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The need for large sample sizes to train, calibrate, and validate remote-sensing
products has driven an emphasis towards rapid, and in many cases qualitative, field
methods. Double-sampling is an option for calibrating less precise field measurements
with data from a more precise method collected at a subset of sampling locations.
While applicable to the creation of training and validation datasets for remote-sensing
products, double-sampling has rarely been used in this context. Our objective was to
compare vegetation indicators developed from a rapid qualitative (i.e. ocular estima-
tion) field protocol with the quantitative field protocol used by the Bureau of Land
Management’s Assessment, Inventory and Monitoring (AIM) programme to determine
whether double-sampling could be used to adjust the qualitative estimates to improve
the relationship between rapidly collected field data and high-resolution satellite
imagery. We used beta regression to establish the relationship between the quantitative
and qualitative estimates of vegetation cover from 50 field sites in the Piceance Basin
of northwestern Colorado, USA. Using the defined regression models for eight vegeta-
tion indicators we adjusted the qualitative estimates and compared the results, along
with the original measurements, to 5 m-resolution RapidEye satellite imagery. We
found good correlation between quantitative and ocular estimates for dominant site
components such as shrub cover and bare ground, but low correlations for minor site
components (e.g. annual grass cover) or indicators where observers were required to
estimate over multiple life forms (e.g. total canopy cover). Using the beta-regression
models to adjust the qualitative estimates with the quantitative data significantly
improved correlation with the RapidEye imagery for most indicators. As a means of
improving training data for remote-sensing projects, double-sampling should be used
where a strong relationship exists between quantitative and qualitative field techniques.
Accordingly, ocular techniques should be used only when they can generate reliable
estimates of vegetation cover.

1. Introduction

The use of remotely sensed imagery is expected to improve the efficiency, reliability, and
frequency of assessment and monitoring of arid and semi-arid landscapes (Booth and
Tueller 2003; Washington-Allen et al. 2006; Weber 2006; Hunt et al. 2003). Four typical
remote sensing applications to environmental assessment and monitoring are: image
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interpretation by trained observers (e.g. Booth and Cox 2008; Booth et al. 2003; Duniway
et al. 2011), classification of imagery into discrete land-use or land-cover categories (e.g.
Laliberte et al. 2010; Blaschke, Conradi, and Lang 2002; Kennedy et al. 2009), inter-
pretation of spectral indices related to vegetation properties (e.g. Washington-Allen et al.
2006; Wylie, Boyte, and Major 2012), and prediction of continuous vegetation attributes
(i.e. continuous fields) such as vegetation cover or density (Homer et al. 2012; e.g. Karl
2010). This study focuses on the role of field data in the development and use of
continuous-fields products for environmental assessment and monitoring.

While some continuous-fields approaches focus on the development and use of
biophysical models that, once calibrated, do not require the use of field data for their
application (e.g. Marsett et al. 2006; Qi et al. 1994; Reeves, Zhao, and Running 2006;
Running et al. 2004), many remote-sensing techniques for continuous-fields prediction
require in situ measurements to train, calibrate, and validate image-derived products.
Ground-condition measurements for remote-sensing projects have been collected using
a wide array of ground-based and aerial measurements (McCoy 2005). These include
field-based vegetation measurements via quantitative, semi-quantitative (e.g. ordinal or
nominal), or qualitative (e.g. ocular estimation) methods. Regardless of the technique
used, collection of training or validation data in situ is seen as being expensive (Pellant,
Shaver, and Spaeth 1999), and given the large, diverse landscapes covered by many
remote sensing projects, large training sample sets are often required (see McCoy (2005)
for guidance on sample sizes for remote-sensing projects).

This need for large sample sizes to train, calibrate, and validate remote-sensing
products has driven an emphasis towards rapid, and in many cases, qualitative field
methods (Petersen, Stringham, and Roundy 2009; Marsett et al. 2006; Homer et al.
2012; e.g. Knick, Rotenberry, and Zarriello 1997; Homer et al. 2008). Treitz et al.
(1992) and Weber (2006) looked at differences between using qualitative and quantitative
data to define land-cover classes for image classification and concluded that qualitative
approaches produced classes that could be mapped more accurately. But the appropriate-
ness of qualitative data to develop or test continuous-fields models of vegetation in semi-
arid and arid environments from remote-sensing data has not been thoroughly explored.

Studies comparing qualitative and quantitative measures of vegetation attributes in the
field have produced mixed results. Some studies have reported that qualitative measures
(e.g. ocular estimates) of vegetation attributes perform as well as quantitative measures
(Seefeldt and Booth 2006; Booth et al. 2006; Stohlgren, Bull, and Otsuki 1998; Dethier
et al. 1993). Others have reported that qualitative measures are biased and less precise
(Hanley 1978; Kennedy and Addison 1987; Bergstedt, Westerberg, and Milberg 2009;
Floyd and Anderson 1987; Korhonen et al. 2006). Variation between qualitative and
quantitative measures has been attributed to factors such as plot size, spatial distribution
of vegetation within the measurement area, overall vegetation cover, plant morphology,
and observer experience (Korhonen et al. 2006; Klimes 2003; Neeser et al. 2000; Andujar
et al. 2010; Floyd and Anderson 1987). Beyond the basic assumption that poor-quality
input data can lead to poor remote-sensing products (i.e. ‘garbage-in: garbage-out’), little
study has been done on the effects of imprecision of input data on the accuracy of
continuous-fields remote-sensing products.

One option for balancing the need for high-quality input data for remote-sensing
projects with the need to sample a large number of locations across a diversity of plant
communities could be to employ a two-phase sampling approach. Two-phase sampling,
also called double-sampling, is often used when the variable of interest is difficult to
measure directly or expensive to measure precisely, but a related variable or less precise
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method exists that can be easily or quickly implemented (Lohr 2009; Thompson 2002).
The first sampling phase consists of a large and relatively inexpensive set of measure-
ments. The second phase consists of more precise measurements made at a subset of the
first-phase locations. The more accurate or precise second-phase data are then used to
improve estimates made from the first phase through ratio or regression estimators.

Double-sampling is a common technique in many ecological studies to calibrate less
precise field measurements with more accurate procedures (e.g. Ahmed, Bonham, and
Laycock 1983; Bart, Earnst, and Murphy 2002; Köhl, Magnussen, and Marchetti 2006;
Elzinga, Salzer, and Willoughby 1998). Double-sampling has also been applied to remote-
sensing studies. Maxwell (1976) and Wylie et al. (1991) used double-sampling of
vegetation measurements within plots to generate estimates of vegetation properties
(e.g. biomass). Stehman (1996) and Kalkhan, Reich, and Stohlgren (1998) used double-
sampling to evaluate the accuracy of classified images. Eva and Lambin (1998) and
Parker and Evans (2004) proposed using a double-sampling approach using less precise
remotely sensed indicators in combination with more accurate field-measured indicators
for landscape inventory and monitoring. Duniway et al. (2011) and Karl et al. (2012)
proposed using double-sampling to calibrate estimates of vegetation cover derived from
very large-scale aerial imagery. However, few remote-sensing studies actually implement
a double-sampling protocol to obtain field measurements for image training in a cost-
effective manner where a set of sites sampled with a less precise method (e.g. qualitative
measurements) is corrected with more precise data collected at a subset of those sites.

Our goal for this study was to evaluate a double-sampling approach to collecting field
data to train remote-sensing imagery. Our first objective was to compare vegetation
indicators developed from a rapid, qualitative protocol with more rigorous, quantitative
protocols. Comparisons were then made between the field methods and against high-
resolution satellite imagery. Our second objective was to develop double-sampling regres-
sion equations to improve the relationship between the rapid field measurements and
imagery.

2. Study area

This study was conducted in a 243,700 ha portion of the Piceance Basin of northwest
Colorado (39.824° N, 108.297° W, Figure 1). This area is characterized by deep valleys
and high plateaus (Taylor 1987), and comprises primarily the Piceance Creek and Yellow
Creek drainages – tributaries of the White River. Elevation in the study area ranges from
1650 to 2820 m (from United States Geologic Survey 1/3 arc-second National Elevation
Dataset, http://ned.usgs.gov, accessed 16 January 2013). Average annual precipitation for
the Meeker, CO, weather station (approximately 10 km northeast of the study area) from
1981 to 2010 was 443 mm (National Oceanic and Atmospheric Administration, National
Climate Data Center, http://www.ncdc.noaa.gov/land-based-station-data/climate-data-
online, accessed 16 January 2013).

Vegetation in the Piceance Basin is a mosaic of pinyon/juniper (Pinus edulis Engelm./
Juniperus osteosperma Torr.) and sagebrush (Artemisia spp. L.) shrublands on the slopes
and plateaus. The southern portion of the study area has extensive aspen (Populus
tremuloides Michx.) woodlands on north-facing slopes. Drainage bottoms are typically
riparian areas dominated by cottonwood (Populus L.) and alder (Alnus Mill.).

The study area is approximately 70% in public ownership and 30% privately owned.
The US Department of Interior Bureau of Land Management (BLM) is the primary public
land steward, managing 165,400 ha (67.9% of the study area). The BLM-managed lands
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in the Piceance Basin are an important source of oil shale deposits (Taylor 1987) and the
BLM issues permits for oil and natural gas extraction in the area. Changing conditions in
the energy sector and development of new oil and gas extraction technologies have greatly
expanded the potential number of new oil and gas well pads in the Piceance Basin
(Bureau of Land Management 2012). As part of its land management responsibilities,
the BLM is required to measure and monitor the direct and indirect impacts of oil and gas
development on the vegetation, soils, water, and wildlife in the Piceance Basin.
Accomplishing this over such a large area is a challenging endeavour that could be
supported by remote-sensing technologies.

3. Methods

3.1. Image acquisition and processing

RapidEye multispectral satellite imagery was acquired for the study area in June of 2010
and 2011. Dates close to the summer solstice were selected to minimize topographic
shading. Due to above-average precipitation and a cool spring, 2011 experienced a high
snowpack that was visible in the RapidEye imagery – obscuring many of the sample sites.
For this reason, we used the 2010 imagery even though it was acquired a year prior to the
field data (see below). The above-average precipitation in 2011 could have resulted in less
bare ground and greater cover of grasses and forbs that might affect correlations between
the field data and imagery collected a year earlier. However, this should affect data from
both methods similarly, and as no significant changes in management or disturbances (e.g.
fire) occurred at the sample sites between the image acquisition in 2010 and the field

Private

Colorado

Bureau of Land Management

Sample sites

30 m

50 m

Land management

Colorado Division of Wildlife

Figure 1. Location of the Piceance Basin study area in northwestern Colorado, USA. Geographical
coordinates: 39.824° N, 108.297° W.
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sampling in 2011, the use of 2010 imagery was deemed acceptable. Image acquisition was
completed in two passes – 7 June 2010 and 15 June 2010.

The RapidEye satellite images are from a 5-band multispectral sensor with bands
sampling the blue (440–510 nm), green (520–590 nm), red (630–685 nm), red-edge (690–
730 nm), and near-infrared (760–850 nm) wavelengths (http://www.rapideye.com/pro-
ducts/ortho.htm, date accessed 22 October 2012). The imagery was processed by
RapidEye AG (Berlin, Germany) to their Level 3A, which included radiometric and
geometric corrections and resampling to a 5 m ground-sampling distance (i.e. resolution)
for 25 km2 tiles. Average horizontal positional accuracy for the 11 tiles comprising the
study area was reported at 17.2 m. Image tiles within dates were merged together. The
merged images were then histogram-matched based on overlapping areas and mosaicked
into a single image for the study area using ERDAS Imagine Mosaic Pro (http://geospa-
tial.intergraph.com, date accessed 18 March 2013). We calculated the average and stan-
dard deviation of pixel values for each band within a 55 m radius of each field sample
location to correspond to the size of the field measurement plots.

3.2. Sample design

Because the objective of this study was to determine whether data collected using an
intensive, quantitative field protocol could be used to improve estimates of indicators made
from a rapid, qualitative method and the statistical relationship between those qualitative
estimates and the RapidEye imagery, we considered only the second sampling phase where
both data collection methods were employed. For this second sampling phase, vegetation
measurements were made at 50 locations using a stratified random sampling procedure.

To ensure representation of the diversity of conditions within the study area, field
sampling was stratified by plant community potential. Using descriptions of plant com-
munity potential from the area’s soil surveys (USDA Soil Conservation Service 1982,
1985; USDA Natural Resources Conservation Service 2003), we defined nine plant
community strata (Table 1) on the basis of compositional (e.g. soils, precipitation, and
reference plant communities) and functional (i.e. types of ecological and management
processes) characteristics. Expected distribution of these plant communities in the study
area was mapped from the 1:24,000 soil map data (Soil Survey Staff 2008a, 2008b,
2008c) to create sampling strata. Within each stratum, sample locations were selected via
a spatially balanced random sampling process (see Theobald et al. 2007). Strata were

Table 1. Strata developed for the study area based on
plant-community potential.

Stratum Number of sites sampled

Aspen woodland 4
Brushy loam 5
Dry exposure 4
Loamy slopes 9
Mountain loam 4
Pinon-juniper woodland 13
Riparian & swales 3
Rolling loam 4
Stoney foothills 4

1940 J.W. Karl et al.
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sampled roughly in proportion to their area in the study area with a minimum of three sites
per stratum (Table 1).

3.3. Field data collection

At each sample location within the study area, vegetation measurements were taken
following two protocols: the quantitative protocol used by the BLM Assessment,
Inventory, and Monitoring programme (AIM protocol, Mackinnon et al. 2011) and a
rapid visual-estimation protocol described by Homer et al. (2012) that was designed to
collect data for training and validation of remote-sensing products (ocular protocol). Field
sampling was conducted between 29 June and 13 September 2011.

Different transects were used for the quantitative and ocular protocols to minimize
issues with disturbing vegetation with one technique before measuring it with the other.
Because the two protocols were considered to provide site-level estimates (i.e. the sample
unit for this study was the site), the use of different transects within the site was
considered acceptable.

Relative to this study, the quantitative (i.e. AIM) protocol consisted of three 50 m line-
point-intercept (LPI) transects radiating from the centre of the site as described by Herrick
et al. (2009, Figure 1). Transects were oriented at 120°, 240°, and 360°. The start of each
transect was offset 5 m from the centre point to minimize effects due to trampling. At each
1 m along the transect line, a thin (~1 mm diameter) pin was lowered to the ground and
living and dead vegetation touching the pin was recorded as canopy layers. All plants
were recorded to the species level except for sagebrush, which was recorded to the
subspecies level. Each species intercepted by the pin was recorded only once in the
order from top to bottom. Intercepts of overhead vegetation (e.g. trees) were determined
by using a sighting tube held perpendicular to the ground (determined using bubble levels
embedded in the tube) and sighting through crosshairs. The surface of the ground under
the canopy layers (e.g. bare soil, rock, moss) was also recorded. Litter (i.e. detached plant
material) was recorded as a canopy layer.

We followed Herrick et al. (2009) for calculation of plant cover indicators from line-
point intercept data. Species-level information was aggregated to major life form (i.e.
tree, shrub, perennial grass, annual grass), and cover of each life form was calculated as
the number of life form ‘hits’ divided by the total number of pin-drops (150) along all
transects at the site. Cover of sagebrush was calculated separately because of its
importance to greater sage-grouse (Centrocercus urophasianus) habitat (Crawford
et al. 2004). Litter cover was calculated as the proportion of hits where litter was
recorded as a canopy layer. We calculated the amount of bare ground as the proportion
of hits where the ground surface was recorded as bare soil or rock with no canopy layers
overhead. Total ground cover was calculated as the proportion of pin drops where any
plant canopy was encountered. At each site, measurements from all transects were
averaged to create site-level estimates.

The ocular protocol consisted of qualitative, ocular estimates of cover within five 1 m2

plot frames separated by 5 m along a single transect (Figure 1). The transect was oriented
at 180° from the plot centre. For each plot frame, cover of all vegetation and soil
components was estimated from an overhead perspective in 5% increments so that the
sum of all components in the frame totalled 100% (Homer et al. 2012). Shrubs and trees
were estimated to the species level except for sagebrush, which was estimated to the
subspecies level. Herbaceous vegetation was estimated for the categories of perennial
grasses, annual grasses, and forbs. Estimates of litter were the combined cover of dead
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standing woody vegetation, detached plants, and animal matter. Bare ground estimates
included exposed soil and rocks. Cover estimates within each plot frame were averaged
together to obtain site-level estimates.

3.4. Statistical analyses

Statistical analyses followed two main steps. We first conducted limits of agreement
analysis to examine the degree of correspondence between quantitative and ocular
estimates of cover. We then used beta-distribution regression to quantify the relationships
between quantitative and ocular-protocol estimates and between the field estimates and
the RapidEye imagery. All statistical analyses were performed in R version 2.15 (http://
www.r-project.org, accessed 4 October 2012). The betareg package developed by Cribari-
Neto and Zeileis (2010) was used for the beta-distribution regression analysis.

Because of limited sample sizes within strata, we evaluated whether we could pool
observations across strata by comparing differences between the quantitative and ocular
methods by stratum. If the differences between methods were consistent across strata, we
could assume that similar double-sampling regression equations would be derived for
those strata. To test this, we performed a one-way analysis of variance (ANOVA) on the
differences between the quantitative and ocular method by stratum for each indicator
listed in Table 2. The ANOVAs were followed up with two-way multiple comparison tests
using the Tukey–Kramer method to control for family-wise Type I error rate (Bretz,
Hothorn, and Westfall 2010). The riparian and aspen strata were found to be significantly
different (at the α = 0.05 level) than the other strata for multiple indicators. No consistent
differences were found among the other strata. Consequently, we excluded the aspen and
riparian strata (because there were not enough sample points to consider them separately)
and pooled the remaining data.

3.4.1. Limits of agreement

Two-phase sampling requires only that the first- and second-phase measurements be
correlated, but the degree of that correlation determines whether or not two-phase sampling
will be more efficient than sampling a single phase (Lohr 2009). In this study, however, our
first and second phases were measurements of the same indicators using different methods.
In this case, it is necessary to ask not only how well the measures are correlated, but also
how well they agree with each other. A measure of agreement informs on the average bias
and precision of the techniques relative to each other for estimating vegetation cover.

If true values of a parameter are known for a set of sample units, the accuracy and
precision of a method for measuring that parameter can be calculated as deviation from
this ‘gold standard’. In this case, when comparing alternative measurement methods
against a known parameter, the most accurate and precise method is easy to determine.
Comparison of two different methods that measure the same unknown parameter is
difficult, however, if there is no way to establish the true value of the quantity being
measured (Bland and Altman 1999).

The correlation between two measures of a common parameter for a set of sample
units is typically used as a measure of agreement between two methods (Bland and
Altman 2003). However, this approach is flawed because two methods that measure the
same parameter should be expected to have a high correlation to each other even if there is
systematic bias between the two methods or if one method is less precise than the other
(Bland and Altman 1999). Strong correlation does not imply a high degree of agreement

1942 J.W. Karl et al.
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between the methods where agreement is defined as the difference in measurement of the
same parameter using two different methods.

Bland and Altman (1986) proposed limits of agreement as a better description of how
well two different methods measure the same parameter. The limits of agreement estimate
the mean difference, �d between the two methods (i.e. bias) and the standard deviation of
the differences, sd. If the differences are normally distributed, then 95% of the differences
(LOA95) will be d ± 1.96sd. The smaller �d and LOA95 are, the better the agreement
between the two methods.

We calculated �d and LOA95 between the quantitative and ocular-protocol estimates for
each indicator. The observed �d for each indicator followed a normal distribution assessed
using the Wilk–Shapiro test (Royston 1982). Differences between the two methods for
each sample plot were plotted against the average plot value from the two methods (see
Bland and Altman 1999). We also calculated linear correlation and rank (i.e. ‘Spearman’)
correlation between the quantitative and ocular estimates for each indicator.

3.4.2. Beta-distribution regression

Vegetation cover data (expressed as percentages or proportions) often do not conform to
assumptions of standard linear regression methods because cover values have a limited
range [0,1], are often not normally distributed (and cannot be easily transformed to make
them so), and exhibit variances that are not consistent across the range of values (i.e.
variance approaches zero at the limits) (Damgaard 2009; Espinheira, Ferrari, and Cribari-
Neto 2008).

An alternative for analysing and modelling cover data is regression based on a beta
distribution (i.e. beta regression, Brehm and Gates 1993). Chen et al. (2006) showed that
plant cover data often follow a beta distribution. Damgaard (2009) suggested that analyses
of continuous plant cover data based on the beta distribution were preferable to standard
statistical techniques. Korhonen et al. (2007), Eskelson et al. (2011), and Chen et al.
(2008) used beta regression for estimating plant cover.

Beta regression has several properties that make it useful for analysing plant cover
data. First, the beta distribution is bounded by 0 and 1 and beta regression assumes only
that the dependent variable is continuous, interval-level, and bounded between two known
endpoints (Smithson and Verkuilen 2006).

Second, beta regression allows changes in variance to be modelled explicitly and
separately from the mean (Smithson and Verkuilen 2006). The beta distribution β(μ,φ) has
the density function

f y; μ;fð Þ ¼ Γ fð Þ
Γ μfð ÞΓð 1� μð Þf yμf�1 1� yð Þ 1�μð Þf�1; y 2 0; 1ð Þ; (1)

where Γ �ð Þ is the gamma function (Ospina and Ferrari 2012). Two parameters of beta
distribution are μ (mean) and ϕ (precision parameter). Precision is related to, but different
to variance because for bounded distributions, variance and mean are related (Smithson
and Verkuilen 2006) by:

σ2 ¼ μ 1� μð Þ
1þ fð Þ : (2)

1944 J.W. Karl et al.

D
ow

nl
oa

de
d 

by
 [

N
ew

 M
ex

ic
o 

St
at

e 
U

ni
ve

rs
ity

],
 [

Ja
so

n 
K

ar
l]

 a
t 1

0:
49

 2
7 

Fe
br

ua
ry

 2
01

4 



Considering precision rather than variance allows for precision to be modelled indepen-
dently from the mean (Smithson and Verkuilen 2006). Thus, for a fixed value of μ, the
larger the value of ϕ, the smaller the variance of y (Ospina and Ferrari 2012). If y is
B μ;fð Þ, then E(y) = μ and Var(y) = μ(1–μ)/(ϕ+1) (Ospina and Ferrari 2012).

Third, because the beta distribution can take on many different shapes, beta regression
does not require proportion data to be transformed even if the data are highly skewed
(Espinheira, Ferrari, and Cribari-Neto 2008). In the original formulation of beta distribu-
tion, two parameters, ω and τ, act as shape parameters that pull the density towards 0 and
1, respectively (Smithson and Verkuilen 2006). By varying the shape parameters, the beta
distribution can accommodate different shapes of data distribution such as ‘J’, ‘L’, ‘one-
peak’, ‘U’, or rectangular (Chen et al. 2006; Eskelson et al. 2011) – allowing the beta
distribution to be fit to a wide range of cover datasets without the need for
transformations.

We used beta-distribution regression with the ocular-protocol estimates as the inde-
pendent variable and the quantitative protocol estimates as dependent variable to develop
a linear model that described the relationship between indicator values from the two
methods. Beta regression does not produce a true R2 value, but we used the correlation
between the observations, to which a log-link function (e.g. PROBIT function in this
study) had been applied, and the model predictions (i.e. a pseudo R2) as measures of
explained variation (see Ferrari and Cribari-Neto 2004; Smithson and Verkuilen 2006).
We then applied the regression parameters (linear regression model slope and intercept) to
the ocular estimates to produce ‘corrected’ ocular estimates (i.e. predictions of quantitative
method estimates). We then used beta regression a second time to compare the quantita-
tive protocol, ocular protocol, and corrected ocular estimates to the RapidEye imagery for
each indicator, using the pseudo R2 values to determine strength of the relationships.

One shortcoming of the beta distribution is that it is not suitable for modelling datasets
that contain observations with values of zero or one (Ospina and Ferrari 2012), because
the logits of these extreme values are undefined. Because our datasets had very few
observations with a value of zero and none with a value of one, we followed the
recommendation of Smithson and Verkuilen (2006) to shrink the interval range of each
variable to [0.005 to 0.995]. As long as the data are not zero- or one-inflated, this
approach introduces a trivial amount of bias. In cases of zero- or one-inflation, a multi-
stage procedure that models extreme values as separate, larger-scale processes from the
continuous data is preferable (Damgaard 2009).

4. Results

Correlations between the quantitative- and ocular-protocol estimates were variable
(Table 2). Indicators for dominant site components (i.e. tree, shrub, sagebrush, and
perennial grass cover, bare ground) had parametric and rank correlations greater than
0.7. Annual grass cover estimates from the ocular and quantitative protocols were poorly
correlated (ρ = 0.0366) but there were relatively few sites where more than a trace amount
of annual grasses was recorded (n = 9 for ocular protocol, n = 14 for quantitative
protocol). Ocular estimates of total ground cover were poorly correlated with quantitative
protocol estimates of ground cover (ρ = 0.0366). A derived ocular estimate of total ground
cover (one minus the estimated bare ground) yielded a much higher correlation to
quantitative-protocol total ground cover (ρ = 0.7930). Ocular estimates of litter cover
were more strongly correlated to quantitative-protocol estimates of woody litter cover
(ρ = 0.4634) rather than total litter cover (ρ = 0.1861). Given that the derived indicators
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for total ground cover and litter performed better than their direct ocular estimates, all
subsequent results report the derived values for these two indicators.

The limits of agreement analysis showed that in all cases, ocular estimates of vegeta-
tion cover were lower than corresponding quantitative protocol estimates (Table 2,
Figure 2). For dominant vegetation indicators, average underestimates were between
1.45% (tree cover) and 6.24% (perennial grass cover). Annual grass cover was under-
estimated the least, but also occurred with low cover at the few sites where it was
recorded. The ocular protocol tended, on average, to overestimate bare ground by over
17%. The derived ocular estimates of total ground cover and litter cover tended to
overestimate compared with the AIM protocol by 3.26% and 18.19%, respectively.

For bare ground, derived total canopy cover (which was related to quantitative-
protocol bare ground measurements), and litter cover, there were apparent trends in the
difference between quantitative and ocular-protocol estimates with increasing average
cover (Figure 2). Ocular estimates of bare ground became higher than quantitative
estimates as the amount of bare ground increased. The opposite pattern occurred for the
total canopy cover. This trend in difference did not manifest in the derived total canopy
cover indicator, however, suggesting non-stationarity in the ocular estimates for canopy
cover and bare ground. Litter cover and derived litter cover also showed trends in
difference with increasing cover.

Width of the LOA95 was also variable by indicator (Table 2, Figure 2). For vegetation
indicators, LOA95 was between 11.4% and 24.7% perennial grass cover and shrub cover,
respectively. The LOA95 for bare ground (35.0%) and the derived ocular-estimate vari-
ables, total ground cover (26.0%), and litter cover (32.3%) were the highest.

Results of beta regression between the quantitative and ocular-protocol estimates
followed the correlation and LOA results (Table 2, Figure 3). Pseudo-R2 values were
lower for all indicators than the normal parametric and rank correlations, which was
expected (see Ferrari and Cribari-Neto 2004). Annual grass and litter had the lowest
pseudo-R2 values at 0.04 and 0.2108, respectively. All other indicators has pseudo-R2

values greater than 0.5.
Relationships between the field-estimated indicators and the RapidEye imagery were

also variable (Table 3). The quantitative protocol estimates yielded good beta-regression
pseudo-R2 values (>0.7) for all indicators except tree, sagebrush, and annual grass cover.
Beta regression between ocular-protocol estimates and the RapidEye imagery gave lower-
pseudo R2 values for all indicators, with only three indicators (shrub cover, bare ground,
and total canopy cover) exceeding 0.5. Corrected ocular estimates achieved higher
pseudo-R2 values than just the ocular estimates alone for all indicators except annual
grass and litter cover – the two indicators with the poorest relationships between the
quantitative and ocular-protocol estimates. The gain in pseudo-R2 was modest for sage-
brush and perennial grass cover. Corrected ocular estimates performed almost as well as
the quantitative estimates for total ground cover and bare ground.

5. Discussion

Our results show that a double-sampling approach can be used to improve the relationship
between ocular estimates and satellite imagery for some indicators. For indicators where there
was a strong correlation between the two protocols, the corrected ocular estimates achieved
nearly as good results as the quantitative protocol alone. This was generally the case for
dominant site features (e.g. shrubs and bare ground). When the correlation between quanti-
tative and ocular-protocol estimates was not as strong (e.g. for minor site components such as
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Figure 2. Limits of agreement show the degree of correspondence between two different methods
of measuring the same indicator. Methods with a high degree of correspondence will have narrow
confidence intervals. Bias between methods results in a mean difference (solid line) that is different
to zero. Dashed lines are 95% confidence limits of difference between the two methods.

International Journal of Remote Sensing 1947

D
ow

nl
oa

de
d 

by
 [

N
ew

 M
ex

ic
o 

St
at

e 
U

ni
ve

rs
ity

],
 [

Ja
so

n 
K

ar
l]

 a
t 1

0:
49

 2
7 

Fe
br

ua
ry

 2
01

4 



perennial grasses), there was still some advantage to double-sampling, but it was not as great.
When the relationship between the two protocols was weak, correlations between the cor-
rected ocular estimates and the RapidEye imagery could be unpredictable. In the case of
annual grasses, corrected ocular estimates performed much better than either the quantitative
or ocular-protocol estimates alone. For litter cover, though, corrected ocular estimates per-
formed much worse than either the quantitative or ocular-protocol estimates. Both of these
cases highlight poor model generalization as a result of low correlation between the two field
protocols. This suggests that at some point the relationship between the two field techniques
becomes sufficiently low that it is no longer advantageous to consider double-sampling.

Our results also pointed to several issues in the use of ocular estimation techniques.
The differences in correlation between the ocular and quantitative protocol estimates by
indicator suggest that observers could achieve reliable ocular estimates of cover only for
dominant site features. Additionally, the poor correlation between ocular and quantitative
protocol estimates for annual grasses and litter suggests that ocular estimation of cover is
difficult for indicators with low amounts of cover. This could particularly be the case if the
indicator being estimated is evenly distributed in the sample area. Also, the poor
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Figure 2. (Continued).
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Figure 3. Scatter-plots of quantitative versus qualitative estimates of ecosystem indicators. Solid
line is the beta-regression model. Dashed line is 1:1. Pseudo-R2 values from the beta-regression
model are from Table 2.
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correlation between quantitative and ocular estimates of total canopy cover and litter
strongly suggests that observers have difficulty estimating cover across multiple plant
functional groups (e.g. cover of all vegetation grouped) or indicator types (e.g. woody and
herbaceous litter grouped). This conclusion is supported by the lower correlation of ocular
estimates of litter cover to quantitative protocol total litter cover versus woody litter cover.
Observers were challenged to sum cover estimates across different classes (i.e. fine
herbaceous litter and woody litter). Based on these results, we suggest that observers
estimate only for single indicators at a time and only for dominant vegetation features.

The limits of agreement analysis was a helpful supplement to simple correlation and
beta regression between the two protocols, but it was not sufficient for understanding how
well the ocular protocol could substitute for the quantitative protocol. Mean difference and
95% limits of agreement adequately captured the deviation between the two techniques
for most indicators, but presented artificially low values for indicators such as annual
grasses. The limits of agreement analysis is based on the assumption that two techniques
for measuring the same variable should be highly correlated (Bland and Altman 2003).
While this held for many of the indicators we considered, it did not hold for annual
grasses, litter, and total canopy cover – indicators for which the correlation between the
measurement values from the two protocols was very low. In the case of annual grass, the
limits of agreement gave misleadingly low results because the range of values of the
indicator was small (i.e. annual grasses were either absent or low in cover).
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Figure 3. (Continued).

Table 3. Pseudo-R2 values of beta regression between field estimates of ecosystem indicators and
band values from RapidEye satellite imagery.

Indicator Quantitative Qualitative ocular estimates Corrected qualitative

Tree cover 0.4342 0.3971 0.4134
Shrub cover 0.7851 0.6966 0.7788
Sagebrush 0.4669 0.4112 0.3945
Perennial grass cover 0.8513 0.3634 0.4415
Annual grass cover 0.3044 0.1888 0.3146
Bare ground 0.7881 0.6245 0.7680
Total ground cover 0.8702 0.6356 0.8638
Litter cover 0.7405 0.4227 0.2724
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Standardization of the average differences used in the limits of agreement analysis may be
a better metric for detecting where low correlation exists between two measures with
restricted value ranges.

We used beta regression in two parts of this study: (1) modelling the relationship
between the quantitative and ocular-protocol estimates and correcting the ocular estimates
and (2) determining the relationship between the field estimates and the RapidEye
imagery. While useful to both parts of the study, different aspects of the beta distribution
were advantageous in each context. Regression of site-level cover estimates (binomial
variables) from the two protocols using the beta distribution allowed for the model to be
bounded by 0 and 1 and, more importantly, for the variance to be modelled as a function
of the mean. When comparing the site estimates to the RapidEye imagery, however, we
were considering sets of proportions. In this case our cover estimates were a non-
binomial, continuous variable that was bounded by 0 and 1. The beta distribution is an
appropriate choice in this situation too because it is similarly bounded and can adapt to the
shape of the data distribution without making a priori assumptions (e.g. assuming
normality).

For some indicators we considered, there was a high proportion of sites where the
indicator did not occur (e.g. sites with no sagebrush, annual grass). This poses two problems
for double-sampling using beta regression. First, the beta distribution is not defined at zero,
so we needed to add a small value to each indicator estimate. Second, the high rate of zeros
may distort the shape of the distribution of the non-zero observations. A zero-inflated
regression model (e.g. Ospina and Ferrari 2012) may produce better results in this case.
In zero-inflated regression, the presence or absence of the indicator is modelled first, and
then the value or proportion modelled within the presence areas. This kind of approach may
have yielded better results for indicators like annual grass cover.

When selecting methods for obtaining vegetation cover estimates in the field, it is
important to consider not only the time required to make measurements at a site, but also
the training requirements for obtaining reliable data. Training and calibration of field
personnel for the LPI method used in the quantitative protocol typically takes only a day.
The LPI method seeks to minimize subjective decisions by observers, so adherence to the
protocol and the ability to identify plants are the minimum requirements for successful
implementation (Herrick et al. 2009). For the ocular protocol, training time can be lengthy
as observers learn what cover amounts look like under different conditions, and calibrat-
ing multiple observers to obtain consistent results can be challenging. Experience of
observers can play a large role in the quality of ocular estimates of vegetation cover.
Ocular estimation methods also require frequent recalibration throughout the season and
whenever moving to a new vegetation type to maintain consistent results.

Additional research is needed on what factors affect the reliability of indicator
estimates using ocular techniques in different environments. However, as aerial photo-
graphy becomes more widely available through platforms such as unmanned aerial
systems (Laliberte, Winters, and Rango 2011; Rango and Laliberte 2010; e.g. Rango
et al. 2009), interpretation of very high-resolution imagery (Booth and Cox 2008) may be
a better and more efficient means of rapidly collecting training data for remote sensing
that could be corrected via double-sampling (Karl et al. 2012).

6. Conclusion

Double-sampling can be a valuable technique for balancing the need for large sample
sizes (and thus rapid field techniques) with quantitative rigour in field measurements. The
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advantage of double-sampling is that it can improve the relationship of rapidly collected
qualitative measurements to imagery. However, there is some cost associated with imple-
menting a double-sampling approach to training remote-sensing projects due to the need
to collect both qualitative and quantitative data at some locations. This additional cost
needs to be weighed against the expected benefits of double-sampling. Increasingly,
though, these costs can be offset (at least to some degree) by leveraging quantitative
data collected as part of ongoing field-based monitoring programmes.

As a means of improving training data for remote-sensing projects, however, double-
sampling should only be used where there is a strong correlation between measurement
values of the quantitative and qualitative methods. Accordingly, ocular techniques should
be used only when they can generate reliable estimates of cover (e.g. dominant site
features, for a single life form or indicator type). Multiple metrics (e.g. correlation and
limits of agreement) and appropriate statistical distributions (e.g. beta distribution for
proportion or bounded variables) should be used to assess and model the relationship
between the two techniques being evaluated.
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