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a b s t r a c t

Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland
health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife
habitat. Federal land management agencies are directed to monitor and manage rangelands at land-
scapes scales, but traditional field methods for measuring vegetation heights are often too costly and
time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of
measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive,
and require specialized sensors. An alternative remote sensing approach that is potentially more practical
for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial
photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-
dimensional modeling and estimation of vegetation height. The purpose of this study was to test the
feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling
distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake
Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric
methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the
heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found
strong positive correlations between field and image measurements for several metrics. Individual shrub
heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact
shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also
strongly correlated to field measurements but consistently underestimated. Grasses and forbs were
generally too small to be detected with the resolution of the DSMs. Estimates of vertical structure will be
more accurate in plots having low herbaceous cover and high amounts of dense shrubs. Through the use
of statistically derived correction factors or choosing field methods that better correlate with the im-
agery, vegetation heights from HR DSMs could be a valuable technique for broad-scale rangeland
monitoring needs.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Quantitatively measured ecosystem indicators of soil, vegeta-
tion, and ground cover characteristics are essential for tracking the
basic ecological functions and associated ecosystem services pro-
vided by rangelands (National Research Council, 1994; Herrick
: þ1 575 646 5889.
et al., 2010). Vegetation heights are an important indicator of
habitat quality for many wildlife species. For example, Greater
Sage-grouse (Centrocercus urophasianus) require specific sagebrush
(Artemisia spp.) heights for successful nesting and brood-rearing
(Connelly et al., 2000). Burrowing owls (Athene cunicularia) use
vegetation around nest sites as elevated perches to detect both prey
and predators (Green and Anthony, 1989). Vegetation height can be
used to estimate above-ground biomass (Cleary et al., 2008) which
is in turn used to determine total available forage (Karl and
Nicholson, 1987), browse (Bryant and Kothmann, 1979), available
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fuel for controlled or uncontrolled burning (Ria~no et al., 2007; Leis
and Morrison, 2011), and carbon storage (Asner et al., 2003; Brown
et al., 2005). Height of vegetation is also an important variable in
determining wind erosion potential for arid and semi-arid lands
(Okin, 2008).

Nationwide efforts to monitor vegetation heights on public and
privately owned rangelands such as the National Resources In-
ventory (NRI, Nusser and Goebel, 1997) and Bureau of Land Man-
agement Assessment, Inventory and Monitoring (BLM AIM, Toevs
et al., 2011) programs in the United States rely on field measure-
ments from thousands of sample locations. Due to costs associated
with field visits and the improving availability and resolution of
remotely sensed imagery, measurement tools from aerial and
satellite-based image products are being sought (Hunt et al., 2003;
Booth and Cox, 2008) to expand monitoring coverage.

A variety of quantitative indicators derived from either image
interpretation, classification, or modeling have been shown to be
accurate, feasible, cost-effective, and repeatable compared to field
methods especially when applied to high-resolution (e.g., ground-
sampling distance [GSD] of less than 1m but greater than 1 cm) and
very-high-resolution (i.e., GSD less than 1 cm) imagery (House
et al., 1998; Seefeldt and Booth, 2006; Luscier et al., 2006; Booth
and Cox, 2008; Duniway et al., 2011; Karl et al., 2012a, 2012b).
Some of these indicators include vegetation cover, composition,
and canopy gap sizes.

Accurate estimation of vegetation height via remote sensing in
arid and semi-arid ecosystems, however, has been limited. Some
studies have used “small footprint” LiDAR (i.e., airborne scanning
laser with point densities ranging from 0.54 to 9.46 points per m2)
to estimate shrub canopy characteristics (Streutker and Glenn,
2006; Ria~no et al., 2007; Su and Bork, 2007; Glenn et al., 2011;
Mitchell et al., 2011; Sankey and Bond, 2011). These studies all
found strong relationships between field-measured and LiDAR-
estimated shrub heights, but reported that LiDAR methods
consistently underestimated shrub height (and in the case of
Mitchell et al. shrub area). Others studies have correlated field-
based sagebrush and bitterbrush heights with spectra from
satellite-based image products (2.4 m Quickbird, 20 m SPOT, 30 m
Landsat TM, 56 m AWiFS), with limited success (Jakubauskas et al.,
2001; Homer et al., 2012). Results varied by spectral band, targeted
species, and vegetation phenology.

Vegetation height can also be estimated via aerial photogram-
metry. Though traditionally used to determine and map topo-
graphic relief from sets of overlapping (i.e., stereo) aerial
photographs (Wolf and Dewitt, 2000), photogrammetric ap-
proaches to estimating vegetation height has been demonstrated in
forests (Gong et al., 2000; Miller et al., 2000; Brown et al., 2005;
Massada et al., 2006) and mangroves (Lucas et al., 2002; Mitchell
et al., 2007). Application of aerial photogrammetric approaches
has not been widely applied to estimating heights or canopy
characteristics of shrubs in arid and semi-arid environments
because it requires very high resolution (e.g., GSD < 5 cm) images.
However, the availability of higher-resolution digital mapping
cameras as well as increasing use of unmanned aerial vehicles
(Rango et al., 2009) or piloted light aircraft (Booth et al., 2003) for
collecting very large scale aerial imagery has opened up new pos-
sibilities for estimating heights of individual shrubs from stereo
aerial photography.

The relative strengths and limitations of measuring vegetation
heights through aerial photogrammetry must be better under-
stood to be compared against alternate technologies such as
LiDAR. A major advantage of aerial photogrammetry is its ability to
capture heights as well as spectral information simultaneously.
Established monitoring programs like the NRI that are already
acquiring aerial imagery for other purposes (Nusser and Goebel,
1997) could be tasked to capture the imagery in stereo. A poten-
tial drawback, however, is that photogrammetric techniques
cannot model different canopy layers whereas LiDAR can
(Reutebuch et al., 2005). Photogrammetric methods can only de-
pict the tops of vegetation and provide little information on the
understory. How this would affect vegetation height estimation
and its utility in arid and semi-arid environmental monitoring is
not known. Compared with published LiDAR studies, available
stereo aerial photography has higher spatial resolution for dis-
tinguishing vegetation height, but its accuracy and resolving po-
wer need to be explored further.

Our objective for this study was to determine the ability to
accurately estimate vegetation heights using high-resolution stereo
aerial photography at individual-shrub and plot scales.We compare
vegetation height models created from digital stereo aerial
photography with field measurements in the Mojave Desert
(Nevada and California, USA) and discuss limitations and applica-
tions of the technique for broad-scale ecosystem monitoring.

2. Materials and methods

2.1. Study area

This study was conducted in the Lake Mead National Recreation
Area (LMNRA), Nevada, USA (36� 90 2800 N, 114� 360 2800 W) and the
Mojave National Preserve (MNP), California, USA (35� 180 300 N, 115�

330 1000 W; Fig. 1a). We selected 22 upland plots in the LMNRA and 4
upland plots in the MNP, each 50 � 50 m (See Supplementary file
for plot locations and characteristics). Elevation of the LMNRA plots
ranged from 373 to 1000 m above sea level (ASL) and annual pre-
cipitation ranged from 11.4 to 19 cm. The MNP plots were at an
elevation of 1500 m ASL and averaged 26 cm of precipitation yearly
(WorldClim, 2005). Plot slopes ranged from 0 to 13�.

Vegetation in the selected plots was semi-arid shrublands
typical of the Mojave Desert Major Land Resource Area (Natural
Resource Conservation Service, 2006). The plots were selected to
capture a range of variability of plant community composition and
ground cover (see Duniway et al., 2011). Dominant shrubs in the
LMNRA plots included creosote bush (Larrea tridentata (DC.) Cov-
ille), catclaw acacia (Acacia greggii A. Gray) and burrobush (Am-
brosia dumosa (A. Gray) Payne). The MNP plots were dominated by
blackbrush (Coleogyne ramosissima Torr.) and Joshua tree (Yucca
brevifolia Engelm.).

2.2. Field vegetation measurements

Field measurements of vegetation were taken at the plot level
and the individual shrub scale. Plot-level measurements were
made inMarch 2009 as part of a project comparing field and image-
derived estimates of vegetation cover (Duniway et al., 2011). These
data were used here to evaluate how well stereo imagery could be
used to estimate average vegetation height and height diversity
within a field plot. In December 2011 (2 years and 9 months after
image acquisition, see below), we measured height and crown
characteristics of individual shrubs in five LMNRA plots to assess
the ability to estimate maximum shrub height, mean height, and
crown area from stereo imagery.

Vegetation cover proportions and heights were measured in
March 2009 using the line point intercept with heights method
described by Herrick et al. (2009). At each plot, six evenly-spaced
50-m transect lines were oriented in a north and south direction.
Vegetation intercepting a 1-mm diameter pin was recorded to the
species every meter along each transect (300 samples/plot). All
vegetation and ground cover that intercepted the pinwas recorded,
though only the first interception (i.e., top hit) was used for this



Fig. 1. a) The study area was comprised of 50 m � 50 m vegetation plots, 22 of which were located in the Lake Mead National Recreation Area, Nevada, USA, and 4 were located in
the Mojave National Preserve, California, USA. Black dots represent each of the 26 plots. b) Three overlapping color-infrared aerial images with ~60% overlap were acquired for each
plot in March 2009.
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study. Vegetationwas grouped into two categories: woody (shrubs,
sub-shrubs, succulents, trees) and non-woody (grasses, forbs).

Vegetation heights (woody and herbaceous) were recorded
every 5 m along each transect (60 sample/plot) using a 170 cm long
aluminum rod and a circular plexiglass disk of 15-cm radius,
weighing 385 g. Two height measurement methods were
employed. First, following Herrick et al. (2009), the disk was slowly
lowered down the rod until it touched the tallest vegetation and
the height at the bottom of the disk recorded to the nearest cm
(maximum height method). Second, following Karl and Nicholson
(1987, see also Gonzalez et al., 1990), the disk was then raised
~5 cm above the tallest vegetation within 15 cm of the rod and
allowed to freefall. The point at which the disk stopped was then
measured to the nearest cm (drop-diskmethod). All vegetation, live
or dead, was included in these measurements.
Fig. 2. a) Tie points (red dots) are ground objects that can be identified in multiple overl
mensions, coordinates of the camera and the airplane orientation (roll, pitch, yaw) at the tim
red). Figure adapted from Erdas 2009. (For interpretation of the references to color in this
We conducted the individual shrub height measurements at five
LMNRA plots in December 2011. We measured 27 shrubs (13
catclaw acacia, 12 creosote bush, and 2 burrobush). These species
were chosen because they were the most commonwithin the plots
and exhibited very different growth forms (e.g., tall and sparse to
short and dense). We stratified our sampling of shrubs into small
(12), medium (9), and large (6) to test our ability to accurately es-
timate heights for varying shrub sizes. For each shrubwemeasured
its maximum height, longest canopy diameter, and the canopy
diameter perpendicular to the longest axis to estimate crown area
using an elliptical model (see Rittenhouse and Sneva, 1977). To
estimate mean height of each shrub, we used a minimum of 25
systematically spaced height measurements using a marked rod
and a 10 � 10 cm plastic disk. The disk was lowered down the rod
until the tallest vegetation touched it. This height was recorded to
apping images b) Principles of aerial triangulation: using known internal camera di-
e of exposure, we can calculate the X, Y, and Z ground coordinates of the tie points (in
figure legend, the reader is referred to the web version of this article.)



Fig. 3. Imagery draped over reconstructed 3D digital surface model created through aerial triangulation of overlapping images. 1 cm on the image ~ 1 m on the ground.
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the nearest cm. Heights were read every 20 cm for small shrubs and
every 40 cm for larger shrubs. Because the field measurements
were conducted 2 years and 9months after image acquisition, there
could be a marginal mismatch with the imagery due to shrub
growth or other environmental factors.

2.3. Image acquisition

Three overlapping color-infrared aerial images were acquired
for each plot in March 2009 from a fixed wing Cessna aircraft. The
images were taken using the digital frame camera UltraCamX
Fig. 4. The image workflow to measure vegetation heights from high-resolution (HR) ster
distance (GSD); b) a digital surface model (DSM, 5 cm GSD) was created from overlapping H
hand digitized into a polygon layer; d) all pixels in the DSM were converted to points and tho
elevation; e) an interpolation method was employed with the remaining ground points to e
terrain model (DTM); f) the DTM was subtracted from the DSM on a pixel by pixel basis to
(Vexcel Imaging; Graz, Austria) at a flying height between 333 and
474 m above ground level (AGL), yielding a ground sample dis-
tance (GSD) of 2 cme3 cm. All images we acquired within 2 h of
solar noon to minimize shadows. Images included four spectral
bands (blue [445e515 nm], green [510e590 nm], red
[600e680 nm], near infrared [710e830 nm]) and were recorded at
16-bit depth. The three overlapping images were acquired on a
single pass taken approximately 2 s apart to produce ~60% overlap
(Fig. 1b). Each image had a ground footprint of approximately
215 m (along track) x 330 m (cross track). Precise camera co-
ordinates and aerial orientation was measured using an Applanix
eo aerial imagery: a) a single raw HR true color image with 2.3 cm ground-sampling
R stereo aerial imagery by aerial triangulation; c) vegetation (green) was identified and
se representing vegetation were deleted, leaving only points that represent the ground
stimate the unknown ground elevations underneath the vegetation and create a digital
create a vegetation heights layer.
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POS AV (Leek Crescent Richmond Hill, ON Canada) global naviga-
tion satellite system (GNSS) and inertial measurement unit (IMU).
All image acquisition, georeferencing and production of a single
orthorectified image for each plot was completed by Aerographics
Inc. (Salt Lake City, UT).

2.4. 3D surface model reconstruction

Viewing a single point on the ground from multiple aerial per-
spectives (i.e. overlapping images) allows us to measure the height
of ground features. Aerial triangulation is the basis for quantita-
tively deriving these heights by establishing a geometric relation-
ship between the image, the camera, and the ground, frommultiple
perspectives. The required inputs include the camera dimensions
(focal length, physical pixel size), the X, Y, and Z coordinates of the
camera at the time of exposure, the airplane orientation (roll, pitch,
yaw), and usually precise coordinates of ground control points. A
set of distinctive points (tie points) that can be identified in the
overlapping portion of each of the images are defined (Fig. 2a). The
tie points could be a ground feature such as a rock, shrub, or any
other object identifiable in all of the images. The X, Y, and Z ground
coordinates of these tie points are then estimated based on the
angular relationships inherent in the geometric model created from
the known inputs (Fig. 2b). Because the camera, the image point
(specific pixels), and the tie point occur along a straight line optical
ray, the ground coordinates of the tie point are where the optical
rays from each exposure station intersect.

The model inputs including those gathered from the GNSS/IMU
systemwill have some small location error associatedwith them (up
to 0.3m in our system). In aerial triangulation, if reliable and precise
ground control points are available, the actual positions and orien-
tations of the camera canbedetermined. If groundcontrol points are
not available, however, we are left using the initial estimates of the
inputswhich could lead to inaccurate calculations of ground feature
heights, especially at the cm scale. Fortunately, it is possible to
reduce the total error by creating a triangulation model that is
relatively correct as opposed to absolutely correct. In a relative
model, the X, Y, and Z output coordinates will not be correct in
reference to sea level, but correct within the model itself. For both
model types, the triangulation is carried out using a least-squares
bundle-block method. This is an iterative approach that distributes
the error across the model and seeks to minimize the deviation
between input values and the calculated values. In an absolute
model, errors canpropagate fromeachof the three exposure stations
to calculate the coordinates of the tie points. In a relative model, we
state that the first exposure station has no position or orientation
error,while the remaining twostations are allowed tochangeduring
the iterative process. This essentially eliminates the error potential
from one source but with a consequence of producing outputs in a
coordinate system that does not correspond to the real world. This
will, however, work for our purposes as we can measure vegetation
heights fromwithin the relative model.
Table 1
Individual shrub comparisons between imagery and field measurements using least
squares linear regression.

Independent
variable

Dependent
variable

r RMSE Intercept Slope P(slope ¼ 0)

Imagery
maximum
height

Field
maximum
height

0.709 41.791 cm 92.097 0.715 <0.001

Imagery mean
height

Field mean
height

0.632 22.199 cm 53.258 1.209 <0.001

Imagery crown
area

Field crown
area

0.940 1.718 m2 0.990 1.019 <0.001
Once the geometric model has been established through aerial
triangulation, a process called digital image matching looks at each
pixel in an image and finds the matching pixels in the other over-
lapping images. Precise matching is aided by model geometry and
the correlation of gray-scale pixels within a neighborhood of the
pixel of interest. TheX,Y, andZ coordinatesof eachof thesepixels are
calculated in the samewayas the tie points (Fig. 2b). The final step is
to create a spatial data layer that represents these coordinates.

From the overlapping images, we performed aerial triangulation
and digital image matching to create 3D digital surface models
Fig. 5. Comparing imagery and field measurements of individual shrubs using least
squares linear regression for a) maximum height b) mean height and c) crown area.



Table 2
Individual shrub image-to-field ratio KruskaleWallis one-way analysis of variance
on ranks.

Category N Median DF H Value P Value

Max height
Shrub Size 27 2 4.028 0.133
Small 12 0.487
Medium 9 0.638
Large 6 0.612
Species 27 2 3.819 0.148
Burrobush 2 0.857
Creosote bush 12 0.507
Catclaw acacia 13 0.523
Mean height
Shrub Size 27 2 4.802 0.091
Small 12 0.266
Medium 9 0.309
Large 6 0.406
Species 27 2 4.962 0.084
Burrobush 2 0.526
Creosote bush 12 0.298
Catclaw acacia 13 0.328
Crown area
Shrub Size 27 2 0.667 0.717
Small 12 0.751
Medium 9 0.944
Large 6 0.864
Species 27 2 5.402 0.067
Burrobush 2 1.248
Creosote bush 12 0.776
Catclaw acacia 13 0.810
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(DSM, 5 cm GSD) of each plot using LPS 2010 (ERDAS Norcross, GA;
Fig. 3). Approximately 600 tie points were identified in each image
set using an automated LPS algorithm. We did not collect ground
control points as this would defeat the purpose of using remote
sensing to reduce field visits and total project costs. Accordingly, we
generated a relative 3D DSM. We fixed the coordinates of the first
exposure station as if they had no error and also fixed just the X
coordinate of the second image to establish a fixed scale for the
model which related image distance to ground distance. The output
was a raster spatial data layer.

In ideal cases, when the aerial triangulation inputs are error-
free, planimetric ðsX; sYÞ and height ðsZÞ accuracies of ground co-
ordinates are estimated using the following equations:

sX ¼ sY ¼ sp*S (1)

sZ ¼ sp*S*
H
B

(2)
Table 3
Plot-level vegetation height comparisons between imagery and field measurements usin

Independent variable Dependent variable r

Imagery mean height Field mean height
(maximum height method)

0.746

Imagery mean height Field mean height
(drop-disk method)

0.883

Woody cover proportion Image-to-field ratio
(maximum height method)

0.701

Woody cover proportion Image-to-field ratio
(drop-disk height method)

0.665

Vegetation cover proportion Image-to-field ratio
(maximum height method)

0.370

Vegetation cover proportion Image-to-field ratio
(drop-disk height method)

0.472

Imagery standard deviation Field standard deviation
(maximum height method)

0.723

Imagery standard deviation Field standard deviation
(drop-disk height method)

0.620
Where: H is the flying height, B is the distance between the centers
of two successive images, S is the image scale, and sp is the parallax
accuracy estimated as

ffiffiffi

2
p

si, where si is the standard error of the
image coordinate measurements in two photos, generated while
choosing tie points. The standard error of the image coordinates
measurements is usually a function of the image resolution and the
level at which we can detect point features in the images. For most
automatic tie point detection algorithms si averages 1 =3 of the
camera physical pixel size. For this study the flight height (H) was
400 m AGL, the distance between the centers of two successive
images (B) was approximately 86m, the image scale (S) was 1:3194,
and si was 0.33 pixels. For the UltraCamX, the physical pixel size is
7.2 mm. Substituting these numbers in equations (1) and (2), the
expected accuracies for the ground points are sX ¼ sY ¼ 1:1 cm
and sZ ¼ 4:9 cm, respectively. Actual accuracy for each image set
varied depending on the accuracy of the inputs, but the averagewas
sX ¼ sY ¼ 1:2 cm (range 0.5e1.8 cm) ands Z ¼ 4:5 cm (range
2.8e6.4 cm).

2.5. Calculating vegetation heights

The DSMs we created represent the heights of all objects on the
surface including vegetation, rocks, and the ground. To measure
just vegetation, we first needed to identify and remove all of the
vegetation features and then interpolate the ground surface height
under the vegetation (Fig. 4). We digitized vegetation from the
original aerial images draped over each DSM using ArcGIS 10.0
(ESRI Redlands, CA). All vegetation that was at least 5 cm higher
than the surrounding area was hand digitized into a polygon layer.
The DSM was then converted into a point cloud with one point
representing each of the 5 cm pixels. Points within the vegetation
polygons were deleted. We then used inverse distance weighting
interpolation to estimate ground heights beneath vegetation can-
opies (Watson and Phillip, 1985). This created an approximate
digital terrain model (DTM, or bare-earth model). The DTM was
subtracted from the DSM to create a layer of vegetation heights.

2.6. Comparing field and image vegetation heights

Using the vegetation heights layer, we identified each of the
individual shrubs that were measured in the field. We recorded
from the vegetation heights layer each shrub's maximum height
and estimated crown area from measurements of the diameter
along the longest axis and the perpendicular axis. Crown area
measurements were used to assess the ability of our methods to
capture the footprint of the shrub. To estimate the average height of
each shrub, we first ran a block-statistic routine (i.e., non-
g least squares linear regression.

RMSE Intercept Slope P(slope ¼ 0)

13.994 cm 17.964 1.473 <0.001

4.232 cm 6.727 0.746 <0.001

0.143 0.0472 1.038 <0.001

0.304 0.177 2.005 <0.001

0.186 0.138 0.294 0.063

0.359 0.272 0.764 0.015

12.980 cm 19.530 0.995 <0.001

7.625 cm 14.245 0.442 <0.001
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overlapping moving-window analysis) on the imagery to find the
highest value within a 10 cm � 10 cm window around each pixel.
This was done to more closely match the sampling method in the
field which recorded the highest vegetation that intercepted a
10 cm � 10 cm disk. These heights were averaged for each shrub
individually.

At the plot level we replicated the sampling design of the field
work by generating 60 systematically-placed points each buffered
by a circle with a radius of 15 cm. The greatest vegetation height
within the circle was recorded, and these heights were averaged
over all 60 points per plot. The 60 systematic points were not
intended to sample the same locations that were measured in the
field, but to mirror the field method as closely as possible. Com-
parisons of field and image data were done at the plot-level, not on
a point-by-point basis.
2.7. Analysis

We used Pearson correlations to determine the strength of the
relationship between the image and the field measurements. To
assess the accuracy of our vegetation height modeling we
compared image and field measurements using least squares linear
regression. For individual shrubs, we ran regressions for maximum
height, mean height, and crown area. To assess if accuracy differed
between shrub size and species, we conducted analyses of variance
(ANOVAs) comparing a ratio of image-measured to field-measured
values ðimage measurement=field measurementÞ for shrub size and
species separately. We used the KruskaleWallis non-parametric
one-way ANOVA on ranks because some of the data exhibited un-
even variances.

At the plot level we ran Pearson correlations and linear re-
gressions comparing field measurements to image-estimates for
mean and standard deviation vegetation heights. To determine if
the amount and composition of vegetation cover affected our
Fig. 6. a) Comparing plot mean between imagery and maximum height field method using l
field method using least squares linear regression c) Plot mean image-to-field ratio betwee
species d) Plot mean image-to-field ratio between the drop-disk field method and the ima
ability to estimate vegetation heights, we compared the ratio of
plot-level image to plot-level field measured height with the total
vegetation cover and also cover of woody vegetation using linear
regression. Finally, we compared the image-to-field measurement
ratio by dominant shrub species for each plot to see if image-based
estimates were more successful in certain shrub communities. A
ratio of 1 indicated very good accuracy. All of the plot-level analyses
were conducted using the maximum height field method and the
drop-disk field method.
3. Results

3.1. Individual shrubs

For individual shrub maximum height we found a moderately
strong linear relationship between heights measured in the field
and those estimated from the imagery (r ¼ 0.709,
RMSE ¼ 41.791 cm; Table 1, Fig. 5a). Imagery measurements,
however, were always lower than field estimates, except for one
shrub. Image-to-field height ratios for maximum height averaged
0.58 but ranged from 0.18 to 1.21. Larger shrubs on average had
better image-to-field ratios compared with smaller shrubs, yet
these differences were not statistically significant with a ¼ 0.05
(Table 2). Image-to-field height ratios by species also did not show
any significant differences. However, burrobush, a compact and
dense shrub, had ratios closest to 1 than any species, (0.85 and 0.86)
though only two shrubs of this species were sampled.

Mean height for individual shrubs was significantly under-
estimated by the imagery measurement technique (Fig. 5b), and
showed a poorer relationship to field measurements than other
shrub metrics (r ¼ 0.632, RMSE ¼ 22.199 cm; Table 1). Image-to-
field height ratios for mean height averaged 0.32 (range
0.12e0.61). Larger shrubs on average had better image-to-field
ratios compared with smaller shrubs, yet these differences were
east squares linear regression b) Comparing plot mean between imagery and drop-disk
n the maximum height field method and the imagery symbolized by dominant shrub
gery symbolized by dominant shrub species.



Fig. 7. a) Comparing plot standard deviation between the imagery and the maximum
height field method using least squares linear regression b) Comparing plot standard
deviation between the imagery and the drop-disk field method using least squares
linear regression c) Histogram of all height measurements in all plots combined
(n ¼ 1513) from the imagery, the maximum field heights method, and the drop-disk
field method.
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not statistically significant (Table 2). Compact shrubs like burro-
bush had relatively high ratio values (0.5 and 0.55) whereas cre-
osote bush and catclaw acacia had lower averages. Differences
between shrub species were not statistically significant.

Image-based estimates of crown area for individual shrubs more
closely matched field measurements than did the height metrics,
but were still on average lower than field-based estimates. There
was a strong linear relationship between the field and image based
methods (r ¼ 0.940, RMSE 1.718 m2; Table 1, Fig. 5c). Image-to-field
ratios for crown area averaged 0.81 (range 0.13e1.26). Burrobush
had high image-to-field ratios (1.22 and 1.26) that actual over-
estimated the crown area. Larger shrubs were againmodeled better
than smaller shrubs. However, neither species nor size had any
significant differences (Table 2).

3.2. Plots

At the plot level, image estimates of vegetation height were also
lower than field height measurements. Using the maximum height
method, there was a moderately strong linear relationship between
image-estimated and field measured mean height (r ¼ 0.746, RMSE
13.994 cm), but that relationship was much stronger with the drop-
disk method (r ¼ 0.883, RMSE 4.232 cm), which removed much of
the influence of sparse vegetation or thin branches at the top of the
canopy (Table 3, Fig. 6a, b). Plot level image-to-field ratios using the
maximum height field method averaged 0.25 (range 0e0.75;
Fig. 6c) while ratios with the drop-disk field method were much
better with an average of 0.57 (range 0e1.16; Fig. 6d). The dominant
shrub species within the plots affected the image-to-field ratios for
both field methods. Plots dominated by saltcedar (Tamarix ramo-
sissima Ledeb.), a shrub with a very thin crown structure, were
modeled very poorly compared with the field methods. Conversely,
plots dominated by shrubs such as blackbrush, creosote bush, and
burrobush, which typically grow in a more compact form, were
modeled better.

We found a positive linear relationship between plot level
image-to-field ratios and woody cover proportion (Table 3) using
themaximum height method (r¼ 0.701, RMSE 0.143) and the drop-
disk method (r ¼ 0.665, RMSE 0.304). Total vegetation cover
(Table 3), however, was aweak indicator of plot level image-to-field
ratios using the maximum height method (r ¼ 0.370, RMSE 0.186),
and the drop-disk method (r ¼ 0.472, RMSE 0.359).

Standard deviation of vegetation heights within plots (a mea-
sure of height diversity) was on average lower in the imagery
(16.36 cm) than in the maximum height field method (35.81 cm)
and the drop-disk field method (21.47 cm). There was a moderately
strong linear relationship between imagery and the maximum
height field method standard deviations (r ¼ 0.723, RMSE
12.98 cm; Table 3, Fig. 7a), which is very comparable to the rela-
tionship for mean height of the plot. However, using the drop-disk
field method, the image-to-field relationship of standard deviation
was weaker than the maximum height method (r ¼ 0.620, RMSE
7.62 cm; Table 3, Fig. 7b). This result was affected by poor corre-
lation in the plots dominated by saltcedar.

Histograms of all the height measurements across all plots for
each method, illustrated how the diversity of heights differed be-
tween the imagery and field methods while minimizing the influ-
ence of any one plot (Fig. 7c). The histogram for image-based
heights was fairly similar to the drop-disk histogram except in
the �5 cm bin where there were 123 more samples. Most of the
herbaceous vegetation (grasses and forbs) could not be identified in
the imagery, and were therefore assigned to the �5 cm bin. The
same phenomenon was even more pronounced comparing the
imagery heights to the maximum height field method with a dif-
ference of 578 samples in the �5 cm bin.
4. Discussion

Our results demonstrate the potential to use high-resolution
digital stereo imagery to estimate heights of shrubs and charac-
terize plot-level vegetation structure within some limitations.
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While modeling large shrubs was generally more successful than
small shrubs, the density (i.e., compactness) of a shrub appeared to
be the most important factor estimating its height from imagery.
This is well illustrated by two examples (Fig. 8). Shrubs with a
dense crown or compact shape are more likely to match the field
measurements while shrubs with sparse growth forms and thin
branches are likely to be greatly underestimated, regardless of size.
We found good height estimates for compact, dense shrubs like
burrobush and plots dominated by blackbrush. This suggests that
stereo-image height estimation might do well in other systems
featuring dense shrubs like sagebrush (Artemisia spp.) or juniper
(Juniperus spp.).

Successful characterization of plot-level vertical structure
depended not only on the types of shrubs present but also overall
species composition in the plot. Grasses and forbs were generally
too small to be adequately modeled with the resolution of imagery
we used. Therefore, estimates of vertical structure will be more
accurate in plots having low herbaceous cover and high amounts of
dense shrubs.

In almost all cases image-based estimates of height were lower
than field-based measurements. This result is not unique to our
study. Glenn et al. (2011), Mitchell et al. (2011), and Streutker and
Glenn (2006) all reported underestimation of shrub heights from
LiDAR data in sagebrush steppe environments. All of these studies
used a maximum height method for recording vegetation height in
the field. Differences in how vegetation was observed and
measured in the field versus how it appears in the imagery may
contribute to underestimation of heights using remote sensing or
photogrammetric techniques. With the exception of the drop-disk
method, field measurement methods record the height of the
tallest vegetation encountered. This often was a thin branch or leaf
that extended above the main shrub canopy. Even with high-
resolution imagery, many of these small branches get filtered out,
leaving only the main canopy. The result is a mismatch in how
Fig. 8. The top two images show that dense or compact shrubs (Ambrosia dumosa pictured
images show that thin shrubs with long branches (Acacia greggii pictured here) are more d
vegetation height is perceived between the two methods. This
definition discrepancy was compounded when estimating mean
shrub height through multiple measurements. With more research
and calibration it may be possible to develop standard corrections
for relating field-measured and stereo-image-estimated heights for
different shrub canopy structures. However, the adoption of a field
technique that better matches the stereo-image characteristics may
be a better option.

The drop-disk method of measuring vegetation height is more
in line with how vegetation is represented by the DSM and gave
much better relationship to stereo-image heights at the plot level.
Drop-disk methods have been shown reliable for estimating plant
attributes like crown area or aboveground biomass for agricultural
as well as natural systems (Bransby et al., 1977; Karl and Nicholson,
1987; Gonzalez et al., 1990) but have not seen widespread use
outside of agricultural applications. Use of maximum height
methods in monitoring programs like the NRI or BLM's AIM may be
due to their inherent simplicity (i.e., not needing special equipment
just for measuring height) and objectivity (i.e., observers easily
trained and results consistent between observers). Drop-disk
methods require more effort to implement due to equipment re-
quirements, additional training for observers, and the need to
calibrate to site conditions (Karl and Nicholson, 1987). However, if a
technique like drop-disk height more closely matches how vege-
tation height is estimated from remotely-sensed products, then it
may be worth the effort.

5. Conclusion

High resolution digital photogrammetry is a promising yet
under-researched tool for measuring vegetation structure in arid
and semi-arid ecosystems. Though improvements are needed in
DTM automation and relating field-to-image measurements, this
technology could be useful for broad-scale monitoring and
here) can be modeled with minor underestimation, regardless of size. The bottom two
ifficult to model accurately.



J.K. Gillan et al. / Journal of Environmental Management 144 (2014) 226e235 235
assessment. With the popularity of sensors like LiDAR in the pub-
lished literature, photogrammetry may be seen as an “old-fash-
ioned” way of getting height information. However, many resource
monitoring programs are already collecting aerial photography, and
with some modifications (e.g., digital image acquisition, higher
resolution imagery, adequate image overlap) vegetation heights
could be extracted from that imagery. Also, photogrammetric
methods could be used on historical or archived stereo imagery for
retrospective vegetation studies. Unmanned aerial systems (UAS)
for collecting aerial imagery, a technology that is seeing increasing
application in natural resource monitoring (Laliberte et al., 2010,
2011), could provide a less expensive and safe means for collect-
ing high-resolution stereo imagery.
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