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ABSTRACT. For large fields, remote sensing might permit plant low moisture status to be detected early, and this may
improve drought detection and monitoring. The objective of this study was to determine whether canopy and soil
surface reflectance data derived from a handheld spectroradiometer can detect moisture status assessed usingmidday
stem water potential (csmd) in pecan (Carya illinoinensis) during cyclic flood irrigations. We conducted the study
simultaneously on two mature pecan orchards, one in a sandy loam (La Mancha) and the other in a clay loam
(Leyendecker) soil. We were particularly interested in detecting moisture status in the L0.90 to L1.5 MPa csmd

range because our previous studies indicated this was the critical range for irrigating pecan. Midday stem water
potential, photosynthesis (A) and canopy and soil surface reflectance measurements were taken over the course of
irrigation dry-down cycles at csmd levels of L0.40 to L0.85 MPa (well watered) and L0.9 to L1.5 MPa (water
deficit). The decline inA averaged 34% in LaMancha and 25% in Leyendecker orchardwhencsmd ranged fromL0.9
toL1.5 MPa. Average canopy surface reflectance of well-watered trees (csmd L0.4 toL0.85 MPa) was significantly
higher than the same trees experiencing water deficits (csmd L0.9 to L1.5 MPa) within the 350- to 2500-nm bands
range. Conversely, soil surface reflectance of well-watered trees was lower than water deficit trees over all bands. At
both orchards, coefficient of determinations betweencsmd and all soil and canopy bands and surface reflectance indices
were less than 0.62. But discriminant analysis models derived from combining soil and canopy reflectance data of well-
watered and water-deficit trees had high classification accuracy (overall and cross-validation classification accuracy
>80%). A discriminant model that included triangular vegetation index (TVI), photochemical reflectance index (PRI),
and normalized soilmoisture index (NSMI) had 85%overall accuracy and 82%cross-validation accuracy at LaMancha
orchard. At Leyendecker, either a discriminantmodel weightedwith two soil bands (690 and 2430 nm) or a discriminant
model that used PRI and soil band 2430 nm had an overall classification and cross-validation accuracy of 99%. In
summary, the results presented here suggest that canopy and soil hyperspectral data derived from a handheld
spectroradiometer hold promise for discerning the csmd of pecan orchards subjected to flood irrigation.

Pecan is a large deciduous tree that is cultivated primarily for
its nuts. With an annual production of 139 million kilograms,
the United States is the world’s largest producer of pecan. The
total area of pecan orchards in the United States is�236,000 ha;
New Mexico pecan cultivation accounts for �7% of that area.
In 2012, New Mexico produced 31.3 million kilograms (in-
shell basis) of pecan, �23% of total U.S. production (U.S.
Department of Agriculture, 2012).

New Mexico has an arid to semiarid climate. Much of the
pecan cultivation occurs in riparian areas, especially along the
Rio Grande River, where water can be diverted for irrigation.
However, this supply of surface water often is limited. This
means that farmers also must pump groundwater to supplement
irrigation, which makes pecan vulnerable to water deficits. Low
soil moisture negatively affects several physiological processes
in pecan trees, such as photosynthesis (A) and gas exchange
(Othman et al., 2014a). Water deficit reduced pecan yield 5%
to 24% when the applied water was reduced from 5% to
52% relative to control (Garrot et al., 1993).

For the pecan farmer, irrigation must be scheduled to
maximize pecan growth and nut production while minimizing
costs associated with water appropriation and application.
Effective irrigation schedules rely on irrigation application
only when an indicator variable reaches a threshold value (Cifre
et al., 2005). This indicator variable must be sufficiently
sensitive to water status so that the threshold at which irrigation
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starts can be determined with some precision (Jones, 2004).
Midday stem water potential has been proposed for detecting
moisture status and monitoring irrigation in commercial or-
chards, including pecan (Jones, 2004; Othman et al., 2014a).
However, using ysmd for irrigation scheduling, especially, on
a large scale is labor intensive (therefore, expensive), slow, and
unsuitable for automation (Jones, 2004).

Remote sensing applications hold potential for predicting
plant water status, growth, and development (Othman et al.,
2014a; Rossi et al., 2010). Hyperspectral sensors measure
reflectance in a narrow wavelength range (usually 10 nm or
less) and contain hundreds of contiguous bands over the
electromagnetic spectrum that can be used to estimate the bio-
chemical properties of vegetation (Huber et al., 2008). There has
been considerable success in relating hyperspectral reflectance
indices to plant physiological properties. For example, the water
band index has been shown to be related to surface-atmosphere
fluxes of CO2 and H2O (Claudio et al., 2006). Hyperspectral
reflectance within the 705- to 750-nm spectral range success-
fully detects water deficit in apple (Malus domestica) trees (Kim
et al., 2011), and holds promise for doing so in pecan. In grape
(Vitis vinifera), the reflectance-based water index effectively
tracked variation in leaf stomatal conductance (R2 = 0.81) at
a predawn leaf water potential of –0.42 MPa (Serrano et al.,
2010). Moisture stress index and vegetation moisture index
which incorporate the 850- and 1928-nm spectral bands showed
significant strong correlations with equivalent water thickness in
21 Eucalyptus sp. subjected to deficit irrigation (Datt, 1999).
Sims and Gamon (2003) concluded that the 1150- to 1260-nm
and 1520- to 1540-nm wavelength regions can penetrate more
deeply into canopies and may be used to accurately detect tree
water status. Although the 1944-nm band yielded the best
correlation with available soil water, this band is not recom-
mended for practical use because its location in a strong water
vapor absorption area makes measurements from space difficult
(Weidong et al., 2003). In olive trees (Olea europaea), PRI
derived from airborne hyperspectral scanner sensor was sensi-
tive to water stress indicators, such as stomatal conductance and
ysmd (Su�arez et al., 2008). However, leaf orientation and soil
background significantly affected PRI derived from airborne
sensor data leading Su�arez et al. (2008) to conclude that canopy
structure must be considered when PRI is used.

In a previous study, we screened several leaf-level physio-
logical measurements to determine which of these leaf-level
parameters best represented changes in plant moisture status
(Othman et al., 2014a). We concluded that ysmd was the best
performing physiological indicator for detecting moisture
status in pecan trees (Othman et al., 2014a). We also found
thatysmd of –0.9 to –1.5 MPa was the critical water status range
to prevent significant reduction in A and gas exchange (>50%)
in pecan (Othman et al., 2014b). It is not known whether
vegetation indices derived from advanced sensing technologies
can precisely predict water status within this range of ysmd

(–0.9 to –1.5). The objective of this study was to investigate
whether hyperspectral remotely sensed data derived from
a handheld spectroradiometer could detect pecan low water
status as estimated using ysmd.

Materials and Methods

SITE DESCRIPTION. The study was conducted in two mature
pecan orchards in the Mesilla Valley near Las Cruces, NM,

from May 2012 to Nov. 2013. One orchard was at the New
Mexico State University Leyendecker Plant Science Research
Center [Leyendecker (lat . 32�12#01.14##N, long.
106�44#30.32##W) and a privately owned farm in the northern
Mesilla Valley [La Mancha (lat. 32�17#06.25##N, long.
106�50#04.26##W)]. Trees from La Mancha orchard were
grown in sandy loam soil [Brazito very fine sandy loam, thick
surface (mixed, thermic Typic Torripsamments)], whereas
Leyendecker trees were grown in clay loam soil [Armijo clay
loam (fine, montmorillonitic, thermic Typic Torrerts)] (U.S.
Department of Agriculture, 1980). Both orchards were com-
posed of rows ‘Western’ pecan (75%) and pollenizer rows of
‘Wichita’ pecan (25%). All measurements were made on
‘Western’.

Trees from La Mancha orchard were �30 years old, 9 to 11
m high, spaced at 6 to 7 m within rows and 8 to 10 m between
rows. The total area of the La Mancha orchard was 7 ha. Urea
[46% N (250 kg�ha–1)] and zinc sulfate (foliar spray, 8 kg�ha–1)
were applied once in May and July of both years. The field was
flood irrigated once every 16 to 24 d fromMay to October every
year. Leyendecker orchard trees were 20 to 30 years old, 7 to 9
m high, spaced at 6 to 7 m within rows and 8 m between rows.
The total area of Leyendecker orchard was 4 ha. Urea (225
kg�ha–1) and zinc sulfate (7 kg�ha–1) were applied once in May
of both years. The field was flood irrigated once every 3 to 10
weeks from May to October.

METEOROLOGICAL DATA. Meteorological instruments were
fixed on a 9.0-m tower above the orchard floor at La Mancha
and on a 7.5-m tower at Leyendecker. Instruments were

Table 1. Handheld spectroradiometer, photosynthesis, and midday
stem water potential measurements dates for two southern New
Mexico pecan orchards subjected to cyclic flood irrigation.
Measurements were determined at the middle and near the end of
each flood irrigation cycle. Field condition was considered well
watered when midday stem water potential ranged from –0.4 to
–0.85 MPa and considered water deficit when midday stem water
potential was between –0.9 and –1.5 MPa.

Site Yr Irrigation Measurement date Field condition

La Mancha 2012 4 June 10 June Well watered
25 July 31 July Water deficit

12 Aug. Water deficit
20 Aug. 25 Aug. Well watered

31 Aug. Water deficit
10 Sept. 16 Sept. Well watered

22 Sept Well watered
2013 20 May 5 June Water deficit

4 June 12 June Well watered
16 Aug. 21 Aug. Well watered

25 Aug. Water deficit
Leyendecker 2012 20 May 11 June Water deficit

16 June 21 June Well watered
3 Aug. 4 Aug. Well watered

20 Aug. Well watered
30 Aug. Water deficit

31 Aug. 7 Sept. Well watered
2013 24 May 29 May Well watered

11 June Water deficit
16 Aug. 25 Aug. Well watered

8 Sept. Water deficit
29 Sept. Water deficit
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installed 1 m above the trees using metal extension bars
attached to the towers. Air temperature and relative humidity
(HMP45C; Campbell Scientific, Logan, UT) recorded at 1 min
interval using a datalogger (CR206X, Campbell Scientific).
Vapor pressure deficit was calculated from air temperature and
relative humidity data using the equations of Murray (1967).
Precipitation data were obtained from Fabian Garcia Science
Center weather station,�6 km southeast of La Mancha orchard
and Leyendecker Plant Science Research weather station, 90 m
north of the Leyendecker orchard.

MEASUREMENT TIMING AND IRRIGATION TREATMENT. At both
orchards, 10 trees were selected randomly for plant physiolog-
ical and hyperspectral measurements. Those measurements
were made during and after prescribed flood irrigations of the
orchards. Midday stem water potential was taken on multiple
days during an irrigation cycle. Photosynthesis and canopy
surface reflectance data were taken several times (Table 1)
during an irrigation dry-down cycle at two levels of ysmd; well
watered (–0.40 to –0.85 MPa) and water deficit (–0.9 to –1.5
MPa). Midday stem water potential and A measurements were
taken between 1100 and 1300 HR from fully expanded leaves
and synchronized with canopy measurements of the handheld
spectroradiometer.

MIDDAY STEM WATER POTENTIAL. Midday stem water poten-
tial was determined on two fully equilibrated leaves on the
lower shaded part of each tree and close to the trunk (�2m from
the soil surface) with a pressure chamber (PMS Instrument Co.,
Corvallis, OR). Leaf position was chosen based on results from
other studies with pecan that determined that leaves on the
lower shaded portion of the canopy were the most representa-
tive of whole plant status (Heerema et al., 2014).

To equilibrate the two leaves with the xylem water potential
and prevent overheating by the solar radiation, leaves were
enclosed in aluminum foil for 2 h. We then determined ysmd of
the two leaves immediately and used the average ysmd of the
two leaves in the analysis.

PHOTOSYNTHESIS. Pecan trees have odd-pinnately compound
leaves (7 to 17 leaflets). The number of leaflets varies among
cultivars. Photosynthesis was determined on one leaflet of the
middle pair of leaflets from each of two leaves (�5 m from the
soil surface and fully exposed to sunlight) using a portable

photosynthesis system (LI-6400XT; LICOR, Lincoln, NE).
Light intensity was set to track ambient photosynthetically
active radiation, flow rate to 500 mmol�s–1, and reference CO2 to
390 mmol�mol–1. Leaf temperature ranged from 30 to 33 �C. The
average A of the two leaves was then used. Photosynthesis of
well-watered trees (ysmd –0.40 to –0.85 MPa) was compared
with the same trees of water deficit (ysmd –0.9 to –1.5 MPa).

HYPERSPECTRAL MEASUREMENTS. Canopy and soil spectral
reflectance within the 350–2500 nm were measured on clear
sky days between 1100 and 1300 HR with the handheld
spectroradiometer (Fieldspec Pro 2; Analytical Spectral De-
vices, Boulder, CO). This instrument has a spectral resolution
of 3 nm for the 350- to 1000-nm wavelength regions and 10 nm
for the 1000- to 2500-nm wavelength regions, a 25� field of
view, and 1-m fiber optic cable that feeds directly into the
spectrometer. The spectroradiometer sensor was oriented in
a nadir position (the measured point on the ground vertically
beneath the sensor) and 10 measurements each was taken at

Table 2. Hyperspectral surface reflectance indices that derived from handheld spectroradiometer. Hyperspectral reflectance data were from two
pecan orchards, La Mancha and Leyendecker, located in the Mesilla Valley, NM.

Vegetation index Formulaz References

Canopy vegetation indices
Water band index r900/r970 Claudio et al. (2006)
Normalized difference water index (r860 – r1240)/(r860 + r1240) Gao (1996)
Simple ratio water index r858/r1240 Zarco-Tejada and Ustin (2001)
Moisture stress index r1600/r820 Hunt and Rock (1989)
Normalized multiband drought index [r860 – (r1640 – r2130)]/[r860 + (r1640 – r2130)] Wang and Qu (2007)
Photochemical reflectance index (r531 – r570)/(r531 + r570) Gamon et al. (1997)
Normalized difference vegetation index (r800 – r680)/(r800 + r680) Kimura et al. (2004)
Triangular vegetation index 0.5 · [120 · (r750 – r550) – 200 · (r670 – r550)] Broge and Leblanc (2001)
Leaf water index r1300/r1450 Seelig et al. (2009)

Soil reflectance indices
Normalized soil moisture index (r1800 – r2119)/(r1800 + r2119) Haubrock et al. (2008)
Soil moisture index (r1450 – r600)/(r1450 + r600) Haubrock et al. (2008)
Soil moisture reflectance index r1450/r1300 Whalley and Leeds-Harrison (1991)
zr900 = surface reflectance at 900 nm wavelengths; r970 = surface reflectance at 970 nm wavelengths, etc.

Fig. 1. Midday stem water potential boxplots of La Mancha and Leyendecker
pecan orchards (Mesilla Valley, NM) measured in 2012 and 2013. Rectangles
represent the 25%, 50% (median), and 75% percentile of the data.
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a distance of 1 m above the canopy, and 1 m above the soil
surface (fully exposed to sun and close to tree with no or
insignificant vegetation cover <10% above it). Three-wheeled,
motorized hydraulic manlifts were used to raise the operator
and the handheld spectroradiometer above the tree canopy. The
average of 10 spectral reflectance measurements per tree was
then used to derive specific hyperspectral reflectance indices
(Table 2). These indices were selected because they signifi-
cantly predict water deficit in other crops.

STATISTICAL ANALYSIS. Statistical analyses were performed
using SAS (version 9.3; SAS Institute, Cary, NC). Boxplot
analysis used to determine whether ysmd (the moisture status
ground reference) clearly separated well-watered individual trees

from the same trees showing water
deficits in the middle or the end of
irrigation cycle. Boxplots display data
visually while simultaneously provid-
ing information about means, me-
dians, and the distance between
extreme values and the central portion
(Royeen, 1986). Midday stem water
potential of well-watered and water-
deficit trees were considered clearly
separated when there was no overlap
in minimum and maximum nonou-
tlier values between treatments. All
ysmd measurement dates listed in
Table 1 were used in the analysis.

Simple linear regression was con-
ducted to determine which remotely
sensed data exhibited the strongest
relationship with ysmd. Regression
results were considered sensitive to
changes in plant water status when the
coefficient of determination was
greater than 0.80, moderately sensi-
tive when coefficient of determination
was between 0.60 and 0.80, and weak
when coefficient of determinationwas
less than 0.6 (Eitel et al., 2006). Anal-
ysis of variance procedure (PROC
MIXED) in SAS with field condition
(well watered and water deficit) as
fixed effect was used to test the
significant differences in A and in
wavelength sensitivity of reflectance
data between trees water status.

Discriminant analysis using
PROC DISCRIM in SAS was per-
formed to determine how precisely
hyperspectral surface reflectance in-
dices could separate individual trees
that were well watered from those
showing water deficits. The selection
of canopy and soil bands and the
surface reflectance indices that were
used in the discriminant analyses was
achieved using forward stepwise lin-
ear regression (Weidong et al., 2002).
Variance inflation factors of included
variables were assessed to minimize
multicollinearity, and 0.15 was the

significance level for entry into the model. Then, the procedure of
Wang et al. (2012) was used to derive discriminant function
models for remotely sensed data. Several data sets were evaluated
using the discriminant analysis. In the first set, we only tested
canopy reflectance candidates that were selected from stepwise
regression. Soil reflectance data parameters were used in the
second set. In the third set, soil and canopy reflectance variables
were used together in the discriminant models.

Results

MIDDAY STEM WATER POTENTIAL AND PHOTOSYNTHESIS. We
used box-and-whisker plots to examine the overlap of ysmd

Fig. 2. (A) Daily air temperature, (B) precipitation, (C) relative humidity, and (D) vapor pressure deficit of two
Mesilla Valley, NM, pecan orchards (La Mancha and Leyendecker) during the experimental period (May 2012
to Nov. 2013).

Fig. 3. Photosynthesis and percent decline (vertical bars) in photosynthesis (compared with the same tree at well-
watered level) of two Mesilla Valley, NM, pecan orchards, (A) La Mancha and (B) Leyendecker during the
experimental period (May 2012 toNov. 2013). Groupings for the decline (%) bars are –0.3 to –0.59,–0.6 to –0.89, –0.9
to –1.19, and –1.2 to –1.5 MPa. Mixed model analysis was used to test the significant differences in A between well-
watered (ysmd –0.4 to –0.85MPa) andwater-deficit (ysmd –0.9 to –1.5MPa) trees. At both orchards,A and the decline
(%) of well-watered trees and water deficit was significantly different (P < 0.0001).
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values for different levels of water deficit
(Fig. 1). Boxplots of ysmd revealed a clear
separation between well-watered trees and
trees experiencing water deficit near the end
of a flood irrigation dry-down cycle. At La
Mancha orchard (sandy loam soil), ysmd in
well-watered trees remained relatively con-
stant at –0.4 to –0.85 MPa and ranged from
–0.9 to –1.5 MPa in water-deficit trees. The
Leyendecker ysmd (clay loam soil) of well-
watered trees was between –0.4 and –0.7
MPa whereas water-deficit trees ranged from
–0.9 to –1.4 MPa. Although weather condi-
tions were warm and dry at both sites (Fig. 2),
high temperature (Fig. 2A) and precipitation
(Fig. 2B) at certain times during the growing
season caused the irrigation cycle length to
vary (Table 1). Photosynthesis was higher in
recently irrigated trees (ysmd –0.4 to –0.85
MPa) than those ysmd between –0.9 and –1.5
MPa at the later part of the irrigation dry-
down cycle. When ysmd of pecan trees
ranged from –0.9 to –1.5 MPa at La Mancha
orchard, the average decline in A (compared
with the same trees in well-watered condi-
tions) was 34% (Fig. 3A). A significant
decline in A (25%) also was noticed in
Leyendecker orchard when ysmd ranged
from –0.9 to –1.5 MPa (Fig. 3B).

HYPERSPECTRAL SURFACE REFLECTANCE

DATA. Mean canopy surface reflectance in
visible (500 to 700 nm) near infrared [NIR
(700 to 1200 nm)] and shortwave IR [SWIR
(1300 to 2500 nm)] of well-watered trees
(ysmd –0.4 to –0.85 MPa) was significantly
(P < 0.05) higher than the same trees expe-
riencing water deficits (ysmd –0.9 to –1.5
MPa) at the end of an irrigation dry-down
cycle at La Mancha (Fig. 4A). Conversely,
soil surface reflectance of well-watered trees
at La Mancha was lower than water-deficit
soil (Fig. 4B). Soil reflectance bands of well-
watered trees within the 350- to 470-, 520- to
560-, 710- to 990-, 1420- to 1480-, 1950- to
2020-, and 2390- to 2500-nm ranges differ
significantly from water deficit at La Mancha
orchard. Except for the 480- to 520-, 570- to
700-, and 1950- to 2070-nm bands, well-watered trees canopy
reflectance bands at Leyendecker (sandy loam soil) were
significantly higher than the same trees exhibiting water deficit
at the end of irrigation dry-down cycles (Fig. 4C). However,
soil reflectance of well-watered trees and water deficit were
significantly different over the visible, NIR and SWIR bands
(i.e., 350 to 2500 nm) (Fig. 4D).

Canopy reflectance bands provided better regressions than
soil bands (P < 0.0001) within the 730 to 1340-nm range
(R2 �0.4) at La Mancha (Fig. 5A). Conversely, within the 450-
to 700-nm and 1300- to 2500-nm ranges, soil bands showed
higher relationship (P < 0.0001) with ysmd at Leyendecker
orchard (Fig. 5B). Coefficient of determination between ysmd

and soil bands at Leyendecker ranged from 0.4 to 0.57 and 0.52
to 0.77 for the 450- to 700-nm and 1300- to 2500-nm ranges,

respectively. However, the coefficient of determination (can-
opy and soil) never exceeded 0.8 regardless of the reflectance
wavelength and the orchard.

Overall, remotely sensed derived reflectance indices (canopy
and soil) showed no or low relationship with ysmd (Table 3).
While TVI, PRI, NSMI, and soil moisture reflectance index
(SMRI) all showed a significant relationship with ysmd at both
orchards, the coefficients of determination for these indices never
exceeded 0.62.

Stepwise regression of canopy reflectance data at LaMancha
orchard showed that the best wavelengths and vegetation
indices set were 760, 860, 950, 990, and 1100 nm, TVI and
PRI. Soil reflectance stepwise regression included five bands
(480, 680, 690, 1950, and 2430 nm) and two indices (NSMI and
SMRI). The Leyendecker canopy reflectance model included

Fig. 4. Mean spectral reflectance of canopy, and soil measured using handheld spectroradiometer of La
Mancha (A and B) and Leyendecker (C and D) orchards during the experimental period, 2012 and
2013. Pecan orchards are located in the Mesilla Valley, NM. Asterisks at the bottom of each graph
indicate a significant difference (P < 0.05) between well-watered (ysmd –0.4 to –0.85 MPa) and
water-deficit (ysmd –0.9 to –1.5 MPa) trees. At both orchards, well-watered curve of canopy and soil
band is an average of 60 measurements while water deficit is an average of 50 measurements.
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four wavelengths (350, 520, 690, and 770 nm) and two indices
(TVI and PRI). Meanwhile, stepwise regression of soil re-
flectance data included seven bands (690, 870, 1150, 1340,
1440, 1820, and 2010 nm), and two soil reflectance indices
(NSMI and SMRI).

Discriminant analysis of well-watered and water-deficit
trees, which weighted with three reflectance indices (TVI,
NSMI, and PRI) showed high overall and cross-validation
accuracy at LaMancha orchard (Table 4). Overall accuracy was
85% and cross-validation was 82%. For Leyendecker orchard,
the highest discrimination with an overall classification and
cross-validation accuracy of 99% was achieved using the
vegetation index PRI and soil band of 2430 nm (Table 4).
The same accuracy result was also achieved using the discrim-
inant model weighted with two soil bands, 690 and 2430 nm. At
La Mancha orchard, the classification accuracy of well-watered
trees was slightly higher than water deficit (Table 5). For

example, accuracy rate was 88% for well
watered and 82% for water deficit for TVI-
NSMI-PRI discriminant model. Conversely,
classification accuracy for water-deficit trees
was slightly higher than well-watered trees at
Leyendecker orchard (Table 5).

Discussion

PHOTOSYNTHESIS. Water deficits that de-
creased ysmd to less than –0.9 MPa decreased
A in pecan in both orchards. Small decreases
in A could have a large impact on plant
productivity even if statistical differences
are not apparent between treatments. For
example, although euonymus (Euonymus
japonica) plants had a nonstatistically signif-
icant decrease in A when irrigated with
wastewater, leaf chlorophyll content and leaf
dry weight were statistically higher than
plants watered with tap water (G�omez-Bellot
et al., 2014). The decline in A, which aver-
aged 34% in La Mancha and 25% in Leyen-
decker orchard (Fig. 3A and B, respectively),
when trees subjected to moderate water
deficit (ysmd –0.9 to –1.5 MPa) exposed the
limitation of this study. Although we are able
to sense differences between well-watered
trees and those exposed to moderate water
deficits, remote sensing techniques that can
detect very small changes in moisture levels
would benefit pecan orchard moisture man-
agement. On the other hand, a 50% reduction
in A only occurred when ysmd of pecan trees
was less than –1.5 MPa (Othman et al.,
2014b) points to a certain amount of re-
siliency of pecan to water deficits. In con-
trast, A of peach (Prunus persica) trees
decreased by 90% (10 to 0.8 mmol�m–2�s–1
CO2) when ysmd dropped below –1.8 MPa
(Goldhamer et al., 1999).

HYPERSPECTRAL CANOPY AND SOIL SURFACE

REFLECTANCE. Within the range 350 to 2500
nm, canopy surface reflectance from well-
watered trees was higher than the same trees

experiencing water deficits at the end of an irrigation dry-down
cycle at both orchards. Low soil moisture may reduce chloro-
phyll content, decrease leaf area, and change leaf orientation
(Knipling, 1970). As a result, light penetration is higher and
reflection is lower in the canopy of a tree that is exposed to
water deficits than in one that is well watered. Canopy re-
flectance in the NIR was higher than those at SWIR. This is
because leaf water absorbs radiation in the SWIR (Eitel et al.,
2006; Gao, 1996; Pu et al., 2003). Conversely, soil surface
reflectance of well-watered trees was lower than those experi-
encing soil water deficits at both orchards (Fig. 4B and D).
Under typical agricultural conditions, wet soil reflects less at all
bands in the 350- to 2400-nm wavelengths than dry soil
(Weidong et al., 2002). This is because the internal total
reflection on the water films that coat wet soil particles cause
a portion of the radiation to be reflected back to the soil itself
and then absorbed (Ångstr€om, 1925). In addition, wetting the

Fig. 5. Coefficient of determination (R2) between midday stem water potential and canopy and soil
surface reflectance at different moisture status levels within the 350 to 2500 nm bands. Data were
from two pecan orchards, (A) La Mancha and (B) Leyendecker, located in the Mesilla Valley, NM.
At both orchards, n = 110 (well watered = 60, water deficit = 50).
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soil changes the medium surrounding the soil particle, increases
forward light scattering by soil particles, and increases the
probability of light being absorbed before reemerging from soil
medium (Twomey et al., 1986). Therefore, soil becomes darker
and reflects less energy (Twomey et al., 1986).

In our study, soil spectral data had a red edge which should
not be present in typical bare soil spectral reflectance (Fig. 4B
and D). This is could be attributed to scattered radiation from
adjacent pecan canopy and the aboveground vegetation
(<10%), which is mixed with the soil.

Remotely sensed vegetation indices derived from soil and
canopy surface reflectance data showed no or weak relationship
with ysmd except for SMRI at Leyendecker orchard (R2 = 0.61)
(Table 3). Of all the canopy reflectance indices, only PRI and
TVI had a significant relationship with ysmd. However, co-
efficient of determination for both indices was less than 0.35 at
both orchards. Data from several remote sensing studies
showed no or weak correlation with vegetation moisture
content (Eitel et al., 2006; Knipling, 1970). One possible
explanation is the relatively low differences in reflectance at
different levels of water deficit, especially, at moderate levels
(Riggs and Running, 1991) combined with large variations in
remotely sensed surface reflectance data among leaves at the
same level of water deficit (Cohen, 1991). Furthermore, water

content and canopy structure affect canopy reflectance data
(Zarco-Tejada et al., 2003). Canopy structure and soil back-
ground affected the PRI derived from hyperspectral canopy
reflectance data (Su�arez et al., 2008). Furthermore, canopy
orientation can negatively impact the PRI sensitivity to water
deficit (Su�arez et al., 2008).

HYPERSPECTRAL CANOPY AND SOIL SURFACE REFLECTANCE

DISCRIMINANT MODELS. Although the relationship between
vegetation indices and ysmd was not high, a discriminant model
derived from combining PRI and TVI classified 83% trees at La
Mancha and 76% correctly into their treatment class (Table 4).
This result highlights the importance of selecting the proper
statistical approach for screening remotely sensed data. The
sensitivity of vegetation indices to water deficit depends on
their ability to define threshold values between well-watered
trees and the same trees exhibiting water deficit symptoms at
the end of a dry-down irrigation cycle. Normally, irrigation is
applied at moderate water deficit levels and severe water
deficits should occur rarely (Dzikiti et al., 2010). Therefore,
the capability of vegetation indices to detect moderate water
deficit is critical for agricultural crops, including pecan. We
used discriminant analysis to identify remotely sensed variables
that can precisely classify water deficit levels.

Discriminant models derived from canopy and soil reflec-
tance clearly separated well-
watered and moderate treatments
at clay loam soil orchard (Leyen-
decker accuracy = 99%) and at
sandy loam soil orchard (La Man-
cha accuracy = 85%). Higher accu-
racy at Leyendecker especially that
of the soil reflectance data could be
attributed to water-holding capac-
ity. Soil water-holding capacity at
a depth of 0 to 60 cm is 0.2 cm3�cm–3

at La Mancha and 0.32 cm3�cm–3 at
Leyendecker (Deb et al., 2013). So,
similarly to Streck et al. (2003), we
reasoned that soil water decreased
soil surface reflectance in all wave-
lengths within the 350- to 2400-nm
spectral range. Because clay soil
holds more water than sandy soil,
and water absorbs a large portion of
the incoming radiation, the differ-
ence in soil surface reflectance be-
tween well watered and water

Table 3. Coefficients of determination (R2) of midday stemwater potential to remotely sensed derived
reflectance indices from handheld spectroradiometer at canopy and soil level. Data were from two
pecan orchards, La Mancha (sandy loam soil) and Leyendecker (clay loam soil), located in the
Mesilla Valley, NM. At both orchards, n = 110.

Index

Orchard

La Mancha Leyendecker

Canopy R2 P R2 P
Water index 0.03 0.09 0.07 0.008
Normalized difference water index 0.001 0.84 0.02 0.20
Simple ratio water index 0.001 0.97 0.03 0.13
Moisture stress index 0.002 0.70 0.01 0.27
Normalized multiband drought index 0.004 0.57 0.004 0.57
Photochemical reflectance index 0.14 <0.0001 0.21 <0.0001
Normalized difference vegetation index 0.006 0.45 0.06 0.02
Triangular vegetation index 0.27 <0.0001 0.32 <0.0001
Leaf water index 0.004 0.58 0.003 0.56

Soil
Normalized soil moisture index 0.15 <0.0001 0.38 <0.0001
Soil moisture index 0.003 0.59 0.27 <0.0001
Soil moisture reflectance index 0.13 <0.0001 0.61 <0.0001

Table 4. Overall classification and cross-validation results derived fromDISCRIM procedure in SAS (version 9.3; SAS Institute, Cary, NC) for 1)
canopy and soil, 2) canopy, and 3) soil surface reflectance data. Data were from two pecan orchards, La Mancha (sandy loam soil) and
Leyendecker (clay loam soil), located in the Mesilla Valley, NM. At both orchards, n = 110 (well watered = 60, water deficit = 50).

Orchard Surface reflectance source Reflectance indices and band (nm)z Overall classification (%) Cross-validation (%)

La Mancha Canopy and soil TVI, NSMI, PRI 85 82
Canopy TVI, PRI 83 83
Soil rsoil (680), rsoil (690), rsoil (1950), SMRI 68 66

Leyendecker Canopy and soil PRI, rsoil (2430) 99 99
Canopy TVI, PRI 76 76
Soil rsoil (690), rsoil (2430) 99 99

zTVI = triangular vegetation index; NSMI = normalized soil moisture index; PRI = photochemical reflectance index; SMRI = soil moisture
reflectance index: rsoil (680), rsoil (690), rsoil (1950), and rsoil (2430) = soil surface reflectance at 680-, 690-, 1950-, 2430-nm wavelengths,
respectively.
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deficit of clay soil is higher than sandy soil. This may have
made the discriminant models that included soil reflectance
more effective at Leyendecker because of the altered contri-
bution of soil reflectance to the models. In our previous study,
we recommended that ysmd should never exceed –1.5 MPa to
prevent significant reduction in A, transpiration, and stomatal
conductance [>50% (Othman et al., 2014b)]. Therefore, canopy
and soil reflectance data hold promise for detecting plant
physiological responses that are related to plant water status.

Modeling the relationship between soil reflectance and the
soil moisture in a field setting is difficult, as soil color, texture,
and organic matter affect remotely sensed data (Muller and
D�ecamps, 2000). Furthermore, the relationship between soil
moisture and reflectance is nonlinear (Weidong et al., 2003) and
could be reverse after a critical point (i.e., field capacity)
(Weidong et al., 2002). We included the soil reflectance data for
two reasons. First, in both orchards, soil surface reflectance
within the 350- to 2500-nm spectral range of well-watered trees
(ysmd –0.40 to –0.85MPa) was lower than that of the same trees
exhibiting water deficit (ysmd –0.9 to –1.5MPa). Second, pecan
canopy fractional cover never reached full cover. In fact,
canopy fractional cover of 15 pecan orchards (including our
orchards) located at Mesilla Valley ranged from 34% to 74%
during the growing season (Pi~n�on-Villarreal, 2008). In addi-
tion, soil texture, color, and organic matter change slowly with

time at a given location, so, surface reflectance will primarily
depend on soil surface roughness and moisture (Weidong et al.,
2002).

Conclusion

Overall, our results showed that discriminant models de-
rived from a handheld spectroradiometer differentiated be-
tween well-watered (ysmd –0.4 to –0.85 MPa) and moderate
water-deficit (ysmd –0.9 to –1.5 MPa) trees. Canopy PRI–TVI
discriminant model classified water status with a moderate
error count (accuracy = 83% at La Mancha and 76% at
Leyendecker). However, including soil reflectance data im-
proved the classification accuracy by 2% at La Mancha (sandy
loam soil) and 23% at Leyendecker orchard (clay loam soil).
In addition, remote sensing data from a handheld spectror-
adiometer detected precisely the moderate reduction in A
(25% to 35%).

Pecan trees can grow to 30 m. Driving a manlift through
orchards to make repeated measurements during cyclic irriga-
tion using a handheld spectroradiometer is quite challenging.
However, this procedure is a prerequisite for developing
surface reflectance sensors. Our results support the idea of
developing remote sensing sensors with specific bands (such as
those for chlorophyll content, normalized difference vegetation

Table 5. Classification matrix derived from DISCRIM procedure (count and cross-validation) in SAS (version 9.3; SAS Institute, Cary, NC) for
canopy and soil, canopy, and soil surface reflectance data. Data were from two pecan orchards, La Mancha and Leyendecker, located in the
Mesilla Valley, NM. At both orchards, n = 110 (well watered = 60, water deficit = 50).

Orchard Reflectance source Reflectance indices and bands (nm)z Classification method

Field conditiony

Actual

Predicted

WW (%) WD (%)

La Mancha Canopy and soil TVI, NSMI, PRI Count WW 88 12
WD 18 82

Cross-validation WW 87 13
WD 22 78

Canopy TVI, PRI Count WW 87 13
WD 20 80

Cross-validation WW 87 13
WD 20 80

Soil rsoil (680), rsoil (690), rsoil (1950), SMRI Count WW 75 25
WD 38 62

Cross-validation WW 72 28
WD 38 62

Leyendecker Canopy and soil PRI, rsoil (2430) Count WW 98 2
WD 0.0 100

Cross-validation WW 98 2
WD 0.0 100

Canopy TVI, PRI Count WW 75 25
WD 22 78

Cross-validation WW 75 25
WD 22 78

Soil rsoil (690), rsoil (2430) Count WW 98 2
WD 0.0 100

Cross-validation WW 98 2
WD 0.0 100

zTVI = triangular vegetation index; NSMI = normalized soil moisture index; PRI = photochemical reflectance index; SMRI = soil moisture
reflectance index; rsoil (680), rsoil (690), rsoil (1950), and rsoil (2430) = soil surface reflectance at 680-, 690-, 1950-, and 2430-nm wavelengths,
respectively.
yWW = well watered; WD = water deficit.
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index) that capture the moisture status of pecan orchards
precisely and early. These sensors can be placed permanently
on the top of canopy and directly above soil surface and the
remotely sensed data on individual trees water status can be
upscaled to large areas.

Literature Cited
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