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Discernment of Lint Trash in

Raw Cotton Using Multivariate
Analysis of Excitation-Emission

Luminescence Spectra

Introduction

Machine harvested seed cotton (cottonseed with fiber still
attached) contains significantamounts of foreign matter consisting of
seeds, soil particles, and other parts of the cotton plant. All cotton in
the USis mechanically harvested by either spindle-pickers or strippers.
Spindle harvested seed cotton typically requires approximately 1400
pounds of seed cotton to make a 480 pound bale of ginned cotton
(217.7 kg) that can yield 75-200 pounds (34.0-90.7 kg) of trash [1)
with the remainder being cottonseed. Cotton strippers harvest more
trash with the seed cotton so stripped seed cotton can require up to
approximately 2200 pounds (997.9 kg) of seed cotton for a 480 pound
(217.7 kg) bale of ginned cotton. The increased weight for stripped
cotton comes from up to 600 additional pounds (272.2 kg) of trash
or foreign material [1]. Specifically, this picked or stripped foreign
material includes soil particles, leaf fragments, immature seeds,
stems, or burr fragments [2,3]. Failure to fully remove these materials
can significantly degrade resulting fiber quality for textile processing
Proper identification of the source of remaining foreign material
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in ginned cotton bales could help to change the ginning process to
improve trash removal during ginning and fiber cleaning. Further
reduction of trash levels in ginned cotton would improve the value of
ginned cotton for textile feedstock.

Harvesting and ginning each contribute to non-fiber particle size
reduction. This limits the utility of visual inspection, image analysis,
or gravimetric methods for accurate identification of these materials
[4]. Consequently, there exists a need for alternate methods to
identify both trash type and source. Such evolving methods include
those based on either the size and/or shape of trash particles or utilize
spectroscopic tools [5].

Predominate techniques based on size and shape used currently
includes: 1) High VolumeInstrumentation (HVI) (Uster Technologies,
Inc., Knoxville, TN); 2) The Advanced Fiber Information System
(AFIS) (Uster Technologies, Inc., Knoxville, TN); 3) The Shirley
Analyzer; and 4) The Cotton Trash Identification System (CTIS) [6].
Briefly, HVI uses particle size to generate trash component frequency
distributions employing a scanning video camera, Comparatively,
AFIS segregates dust and trash based on equivalent diameter criteria
(i.e. 50-500 pm and > 500 pm, respectively) using an optical sensor.
Alternatively, the Shirley Analyzer employs destructive gravimetric
measurements to determine total trash in a given sample [7].
Unfortunately, many of these methods do not facilitate
categorization of detected trash sources (l.e. leaves, stems, etc.) [8].

CTIS uses high resolution image analysis to distinguish trash
and dust particles as small as 0.005 mm? (i.e. equivalent diameter of
40 pm) [9]. It has shown promise in identifying trash sources {10},
but is limited by its application to small portions of the
heterogeneous raw seed cotton material. Consequently, there
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remains a need for trash source identification of larger seed cotton
samples (e.g. bracts and leaves).

Spectroscopic methods for trash identification include the
application of Near Infrared Reflectance (NIR), mid (or normal) IR
absorption (MIR) [11] and molecular fluorescence [4]. NIR involves
the comparison of measures reflectance in the wavelength range of
0.700 to 2.0 pm to spectra corresponding to harmonics and
overtones of molecular vibration frequencles. Spectral overlap of
features from varfous chemical functionalities requires the use of
chemometric statistical tools (e.g., PCA, PLS). The advantage of this
approach is its ability to sample areas of several centimeters very
quickly e.g., < 5s) [12}. Unfortunately, it is a single variable response
(i.e. reflectance as a function of the wavelength of incident light) and
is susceptible to unknown sample composition variance [11]. MIR is
based on absorption of light corresponding to fundamental modes
of molecular vibrations within the sample. While more easily
interpreted then NIR spectra, it provides very limited discrimination
in chemically complex samples (e.g., cotton fibers) {13,14]. (Non-lint
components of cotton differ significantly in spectral characteristics
and no one NIR measurement could indicate collective content much
less differentiate between non-lint components. Also proper uniform
lighting of samples was difficul to obtain (Taylor). Using NIR band
ratios also did not correlate well with detecting non-lint content of
cotton (Thomasson and Shearer). Gamble and coworkers [4] have
also reported the use of fluorescence from organic solvent extracts
(i.e. dimethyl sulfoxide, DMSO). Also Himmelsbach et al, [15]
reported potential contributions of anthocyanin or proantocyanidin
compounds to measured fluorescence from cotton seed coats. Further
application of molecular fluorescence is the subject of the present
work.

Recent work in our laboratory has demonstrated the ability
to distinguish among samples of different plant species using
fluorescence spectra of aqueous extracts [16-19]. Multivariate
analysis of excitation-emission spectra from phosphate buffered
- saline (PBS) plant extracts enabled segregation of both six different
plant species [17] and different animal diets [19). This experience
led us to investigate the ability of this technique to identify trash
components found within gram-sized samples of raw, unprocessed
(i.e. seed) cotton, '

Materials and Methods

Entire, mature cotton plants were manually collected from the
Leyendecker Plant Science Farm, New Mexico Stale University, Las
Cruces, NM, USA. Plants of both Pima and upland cotton species
were collected. Each plant contained several complete bolls. Various
plant components were manually separated from intact bolls while
wearing latex gloves to minimize any potential sample-handling
contamination. These components included stems, leaves and petioles
(as a single component), bracts, seeds, fibers, the outer burr, the burr
mid-wall, and the open burr. These are each illustrated in Figure 1
and described in Table 1.

Triplicate samples of each materfal from each cotton species
(e.g., Pima and upland) were prepared by removing all other foreign
objects. The air-dried materials were cut into small pieces and then
ground using amortar and pestle. Triplicate samples were treated with

8.0-10,0 mL of a pH 12.5 PBS solution [18,19). Each of two separate
data sets was generated several months apart in time to evaluate the
effect of time on potential changes in the plant materials, As indicated
above, similar fluorescence studies were described previously by
Gamble, et al. using DMSO [4]. They indicated extraction of some
components {e.g., chlorophyll leaves) was problematic in their study.
This interference was minimized in the present work by using a PBS
extracting solution [17]. Use of basic conditions (i.e. pH 12.5) was
also reported to enable greater discernment among materials [17].
Based on the successful use of these conditions (i.e. pH 12.5 PBS) to
distinguish plant materials, this same exiraction solution was used in
the present study,

The PBS solution was prepared from 116 mM sodium chloride
(NaCl), 2.7 mM potassium chloride (KCl), 5 mM disodium
phosphate (Na,HPO,H,0), 5 mM trisodium phosphate (Na,PO,)
and 2,03 mM sodium azide (NaN,) in distilled water [17]. Thesodium
azide inhibits microbial growth under aerobic conditions [17]. The
solution pH was iteratively adjusted to 12.5 by drop-wise addition
of either concentrated HCl (12 M) or a saturated NaOH solution.
Solution pH was monitored using an Orfon pH electrode (model
710A). Although all solutions were autoclaved prior to their use it
was necessary to further minimize the impact of such growth by
reducing sample processing time (initial solution contact to spectral
data collection) to less than four hours,

Following addition of the PBS solution, samples were agitated
for about one hour using a rocker, The resulting colorless or green
supernatant solution was then transferred and centrifuged for 2
minutes at 900 rpm using a bench top centrifuge (International
Equipment Co., model CL, Needham, MA). The supernatant was
transferred to a 1 cm cuvette and the fluorescence spectrum recorded
(Cary Eclipse, Varian, Palo Alto, CA). This protocol was sufficien to
separate all tissues from the plant material. Theexcitation wavelength,
X, was scanned from 270 nm to 450 nm in 5 nm increments. Each
corresponding emission spectrum, \_, was also recorded from 300
nm to 600 nm in 5 nm increments. The band pass of the instrument
(excitation and emission) was adjusted to 2.5 nm to insure the

Table 1: List of botanlcal components of cotton plants Investigated wilhin the
present study.

Stem Cylindrical aerial above ground part of the plant that supports
vegetative and reproduclive organs,
Leaf and The specialized green organs that camry out the process of
atioles photosynthesis. Petioles refer to the stalk that attaches the
P leaf to the stem.
Bracts Modified leaf tissue assoclated with the plant’s flower,
Seeds Fertilized ovule that contalns an embryo.
Fiber White tube-like structures that covers the seed that
comprises the boll.
Open bracts Capsules that bear the seeds,
w‘ﬁii:lbcrzzfn The opened burr without bolls and fiber,
Outer buir Outer cover of the burr of the cotton capsule.
Midwall of burr Central cover of the burr, when opened.
Open burr Outer burr and midwall of the burr taken together.
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independence of each intensity measurement within the resulting
fluorescence response surface. Representative excitation-emission
spectra of extracts for each material shown in Figure 1 are provided
in Figure 2. The resulting spectra (a 37 by 61 matrix for each sample)
were processed using PLS-Toolbox 3.5 (Eigenvector Research,
Wenatchee, WA) operated within MATLAB version 7.1 (Mathworks,
Lowell, MA) as described below, These spectra differed significantly
from those discussed by Gamble et al. [4] which utilized only a
single excitation wavelength, i.e. 300 nm,

Data Analysis

Principal component analysis (PCA) involves reduction of
variables within a data set to a few orthogonal components {20].
Each component is determined through calculation of eigen
values within the covariance matrix for a data set. The first of these
principal components explains the largest amount of variance within
the original data. The distance each measured response is from
the corresponding eigenvector is the score for that component’s
measurement, Similarly, additional orthogonal eigenvectors are
identified for decreasing percentages of the data varlance and the
respective score values computed, '

When the measured responses are functions of variables in two
or more dimensions (e.g., fluorescence as a function of both A _and
A_..): the resulting three-dimensional data matrix (i, §, k, samples for
each combination of A__and A_) can then be unfolded to a two-
dimensional matrix of dimensions i (samples) and jxk (A__x X_,.).
Subsequent application of PCA to this unfolded matrix (ie.
unfolded PCA or multiway PCA, U-PCA or MPCA, respectively)
then results in a similar variable reduction to a few principal
components and the corresponding score values,

Cluster analysis enables the grouping of samples based on the
proximity of each sample projection within a score space derived
from the number of principal components used within the PCA
model. These distances are weighted by the associated covariance
(i.e. the Mahalonabus distance) to each neighboring point (i.e. k-
nearest neighbor),

Parallel factor analysis, PARAFAC, involves trilinear
decomposition of multidimensional data sets. The data matrix is
decomposed into three matrices comprised of vectors for each factor
corresponding to the scores and each of two loadings according to the

following equation [20-24].
¥
Xy = Za DG ¥ €t
n=
Where X, represents a data matrix with dimensions as discussed
above (i.e. fluor scence intensity of sample i at excitation wavelength
j and excitation wavelength k), N is the number of factors found
to describe the original data set, the n columns of matrix a are the
predicted pure excitation of the nth factor, the n columns of b are
the predicted pure emission spectra of the n factor and columns of ¢
are the predicted pure spectral intensity profiles (quantities) of each
n factor. The component e, is the associated error matrix. (Note:
Indexing variables have been selected to be consistent with those used
in the previous discussion of U-PCA)

To minimize the impact of sample-independent signals and
background noise on subsequent data analysis, Rayleigh scattering
signals were removed from the resulting excitation-emission spectra,
This was accomplished by applying a weighting factor of zero to data
points corresponding to A _ = A__...+ 5nm as proposed by
Jiji and Booksh [24). Anti-Stokes portions of the data set were also
zeroed to reduce contribution from this nose-filled spectral region to
computed models (Figure 2).

Triplicate sample excitation-emission fluorescence spectra from
each of the materials were processed using multivariate analysis
(Unfolded Principal Component Analysis, U-PCA, and Parallel
Factor Analysis, PARAFAC). Models for each cotton species
involving all combinations of the replicate sample spectra revealed
three principal components (PCs) accounting for >89% and >91% of
the variance (65.18, 19.14, and 5.35% from Pima and 62.97, 25.39, and
2.84% from upland cotton, respectively). Figure 3 shows the resulting
scores for each material listed in Table 1 for Pima (A) and upland (B)
cotton plants. Comparatively, Figure 4 shows the results of cluster
analysis applied to these results using k-nearest neighbor criteria
based on the respective Mahalonabus distances between the score-
space projections of each spectrum for the respective species {20,23].

Results and Discussion
Principal component analysis

Rayleigh and . anti-Stokes corrected excitation emission
luminescence spectra for all spectra were combined into a single
33 by 37 by 61 matrix. Following unfolding of the third dimension
(i.e. excitation wavelength), the resulting 33 by 2257 matrix was
subjected to cluster analysis subsequent to PCA (Figure 4). A total of
3 components were found to account for 89.67% and 91.20% of the
variance in the data for Pima and upland cotton samples, respectively.
The criteria of k-nearest neighbor was applied to the Mahalonabus
distances between the projected points in 3 dimensional score space.
Figure 4 shows the resulting dendograms for Pima and upland cotton
materlals (Figures 4A and B, respectively).

From this analysis of all 54 samples (including replicates),
bracts and burrs were found to result in significantly different
spectral signatures. However, many of the materials were not easily
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differentiated with that model. In an effort to test the potential of
sample-to-sample variation in resulting models and test the validity
of those models, a series of U-PCA models were constructed using
single replicates of each material (Figure 1). Spectra from each
additional replicate were then applied to the model and the Cartesian
distance from each test sample to its respective modeled sample was
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calculated. This procedure was applied to each test set/model set
combination, The resulting Cartesian distances are shown in Figure
5. Multiple listings of a material are indicative of samples of the
same plant component with subsequent replicate extract analyses.
This enable distinction between prediction errors associated with
model validation and those resulting from variability in material
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heterogeneities. Smaller distances indicate less sample-to-sample
variability for the same material (e.g., many upland cotton materials
in Figure 5B). Conversely, larger distances suggest greater sample
dependence on the resulting model, From this analysis, stems and

fiber samples from Pima cotton and stem and open bract samples

from upland cotton were found to exhibit greater variability among
replicates. These conclusions are further supported by the results
shown in Figures 3 and 4.

Variations in luminescence spectra for replicate samples of the
same material may be suggestive of the heterogeneity of the original
materials. Extracts of cellulose-based cotton fibers would not be
predicted to yield extracts exhibiting significant photoluminescence
and would be predicted to be very homogeneous in composition.
However, samples of both Pima and upland cotton fibers yielded
sample-dependent luminescent solutions. One explanation could
be the presence of small pieces of trash material, not visible to the
naked eye. Such contaminates would then be expected to yield the
corresponding spectral signatures of the particles within each sample
collected and analyzed and exhibit potentially significant sample-
dependent variability. Thisinterpretation is consistent with the results
shown, It should be noted that due to pretreatment of the spectral data
(autoscaling and mean-centering), only a qualitative interpretation of
the results of unfolded Principal Component Analysis is justified

Parallel Factor Analysis

In an effort to better understand the sources of these observed
variations in luminescence signatures, the recorded excitation-
emission spectra were further analyzed using PARAFAC, Application
of PARAFAC to the entire sample set spectral signatures revealed the
contribution of three factors to account for variability among the
samples similarly to that determined using U-PCA. The resulting
loadings are shown in Figure 6 for variance associated with emission
wavelength (A), and excitation wavelength (B). Similar analyses were
undertaken for subsets of these data as described above, Specifically,
spectra were collected at different times from the same samples. This
was undertaken to test for experimental processing artifacts in the
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data resulting from sample material heterogeneities, Table 2 lists the
modeled peak wavelengths of emission and excitation (Figures 6A and
B) with the corresponding uncertainties in computed wavelengths of
maximum emission and excitation from replicate samples.

Elucidation of effective excitation and emission spectra for
each factor can enable assignment of these components to classes
of luminescent compounds within the resulting extracts. Good
agreement was found with literature values of corresponding peak
wavelengths, A__, for tryptophan residues within polypeptides {25
pp 171], NAD(H) {24 pp 189} or pyridoxic acid (or pridoxic acid
5'-phosphate) [25 pp 189], and coumarins (6,7-dihydroxy and
7-hydroxy-6-methoxy) [25 pp 233]. These assignments are also
listed in Table 2. Because of the strongly basic conditions of the PBS
extraction solution (i.e. 12.5), it is presumed that acidic moieties
would be completely deprotonated. Ionization of these chemical
compounds would enhance their respective extraction into the PBS
solution.

Armed with these speculative spectral assignments, examination
of spectra from the various trash components reveals significant
contributions of these factors (Figure 7). Tryptophan, factor 1,
contributed to the luminescence signatures of seeds, fiber, and
stem materials for upland cotton plants (Figure 7A) while factor 3
(coumarins) was found to contribute significantly to the signatures
of bracts and leaf extracts for that species. Factor 2 contributed to
most cotton parts other than fiber, seed, bract and leaf. Tables 3 and
4 list the proposed Factor contributions to the spectral signatures
of each material investigated for upland and Pima cotton species,
respectively, A similar analysis of the samples for Pima cotton
indicates Factor 1 dominates fiber spectra and Factor 2 is a major
component in stem material extract spectra. All three factors appear
to contribute, with varied degrees, to the spectra from the burr of the
plant. These assignments may then be applied to the U-PCA cluster
analysis of these spectra (Figure 4).

Conclusion

The attempt to separate different botanical components of the
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as similarilies. The emission intensity produced as a function of

of the same chemical fluorometric properties making their separation
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Table 3: Forty-five identification numbers within Figure 7A for relative contribution of each factor (Table 2) for upland cotton materials.

1 Bracts 13 All 24 Outer Burr 36 Seeds

2 Bracts 14 Al 25 Fiber 37 Seeds

3 Bracts 15 All 26 Fiber 38 Seeds

4 Fiber 16 Open burr no cotton 27 Fiber 39 Seeds

5 Fiber 17 Open burr no cotton 28 Fiber 40 Burr & Wall

6 Fiber 18 Open burr no cotton 29 Fiber 41 burr & Wall

7 Leaf & Petioles 19 Open Burr 30 Fiber 42 Burr& Wall

8 Leaf & Petioles 20 Open Burr 31 Seed & Cotton 43 Stems
-9 Leaf & Petioles 21 Open Burr 32 Seed & Cotton 44 Stems

10 Midwall 22 Outer Burr 33 Seed & Cotton 45 Stems

11 Midwall 23 Outer Burr 34 Seeds

12 Midwall 35 Seeds

Table 4: Thirly-six identification numbers for samples within Figure 7B for contributions of each factor (Table 2) for unique samples of Pima cotton materials,

1 Bracts 13 Seeds 25 Stems

2 Bracls 14 Seeds 26 Stems

3 Bracts 15 Seeds 27 Stems

4 Fiber 16 Seeds 28 Burr stems
5 Fiber 17 Seeds 29 Buir stems
6 Fiber B 18 Seeds 30 Burr stems
7 Leaf & Petioles 19 Burr 31 Burr

8 Leaf & Petloles 20 Burr 32 Burr

9 Leaf & Petioles 21 Burr 33 Burr
10 Open burr without cotton 22 Burr wall 34 Seeds
1 Open burr without cofton 23 Burr wall 35 Seeds
12 Open burr without cotton 24 Burrwall 36 Se_eds

challenging due to clustering and overlapping of these two materials
on the score plots. Although the leaf petioles and the bracts of upland
cotton plant overlap with each together, the clusters of leaf and bracts
were separated from other components of the plant like stem, seeds,
fiber, open bolls, opén burr, and burr fragments of the cotton plant

Thestem material of the both species of cotton (Pima and upland
cotton) was easily separated from all other botanical parts of the
cotton plant within the 95% confidence interval, This suggests that
the model developed appears to be robust to separate residual trash
that is likely to be present in the lint during the process of harvesting
and ginning when its origin is from the stem of the cotton plant. The
model generated also shows potential for the discrimination of other
botanical parts of the cotton plant.

These spectral differences are proposed to result from variations
in the extraction of tryptophan-containing proteins or polypeptides,
NADH or pyridoxic acids, and hydroxyl coumarins,
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