rapid environmental
change for population and community dynamics has
become an urgent challenge1,2. Meeting this challenge will

require an understanding of both the direct and indirect effects of
climate change. Direct effects refer to effects on the performance
or abundance of a given species, assuming no changes in that
species’ interactions with other species. In contrast, indirect
effects are mediated by interactions with other species in
the community. Indirect effects can be driven either by changes
in the abundance of other species or by changes in the direction
and/or strength of per capita interaction effects3,4. We can define
these effects of environmental change operationally: the full effect,
which is what we observe in nature, is the change in the size of
the focal population that is realized when other species’
abundances and interactions also respond to the environmental
change; the direct effect is the change in the focal species’
population size that occurs if other species’ abundances and
interaction effects are held constant; and the indirect effect is the
difference between the full and direct effects5.

Indirect effects are a source of uncertainty in attempts to
predict the responses of communities to climate change2,4,6.
Many studies have reported that indirect effects of climate change
can amplify, outweigh or even reverse direct effects3,7. Given
the potential importance of indirect effects, ignoring biotic
interactions could severely affect the accuracy of forecasts of
species abundances and distributions under a changing climate2,
and consequently limit the effectiveness of conservation and
management actions.

Although current research has highlighted cases where indirect
effects are important, it is unknown how often this will be the
case and how much of a difference indirect effects will make
for ecological forecasts. Theory can help identify situations in
which indirect effects are likely to be relatively weak and much
simpler single-species models could be sufficient for accurate
prediction. Niche differences weaken interspecific interactions,
and the stronger the niche differences among species, the weaker
the expected indirect effects of an environmental change5,6,8–10.
Consider the extreme case of two species, A and B, which occupy
completely distinct niches in time or space: the dynamics of one
species will be independent of the other. In this case, climate
change would not exert indirect effects. On the other hand,
if A and B have overlapping niches and interact intensely,
indirect effects of climate change could be strong. However, niche
differences are not the only factor determining the magnitude of
indirect effects.

Kleinhesselink and Adler5 demonstrated that for pairs of
species competing for resources, the magnitude of indirect
effects also increases with difference in species’ direct responses
to the change in the environment. This difference in
environmental response is equivalent to the difference in
the sensitivity of each species’ density to an environmental
change when growing in monocultures. When species respond
in very different ways to the environment, large indirect effects
can occur because species’ abundances and, therefore, the
relative strength of interspecific competition relative to
intraspecific competition, will change greatly5. In contrast, if
different species respond identically to the environment, there
will be no change in their relative abundances, no change in
the relative strength of intra- and interspecific competition,
and therefore no indirect effects. This theory assumes that
indirect effects are caused only by changes in competitors’
relative abundance, not by changes in the per-capita competitive
effects. To apply this theory, we need empirical estimates of
direct and indirect effects of environmental change for many
species in multiple communities, data which until now were not
available.

In a previous study of the relationship between niche
differences and indirect effects, Adler et al.6 applied
multispecies population models to quantify direct and indirect
effects, and used negative frequency dependence as the proxy for
niche differences. Niche differences, such as resource partitioning
or species-specific natural enemies, cause individuals to limit
conspecifics more than heterospecifics. As a result, each species
is more sensitive to changes in the density of conspecifics
than heterospecifics. In the presence of niche differences, species’
per capita growth rates decline as their relative abundance,
or frequency, in a community increases, because at higher
frequency individuals interact relatively more with conspecifics11.
Therefore, the stronger the niche differentiation, the stronger
the negative frequency dependence. Consistent with theory,
results for a single community showed that the magnitude of
indirect effects was lowest for species experiencing the strongest
negative frequency dependence6. However, whether that result is
general across multiple communities that span a wider range of
negative frequency dependence remains unknown. Furthermore,
Adler et al.6 did not consider how variation in direct effects might
determine the strength of indirect effects. Based on Kleinhesselink
and Adler5, we should expect stronger indirect effects in
communities with greater variation in species’ direct responses
to environmental perturbations.

Species that occupy unique niches or respond to weather in
similar ways as their competitors should experience weak indirect
effects of climate change. For these species, forecasts that ignore
indirect effects, such as single species models, might perform
quite well. In this study, we address three research questions
motivated by this theory. First, does the theoretical, negative
relationship between niche differences and indirect effects
observed in Adler et al.6 hold in other plant communities?
Second, is the strength of indirect effects greater when there is
greater variation in direct effects of climate perturbations on
competitors? Third, how well can we predict species’ responses to
climate perturbations if we ignore indirect effects? We compiled
long-term plant demographic data sets collected in the last
century in five semi-arid grassland communities geographically
distributed across western North America. We constructed
multispecies population models to first quantify the strength of
negative frequency dependence and then estimate the magnitude
of full, direct and indirect effects. The results demonstrate that
indirect effects are strongest for species showing weak negative
frequency dependence in four of five communities and indirect
effects are stronger in communities where there is greater
variation in direct effects. Finally, overall responses to climate
perturbations are driven primarily by direct effects.

Results
Climate effects on demography and cover. For the 12 species we
analysed, the inclusion of climatic covariates explained from 22 to
94% of the interannual variation in growth rates, with a mean
of 50% (Fig. 1 and Supplementary Table 1). For survival, the
contribution of climatic covariates ranged from 8.3 to 96%, with a
mean of 59%. For recruitment, the climatic covariates were
relatively less effective, reducing the residual deviance associated
with interannual variability by 10–88%, with a mean of 36%.

A second approach for evaluating the ecological importance of
climatic covariates relied on individual-based model (IBM)
simulations that compared predicted and observed cover in the
historical plots (Fig. 2, Supplementary Fig. 1 and Supplementary
Table 2). For IBM models with climatic variables only, the
correlation coefficients between the predicted cover and observed
cover across years ranged from 0.22 to 0.99 (with a mean of 0.79).
If both random year effects and climatic covariates were included
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Figure 2 | Comparison between predicted and observed abundance reveals the ecological importance of climatic covariates. Comparison of observed

(circles) and predicted mean cover from simulations with an IBM that included both climatic covariates and random year effects (squares) or climatic

covariates only (triangles). One species from each study site is presented here: (a) B. rothrockii in Arizona, (b) A. tripartita in Idaho, (c) B. curtipendula in

Kansas, (d) B. gracilis in Montana and (e) B. eriopoda in New Mexico. Results for the remaining species are shown in Supplementary Fig. 1.
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Figure 1 | Climate covariates and variability in vital rates. The proportion of interannual variability in vital rates explained by climatic covariates for:

(a) survival, (b) growth and (c) recruitment.
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in the models, the correlation coefficients ranged from 0.83 to
0.99 (with a mean of 0.95).

Negative frequency dependence and indirect effects. All species
showed positive invasion growth rates and negative frequency-
dependent patterns of population growth, that is, a negative
relationship between a species’ per capita growth rate (on the log
scale) and its frequency, or relative cover, in the community
(Fig. 3 and Supplementary Table 3). Pascopyrum smithii in
Montana exhibited the strongest negative frequency dependence

with a slope of � 14.46, whereas Artemisia tripartita in Idaho
had the weakest negative frequency dependence with a slope
of � 0.15. The mean negative frequency dependence for all
species was � 2.41. We used these measures of negative
frequency dependence as a proxy measure of niche differences
between each species and its competitors.

Species cover showed idiosyncratic responses to the climate
perturbations, with full effects of the perturbations varying in
both strength and direction (Supplementary Fig. 2). For
example, a 1% precipitation increase decreased the
abundance of A. tripartita and Pseudoroegneria spicata, but
increased the abundance of Hesperostipa comata and Poa secunda
in Idaho.

In four out of five communities, the strength of indirect effects
decreased with stronger negative frequency dependence (Fig. 4).
For instance, A. tripartita in Idaho and Bouteloua gracilis in
Montana experienced the weakest negative frequency dependence
and the strongest indirect effects of the climate perturbations
of any species in their respective communities. A linear
mixed-effects model including all species and all sites showed
that the magnitude of raw indirect effects declined significantly
with negative frequency dependence (mixed-effects model:
coefficient¼ 0.0067, P¼ 0.039, DF¼ 29 and t-value¼ 2.162;
Fig. 4 and Table 1). The Arizona community was the exception
(Fig. 4): Bouteloua rothrockii had stronger negative frequency
dependence than Bouteloua eriopoda but experienced larger
indirect effects.

Variation in direct effects influences indirect effects. The direct
effect of precipitation on equilibrium cover was positive for all
species except two, A. tripartita in Idaho and P. secunda
in Montana (Supplementary Fig. 2). In contrast, the indirect
effects of precipitation mediated by competition were usually
negative, with the exception of B. eriopoda in Arizona and
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Figure 3 | Negative frequency dependence. The estimated relationship

between per capita growth rate of each species and its equilibrium

frequency. The slope of the line represents the magnitude of the negative

frequency dependence for each species. The per capita growth rate is 1

(zero when log transformed) when a species is at its equilibrium frequency.
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Bouteloua curtipendula in Kansas. Variability in temperature
and precipitation drove positive direct effects for seven
species and negative direct effects for the others. The
indirect effects of variability were usually negative, except for
B. rothrockii in Arizona, A. tripartita in Idaho, and H. comata
and P. smithii in Montana. The direct and indirect effects of
temperature were more idiosyncratic across species
(Supplementary Fig. 2).

The linear mixed-effects model showed that the
strength of raw indirect effects significantly increased
with the community-wide variation in direct effects of
climate perturbations (mixed-effects model: coefficient¼ 0.6007,
P¼ 0.0013, DF¼ 9 and t-value¼ 4.594; Fig. 5 and
Table 1).

Relative importance of indirect and direct effects. Log ratios
between proportional indirect effects (raw indirect effects scaled
by species equilibrium abundances) and proportional direct
effects were o0 in 37 of 45 climate perturbation scenarios
(Fig. 6), indicating that indirect effects were weaker than direct
effects. For the eight cases in which the log ratios were 40, the
proportional full effects were close to 0, with the exceptions of
Bouteloua hirsuta in Kansas (9.8% proportional change) and
B. rothrockii in Arizona (6.1%) under the temperature pertur-
bation, and Sporobolus flexuosus in New Mexico (� 3.3%) under
the precipitation perturbation (Fig. 6). In addition, the
proportional full effects were tightly correlated with the
proportional direct effects (r¼ 0.94) (Supplementary Fig. 3).

However, the relationship between the proportional full effects
and the proportional indirect effects was weak (r¼ 0.13)
(Supplementary Fig. 3).

Discussion
Theory predicts that the magnitude of indirect effects of climate
change should decrease with increasing niche differences5,6 and
increase with variation in species’ direct responses to climate
change5. Our results support both of these predictions.

In four of the five communities we studied, which includes the
sagebrush steppe community that we previously analysed6,
species experiencing stronger negative frequency dependence, a
proxy for niche differences, were less sensitive to the indirect
effects of climate change (Fig. 4). Furthermore, the overall
nonlinear shape of the relationship, with the maximum strength
of raw indirect effects decreasing rapidly as negative frequency
dependence declines from zero, is consistent with theory5.
However, we also found great variation in the strength of
indirect effects (Figs 4 and 5). For species that experienced weak
negative frequency dependence (4� 2.0 in Fig. 4), indirect
effects of different climate perturbations could be very strong or
very weak, whereas for species experiencing strong negative
frequency dependence (o� 3.0 in Fig. 4), indirect effects were
uniformly weak.

The reason that species with weak negative frequency
dependence display such wide variation in indirect effect strength
is that niche differences are not the only factor influencing the

Table 1 | Results for the mixed-effects model that explains variation in the indirect effects of climate perturbations.

Variable Estimated value s.e. DF t-value P-value

(Intercept) 0.0320 0.01940 29 1.649 0.1099
NFD 0.0067 0.00310 29 2.162 0.0390
Variance in direct effects 0.6007 0.13077 9 4.594 0.0013

NFD, negative frequency dependence.
NFD and the variance in direct effects were treated as fixed factors, whereas study site (n¼ 5) and climate perturbation nested within study site (n¼ 15) were treated as random effects. The number of
total observations was 45. The linear mixed-effects model was fit by maximum likelihood with the function ‘lme’ in R package ‘nlme.’
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magnitude of indirect effects. The size of indirect effects also
depends on variation in direct effects experienced by the species
in the community (Fig. 5 and Table 1). For instance, in Kansas
and Montana variability in direct effects of temperature was
high; some species responded positively, whereas others
responded negatively to the same change in temperature
(Supplementary Fig. 2). As a result, these communities showed
the strongest indirect effects of temperature perturbations (Fig. 4).
In fact, if we did not account for the variance in direct effects,
our linear mixed-effects model could not detect a significant
impact of negative frequency dependence (mixed-effects model;
coefficient¼ 0.0059, P¼ 0.1025, DF¼ 29 and t-value¼ 1.69;
Supplementary Table 4).

Another factor contributing to variability in the size of raw
indirect effects is asymmetry in interspecific interactions5.
The Arizona community was the only one in which the
relationship between indirect effects and negative frequency
dependence did not match our prediction: B. eriopoda had weaker
negative frequency dependence than B. rothrockii, but it was less
sensitive to the indirect effects of climate perturbations (Fig. 4).
This outcome occurred because B. eriopoda always experienced
stronger direct effects than B. rothrockii (Supplementary Fig. 2)
and it had strong effects on B. rothrockii vital rates, whereas
B. rothrockii had little effect on the performance of B. eriopoda
(see Supplementary Data 1–3; coefficients for the effect of
B. eriopoda on B. rothrockii survival, growth and recruitment
rates were � 0.017, � 0.0055 and � 0.61, respectively; in
contrast, coefficients for the effect of B. rothrockii on
B. eriopoda for these three vital rates were 0.0, 0.0 and � 0.28).
These asymmetries overwhelmed the stabilizing effect of
negative frequency dependence on B. rothrockii. In the
other four communities, the theoretical relationship between
niche differences and indirect effects emerged despite the noise
introduced by such idiosyncrasies.

An implication of the negative relationship between niche
differences and the absolute magnitude of indirect effects is that
single-species models, which treat plant–plant interactions
implicitly, might be appropriate for predicting climate change
impacts on species occupying unique niches. We found that for
most species and climate perturbations the indirect effects were
weaker than the direct effects (Fig. 6). In addition, the full effects
of climate perturbations primarily reflected direct effects:
proportional full effects were strongly correlated with
proportional direct effects (r¼ 0.94), but not with proportional
indirect effects (r¼ 0.13) (Supplementary Fig. 3). In other words,
single-species models would work well for most of our species,
not just those experiencing strong negative frequency
dependence. This result is consistent with a separate analysis
we conducted on the same data sets showing evidence for very
strong niche differences12. Because of the large niche differences
among the species we modelled, species interactions and, in turn,
indirect effects are weak. However, 8 of the 45 climate
perturbation scenarios did show some degree of indirect effects
(Fig. 6), which suggests that the model structure we chose to fit
empirical data does not prevent the detection of indirect effects.

We found no general patterns in the net effects of particular
climate perturbations on our study species (Supplementary
Fig. 2). Precipitation had positive full effects on 8 of 15 cases,
but negative full effects on others. Temperature increased
equilibrium cover for seven species but decreased the cover for
others. Similarly, the variability of precipitation and temperature
positively influenced the equilibrium cover for seven species but
negatively influenced others. These results illustrate the diversity
of species’ responses to climate variation.

Our conclusions are tempered by several caveats. First, our
estimates of the strength of niche differences are based on

observational data. Estimating the strength of density dependence
in observational data is notoriously difficult13. Although we have
worked hard to rule out biases resulting from measurement
error12, the simulations we ran to estimate negative frequency
dependence may extrapolate beyond the range of observed
interaction neighbourhoods used to fit the models. Although
overestimates of niche differences would not affect our test of the
theoretical relationship between niche differences and indirect
effects, they could affect our conclusions about the relative
importance of direct and indirect effects. In addition, our results
are site specific: the same species might experience greater niche
overlap at a site with different climate, soil conditions or
community composition. The relative importance of indirect
effects to direct effects could change across a species’ range.
For instance, H. comata in Idaho and Montana responded in a
similar way to the variability perturbation, but not to the
precipitation and temperature perturbations.

Second, as sample-size requirements limited our analysis to
common, co-occurring species, we can only speculate about the
sensitivity of less common species to indirect effects. Some species
may be rare due to strong competitive suppression from
dominants; for these species, we would expect smaller niche
differences and stronger indirect effects in comparison with our
results for common species. However, species that are both
persistent and rare may be relatively insensitive to interspecific
competition. In fact, theory suggests rare species might actually
experience stronger niche differences than common species14.
In this case, rare species might experience even weaker indirect
effects than those we observed for our common study species.
Testing this conjecture would be especially fascinating in more
species-rich communities. For example, our approach for
estimating direct and indirect effects of climate variation could
be applied to long-term observational data from tropical forests
ecosystems. If niche differences in hyperdiverse communities are
smaller than those we observed here, the indirect effects of
climate change should be larger.

Third, our analysis assumed that climate perturbations would
not alter interaction coefficients. In our simulations, we held the
interaction coefficients constant, so that indirect effects of climate
perturbations were mediated only by changes in species
abundances. Changes in the per capita interaction coefficients
would be especially important if they alter niche differences,
making a species more or less sensitive to indirect effects.
However, evidence for environment-driven changes in the
magnitude or direction of per capita interaction effects remains
mixed15,16. Furthermore, given the strength of niche differences
that we observed, the interaction coefficients would have to
change dramatically, to substantially weaken niche differences
and strengthen indirect effects. More probable causes of altered
niche differences include adaptive responses to directional climate
change or colonization by novel competitors better adapted to the
changing climate17, which our analysis does not consider.

Finally, our study focused only on plant–plant interactions, but
species responses to climate change will also be influenced by
trophic interactions. Studies indicate that trophic interactions may
generate strong indirect effects of climate change18. Although our
study does not explicitly address trophic interactions, it does show
how theory can be used to predict variation in the strength of
species interactions and the resulting indirect effects.

In four of the five communities we studied, the magnitude of
indirect effects of climate perturbations were largest for species
experiencing weak negative frequency dependence and decreased
rapidly for species with increasingly negative frequency
dependence, consistent with theory. This relationship emerged
despite considerable variation in the strength and direction of
indirect effects caused by idiosyncratic relationships between
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climate drivers and species performance. Our results also revealed
stronger indirect effects in communities with more variation
among species in the strength and direction of direct effects.
Overall, indirect effects were weaker than the direct effects of
climate perturbations. Although this result implies that
single-species models might be appropriate for forecasting the
response of co-occurring species to climate change, we did not
consider trophic interactions or the eventual influence of novel
competitors. Our work demonstrates how coexistence theory can
inform application-driven global change research, but a
significant challenge is acquiring the long-term demographic
data needed to estimate niche overlap.

Methods
Roadmap of the analysis. Our approach involved five steps: (1) extracting
demographic rates from yearly mapped quadrats; (2) fitting statistical models for
growth, survival and recruitment; (3) constructing two types of multiple-species
dynamic models, IBMs and integral projection models (IPMs); (4) simulating the
models to quantify negative frequency dependence; and (5) performing simulations
with additional climate perturbations to disentangle direct from indirect effects.
Although our analyses depend on models, the models are empirical—they were fit
directly to observed data.

Data set description. In the early twentieth century, scientists at numerous
experiment stations in semi-arid western US grasslands began mapping
permanently located quadrats and continued annual censuses for decades. Here we
focused on five long-term ‘chart quadrat’ data sets from Sonoran desert in Arizona,
sagebrush steppe in Idaho, southern mixed prairie in Kansas, northern mixed
prairie in Montana and Chihuahuan desert in New Mexico19–22. Hereafter, we use
the state name to refer to each plant community (Table 2). All individual perennial
plants within each 1-m2 quadrat were identified and mapped yearly using a
pantograph23. Mapped polygons represented the basal cover of individual grasses
and canopy cover of individual shrubs.

To select the quadrats and species for the present analyses (Table 2), we visually
inspected all maps for each study site and checked for completeness and accuracy.
Next, as fitting our models requires large samples sizes, we identified species with
relatively high frequency across quadrats within each site (above 20%). We then
performed a non-metric multidimensional scaling ordination to determine which
quadrats shared a similar composition of these common, co-occurring species.
Based on the degree of aggregation of quadrats on the non-metric
multidimensional scaling plot, we selected corresponding quadrats and species for
our analyses. In addition, we confirmed our selections with scientists familiar with
each study site. This process resulted in the selection of 12 target species with three
species occurring in two study sites (Table 2).

Monthly precipitation and temperature records were available for each study
site, except for the Arizona site19–22, for which we extracted precipitation and
temperature data from PRISM (http://www.prism.oregonstate.edu/). Based on the
timing of the growing season at each site and previous analyses6,24, we chose three
precipitation covariates and two temperature covariates a priori (Supplementary
Table 5): the annual or water-year precipitation in the year preceding an observed
year-to-year transition, the precipitation and temperature of the critical seasons in

the first year of a transition and the precipitation and temperature of the critical
seasons in the second year of a transition, respectively. The mean temperature
across the critical seasons was used for all sites except Kansas, where maximum
temperature was analysed (a model based on mean temperature simulated
unrealistically high cover for Schizachyrium scoparium compared with its observed
cover). We also considered interactions between precipitation and temperature in
each year in the statistical models.

Extracting demographic data from mapped quadrats. We applied a computer
programme to track the identity of individual genets based on their spatial
locations in the permanent quadrats25,26. To take into account mapping error and
the potential for herbaceous perennials to ‘move’ short distances via resprouting,
the first step in the tracking algorithm was to add a 5-cm buffer around each
mapped polygon25–27. After adding the buffer area to all polygons of each focal
species in year t� 1, we then calculated the overlap of each of these polygons with
each conspecific polygon occurring in year t. If the year t polygon did not overlap
with any conspecific polygon from the previous year, it was labelled as a new
recruit. Otherwise, the individual was considered a survivor and inherited the
identity of the polygon with which it shared the greatest overlap area. Our
approach allowed genets to fragment and/or coalesce over the study period.

To parameterize our models, we chose to represent each genet in each year as a
circle with an area equal to the sum of all the polygons that compose the genet and
a location corresponding to the polygons’ centroid27. Multiple genets could have
virtually identical centroids when the polygons that compose each genet are
interspersed. Very small plants were originally mapped as points; we represented
those plants as circles with an area of 0.25 cm2. The distance between two genets
was defined as the distance between their centroids.

Fitting statistical models of vital rates. We first describe our statistical models
for survival, growth and recruitment, which extended the models of Chu and
Adler12 to include climate covariates. We then explain how we quantified the
interannual variation in vital rates explained by the climatic covariates.

We modelled survival and growth as functions of genet size, climate covariates
and interactions with neighbouring conspecific and heterospecific genets12. We
incorporated plant–plant interactions by calculating indices of local intraspecific
and interspecific crowding. We assumed that the crowding experienced by a focal
genet depends on the distance, d, to neighbours and the size of those neighbours, u:

wijm;t ¼
X

k

e� ajm d2
ijkm;t ukm;t ð1Þ

where wijm,t is the crowding that genet i of species j in year t experiences from
neighbours of species m, ajm determines the spatial scale over which neighbours of
species m exert influence on a genet of species j (m¼ j means the intraspecific
interaction), k indexes all the focal genet’s neighbours of species m at time t and
dijkm,t is the distance between genet i in species j and genet k in species m. The use
of squared distances implies a Gaussian competition kernel. We first selected ajj

values for each single-species model and translated those values into ajm for
interspecific interactions6,12. a-values for each species for growth and survival were
directly extracted from Chu and Adler12.

We modelled the survival probability, S, of genet i in species j and group g from
time t to tþ 1 as

Logit Sijg;t
� �

¼ gS
j;t þjS

jg þ bS
j;tuij;t þxS

j wS
ij;t þLS

j wS
ij;tuij;t þ gSCt þGSCtuij;t ð2Þ

where g is a time-dependent intercept, j is the coefficient for the effect of group

Table 2 | Information on the five chart quadrat data sets.

Location Santa Rita Exp. Range,
AZ

US Sheep Exp. Station, ID Hays, KS Fort Keogh, MT Jornada Exp. Range,
NM

Vegetation SD SBS SMP NMP CD
Elevation (m) 1,150 1,650 650 720 1,260
Lat/Long 31.83/ � 110.88 44.2/ � 112.1 38.8/ � 99.3 46.32/ � 105.8 32.62/� 106.67
Precip/Temp. 350 mm/16 �C 325 mm/6 �C 585 mm/13 �C 343 mm/8 �C 246 mm/14 �C
Precip.season Summer Fall-Spring Spr-Summer Spr-Summer Summer-Fall
Quadrats 178/22 26/26 51/6 44/19 70/40
Yearly census
period

1915–1935 1923–1957 1932–1972 1932–1945 1915–1950

Species selected B. eriopoda
B. rothrockii

A. tripartita Hesperostipa
comata
P. secunda P. spicata

B. curtipendula B. hirsuta S.
scoparium

B. gracilis H. comata
P. smithii P. secunda

B. eriopoda
S. flexuosus

Species code BOER, BORO ARTR, HECO, POSE, PSSP BOCU, BOHI, SCSC BOGR, HECO, PASM,
POSE

BOER, SPFL

CD, Chihuahuan desert; NMP, northern mixed prairie; SBS, sagebrush steppe; SD, Sonoran desert; SMP, southern mixed prairie.
The row ‘Quadrats’ shows the total number of quadrats mapped (x) in each ecosystem, relative to the number of quadrats selected (y) for the current analysis (x/y). Three species present in two study
sites were marked with bold font in the row ‘Species code’.
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defined as a set of nearby quadrats located within one pasture or grazing exclosure
and b is the coefficient that represents the effect of genet size u on survival, the
vector of x’s contains competition effects describing the impact of crowding w by
each species on the focal species j, the L’s are interactions between the impact of
crowding and genet size, g are the effects of the climate covariates C on the survival
intercept and G are the effects of interactions between the climate variables and
genet size.

We modelled changes in genet size (log transformed) from time t to tþ 1,
conditional on survival, with a similar structure:

uijg;tþ 1 ¼ gG
j;t þjG

jg þ bG
j;tuij;t þxG

j wG
ij;t þLG

j wG
ij;tuij;t þ gGCt þGGCtuij;t þEG

ij;t

ð3Þ
This model assumes constant variance around expected growth. To capture non-
constant error variance in growth, we followed previous studies28–30 in modelling
the variance e about the growth curve (equation (3)) as a separate nonlinear
function of predicted genet size:

VarðEG
ij;tÞ ¼ aebuij;tþ 1 ð4Þ

We used a stepwise variable selection procedure based on Akaike’s Information
Criterion to select the best combination of climatic variables from the set of three
precipitation and two temperature covariates and their interactions31. The stepwise
variable selection procedure was conducted using ‘stepAIC’ function in R package
‘MASS’. We fitted the final models with the selected climate covariates using ‘lmer’
(for growth) and ‘glmer’ (for survival) in R package ‘lme4’, treating year and spatial
location as random effects, that is, random intercepts for year, random slopes for
genet size in each year and random intercepts for group. Detailed results for the
survival and growth models are presented in Supplementary Data 1 and 2.

As we could not determine which recruits were produced by which potential
parent genets, we modelled recruitment at the quadrat level rather than on the
individual genet level. We assumed that the number of individuals, y, of species j
recruiting at time tþ 1 in the location q follows a negative binomial distribution:

yjq;tþ 1 � NegBinðljq;tþ 1; yÞ ð5Þ
where l is the mean intensity and y is the size parameter. In turn, l depends on

the composition of the quadrat in the previous year:

ljq;tþ 1 ¼ N 0jq;t e
ðgR

t þjR
g þxR

t

ffiffiffiffiffiffiffi
N0q;t
p

þ gR Ct Þ ð6Þ

where R refers to recruitment, N0 jq,t is the ‘effective cover’ (cm2; see below) of
species j in quadrat q at time t, g is a time-dependent intercept, j is a coefficient for
the effect of group location, x is a vector of coefficients that determine the strength
of intra- and interspecific density dependence, N0q,t is the vector of ‘effective cover’
of each species in quadrat q and time t, and g are the effects of the climate
covariates, C. Equation (6) is based on a Ricker equation for discrete time
population growth32, but we used the square root of local cover in the exponential
term because it improved model fit. To recognize the possibility that plants outside
the mapped quadrat could contribute recruits to the focal quadrat, we estimated
‘effective cover’ as a mixture of the observed cover N, in the focal quadrat q and the
mean cover across the group g in which the quadrat was located:

N 0jq;t ¼ pjNjq;t þð1� pjÞ�Njg;t ð7Þ

where p is the mixing fraction between 0 and 1.
Following previous work6,12,29, we treated year and group variables as random

factors allowing intercepts to vary among years and spatial locations. We used the
same five climate covariates that we used for survival and growth, but did not fit the
interactions between precipitation and temperature as they hampered convergence.
We estimated parameters in a Bayesian framework, implementing Markov Chain
Monte Carlo simulations through WinBUGS 1.4 (ref. 33). Convergence was
observed graphically for all parameters and diagnosed using the Brooks–Gelman
statistic34. The full results for the recruitment models are presented in
Supplementary Data 3.

In our models, temporal variation in vital rates is introduced by both climate
covariates and random year effects. To provide some indication of the relative
influence on vital rates of our selected climate covariates, we quantified the portion
of interannual variation in vital rates explained by the climate covariates. We fit (i)
a ‘constant’ model with no year effects or climate covariates (that is, no temporal
variation); (ii) a ‘climate’ model only including climate covariates; and (iii) a ‘full’
model with both random year effects and climate covariates. We then calculated
the proportion of temporal variability in vital rates explained by the climate
covariates as:

Xconstant �Xclimateð Þ= Xconstant �Xfullð Þ ð8Þ
where X is the sum of the squared residuals (growth regressions) or the residual
deviance (survival and recruitment regressions).

Constructing multispecies population models. We used the parameterized vital
rate regressions to construct two multispecies dynamic population models: IBMs
and IPMs. We used IBMs to evaluate the models’ ability to reproduce the observed
dynamics and to quantify the influence of climatic covariates on vital rates. We
used IPMs to estimate negative frequency dependence and the direct and indirect
effects of climate perturbations.

Simulations of the IBM began by specifying the sizes, locations and species
identities of modelled plants. At each time step, we applied the recruitment
regression to determine the number of recruits to appear in the following time step
and applied the survival and growth regressions to determine the fate of each
individual plant. We randomly assigned spatial location for each new recruit.
In these IBM simulations, demographic stochasticity arose from all three vital rates.
A negative binomial distribution was used to describe the number of recruits, a
Bernoulli distribution was used to describe the survival of each genet and changes
in genet sizes were described by a normal distribution with size-dependent variance
(equation (4)).

To reproduce observed dynamics, we simulated time series of abundances in each
quadrat by initializing the IBM with the actual conditions (plant sizes and locations)
observed in the first year the quadrat was recorded. We then projected the model
forward in time, drawing from the year-specific parameters in chronological order
and applying location-specific random effects as appropriate for each quadrat. For
these simulations we used absorbing boundaries. Where data gaps in the observed
time series occurred, we re-initialized the IBM with the plant sizes and locations
observed in the year following the gap. For each quadrat, we ran 50 replicate
simulation runs and averaged cover and density across runs for each species.

The demographic stochasticity present in the IBM complicated the analyses of
asymptotic behaviour, such as long-term population growth rates and equilibrium
abundances. Therefore, we built an environmentally stochastic, but
demographically deterministic, version of the IBM using an IPM approach. IPMs
provide an elegant way to model the dynamics of continuously (size) structured
populations in discrete time28,30.

In our IPM, the population of species j is represented by a density function
n(uj, t), which gives the density of genets of size u at time t, with genet size on
natural-log scale, that is, n(uj, t)du is the number of genets whose area (on
arithmetic scale) is between exp(uj) and exp(ujþ du). The density function for size
v at time tþ 1 is given by

nðvj; tþ 1Þ ¼
ZUj

Lj

kjðvj; uj; �wjðujÞÞ nðuj; tÞ ð9Þ

where the kernel kjðvj; uj; �wjÞ describes all possible transitions from size u to v and
�wj is a vector whose elements are the average crowding experienced by an
individual of size uj and species j from each of the other species. We describe below
how �wj is calculated. The integral is evaluated over all possible sizes from a lower
size limit L to an upper size limit U that extends past the range of observed sizes.

The kernel is constructed from the fitted survival (S), growth (G) and
recruitment (R) models:

kjðvj; uj; �wjÞ ¼ Sjðuj; �wjðujÞÞGjðvj; uj; �wjðujÞÞþRjðvj; uj; �wjÞ ð10Þ

S is given by equation (2) and G by equation (3). The recruitment function R,
defined in equations (5) and (6), gives the number of new recruits produced per
quadrat. To incorporate this recruitment function into the IPM, we assumed that
fecundity increases linearly with size, Rjðvj; uj; �wjÞ ¼ euj Rjðvj; �wjÞ29,35; this has the
consequence that recruitment by any species in the IPM is proportional to the
species’ total cover, as desired.

In the vital rate regressions and the IBM, we calculated a neighbourhood
crowding wij unique to each individual i based on the spatial locations and sizes of
neighbouring plants (equation (1)). As the IPM is not spatially explicit, we
developed a spatially implicit approximation to �wj that captures the essential
features of neighbourhood competition. We found that in the observed data and
IBM simulations, heterospecific individuals were randomly distributed, but
conspecific individuals displayed non-random, size-dependent spatial patterns.
Specifically, although small genets were randomly distributed, large genets were
segregated from each other without overlapping in area6,12,29. Our approximation
for neighbourhood crowding distinguishes between intraspecific and interspecific
neighbours, applying a conspecific ‘no overlap’ rule12,29.

Quantifying negative frequency dependence. Negative frequency dependence
describes the relationship between a species’ per capita growth rate and its fre-
quency in the community6,11. In contrast to the pairwise niche difference defined
by Chesson8, negative frequency dependence provides one metric that represents
the niche difference between a focal species and the rest of the community6. To
quantify the degree of negative frequency dependence experienced by each species,
we estimated each species’ equilibrium frequency and invasion growth rate through
two different simulations of the IPM. To estimate equilibrium frequency, we
initialized the IPM with very low abundances and ran the model long enough to
reach a stochastic equilibrium, randomly drawing from the observed climate
covariates and random year effects at each time step, then recorded the equilibrium
cover for all species. To obtain the invasion growth rate of a focal species, we
allowed the other species in the community to reach their equilibrium abundances,
while holding the abundance of the focal species low enough so that it could not
influence others or itself8. We began by simulating a community containing all
species, except the focal species, and ran the simulation until the community
reached a stochastic equilibrium. Next we introduced the focal species at very
low abundance (a cover of 10� 6). The invasion growth rate was calculated as
log(Ctþ 1/Ct), where C is the cover of the focal species. After recording the change
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in cover, we returned the cover of the focal species to 10� 6 and repeated the one-
step invasion experiment. At each time step, we randomly chose climate covariates
from one observed year and, independently, one set of random year effects. The
long-term invasion growth rate of the focal species was estimated as the species’
(geometric) mean growth rate over the period of 1,000 time steps. We repeated
these steps for each target species in each community. We quantified negative
frequency dependence as the slope of the line linking the equilibrium frequency
and the invasion growth rate.

Disentangling direct and indirect effects of perturbations. Detecting indirect
effects of climate perturbation is challenging, because species’ observed responses
represent the net outcome of direct and indirect effects6,36. More formally, this ‘full
effect’ of a climate perturbation is the sum of the ‘direct effect’ and the ‘indirect
effect’. Therefore, if we can estimate the full effect and direct effect, we can readily
obtain the ‘indirect effect’.

To quantify the ‘full effect’ of climate change, we perturbed the IPM by
increasing the means of the observed precipitation or temperature covariates, or by
increasing the variability in precipitation and temperature, allowing all species in a
given community to respond simultaneously. Our choice of perturbations reflected
the expectation that elevated concentrations of greenhouse gases in the atmosphere
will alter both the means and variances of climatic covariates. We modified the
means of climatic covariates with a relatively small perturbation (1%) to avoid
questions about extrapolating our models well beyond the range of historical
variation. As our perturbations of variances had weaker effects, we increased
variance by 10% to facilitate comparisons with our mean perturbations. We defined
species’ baseline as the equilibrium cover from IPM simulations based on observed
climate covariates. Next we calculated the ‘full effect’ of each climate perturbation
by comparing baseline cover with the equilibrium cover of each species from
simulations based on perturbed climate.

To simulate direct effects of the climate perturbations, we focused on one
species at a time. In each simulation, vital rates of the focal species were determined
by the perturbed climate variable(s), but the vital rates of the other species were
determined by the unperturbed observed climate variable(s). We conducted these
two parallel simulations with the same sequence of randomly generated climate
years and random effect years. The difference of the equilibrium cover of the focal
species and the corresponding baseline cover represents the ‘direct effect’ of climate
perturbation on this focal species. The indirect effect for each species was the
difference between the full and direct effects. To compare the relative importance
of direct and indirect effects across species that differ in total cover, we rescaled the
‘raw’ effects by dividing by each species’ equilibrium cover. We referred to these
rescaled effects as ‘proportional’ full, direct and indirect effects. We calculated log
ratios between absolute proportional indirect effects and absolute proportional
direct effects, with positive values indicating that indirect effects were stronger than
direct effects.

To identify the factors generating variation in indirect effects of climate
perturbations, we constructed a linear mixed-effects model in which the absolute
magnitude of raw indirect effects was the response variable and the fixed factors
were negative frequency dependence and the community-level variance of raw
direct effects. For each climate perturbation, all species at one study site had the
same value of variance in raw direct effects. The random effects were study site and
climate perturbation nested within study site. We fitted the model using ‘lme’ in R
package ‘nlme.’

Data availability. Data and computer code used to fit the vital rates models and to
run simulations have been deposited in Dryad: doi:10.5061/dryad.f1860.
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