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Abstract.
data and metadata sharing, standardization, and accuracy. However, many scientists have not accepted the
data deluge as an integral part of their research because the current scientific method is not scalable to
large, complex datasets. Here, we explain how integrating a data-intensive, machine learning approach
with a hypothesis-driven, mechanistic approach can lead to a novel knowledge, learning, analysis system
(KLAS) for discovery and problem solving. Machine learning leads to more efficient, user-friendly analytics

Most efforts to harness the power of big data for ecology and environmental sciences focus on

as the streams of data increase while hypothesis-driven decisions lead to the strategic design of
experiments to fill knowledge gaps and to elucidate mechanisms. KLAS will transform ecology and
environmental sciences by shortening the time lag between individual discoveries and leaps in knowledge
by the scientific community, and will lead to paradigm shifts predicated on open access data and analytics
in a machine learning environment.
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INTRODUCTION

The data deluge—the large quantity of multifar-
ious and validated data and information moving
at faster rates—undoubtedly provides opportu-
nities for the greatest scientific and technological
advances of the early 21st Century (e.g., Ginsberg
et al. 2009, Brumfiel 2011, King 2011, Manyika et
al. 2011). These “big data” include both legacy
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data that are increasingly being rescued and
captured digitally, and new data that are being
acquired through autonomous or manual meth-
ods (Michener and Jones 2012, Peters et al. 2013).
In ecology and related environmental sciences,
datasets are growing in size, complexity, and
type as a result of technological advances in
sensor and sensor platform technologies (space-,
air-, land-, aquatic-, marine-, and organismal-
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based), computational and analytical improve-
ments in simulation models, and improved
methodologies for probing samples, such as
genome sequencing and the generation of ‘omics’
data (Drake et al. 2006, Hart and Martinez 2006,
Cohen et al. 2009, Luo et al. 2011, Pfeifer et al.
2012, Porter et al. 2012). Research and develop-
ment into using this data deluge have focused on
cyber-infrastructure (CI) hardware and software
constraints, the discovery and access to “dark
data” and “deep web” information, and cultural
concerns about sharing data (Price and Sherman
2001, Heidorn 2008, Trelles et al. 2011, Michener
and Jones 2012, Parr et al. 2012, Peters et al
2014a) that lead to calls for open science
(Wolkovich et al. 2012, Hamilton et al. 2013). In
spite of these advances in data acquisition and
publishing, however, the use and re-use of data
are not fully exploited.

Surprisingly, a key challenge has not been
effectively addressed: big data are not readily
accepted or utilized by most ecologists as an
integral part of their research because the
traditional scientific method is not scalable to
large, complex datasets. In fact, only a small
fraction of current data is actually reused by
scientists (Reichman et al. 2011), and most data
that are used (ca. 50%) are from relatively small,
locally collected and stored datasets (Science
Staff 2011). Even though there is overwhelming
evidence of the importance of existing and
emerging large datasets to fields as diverse as
medicine, biology, and earth science (Garrett et
al. 2006, Delaney and Barga 2009, Robinson et al.
2010, Hay et al. 2013), we believe that few
ecologists will take advantage of these data even
if the technological and cultural challenges are met.

Typically, the scientific method focuses on a
small set of high quality data that are often
collected, maintained, and analyzed locally by an
individual investigator with a bias towards
acquiring new data. Long time lags (i.e., years)
often occur between individual discoveries and
leaps in knowledge. These lags are associated
with the time required for publication of results
and for others to recreate the analyses and
findings even when the data and metadata are
readily accessible. Thus, serious consequences
can result when a “small data” approach is used
to address complex scientific problems (Hamil-
ton et al. 2013).
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Alternatively, data-intensive approaches using
machine learning developed in other fields, for
example to provide information retrieval, sup-
port business decision-making, and improve
overall user experience on the Internet (Bryan
and Leise 2006, Ginsberg et al. 2009), can explain
patterns in ecological data. However, these
correlation analyses of large quantities of mixed
quality data, and numerous queries and analyses
have limited direct application to scientific
research where understanding underlying pro-
cesses is paramount to knowledge discovery and
problem solving (http://nyti.ms/1kgErs2). Thus,
new and urgent solutions are needed to better
exploit ecological data and to capacitate future
generations of ecologists.

We contend that fundamental and urgent
changes are needed in the way ecologists
conceptualize and solve problems—changes that
go beyond new tools, technologies, and infra-
structure. In order to scale the scientific method
to allow ecologists to take advantage of the data
deluge, what is needed is a knowledge-driven,
open access system that “learns” and becomes
more efficient and easier to use as streams of
data, and the number and types of user
interactions, increase—similar to how internet
searches and recommender systems work (Bryan
and Leise 2006; http://microsoft.com). Science is
on the verge of a revolution, but for this to occur,
scientists must radically change their way of
thinking and their way of doing science to take
advantage of the deluge of data and its global
accessibility (Friedman 2005, Tolle et al. 2011).
This paradigm shift is necessary for scientists to
push the frontiers of knowledge discovery as
well as to make important contributions towards
solving the most pressing environmental prob-
lems facing society, today and in the future (NRC
2001, Sutherland et al. 2009, Peters 2010, Fleish-
man et al. 2011, Peters et al. 2014aq).

Here, we present a novel soon-to-be automat-
ed Knowledge Learning and Analysis System
(KLAS) that integrates a data-intensive, machine
learning approach with a hypothesis-data-driven
and process-based approach to take advantage of
the relative strengths and offset the limitations of
each approach when used in isolation (Fig. 1).
This approach begins with a theory leading to
hypotheses that are tested iteratively using data
from a variety of sources. New experiments are
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Fig. 1. Iterative, process-based approach with incremental learning. This approach begins with a theory leading
to hypotheses that are tested iteratively using data from a variety of sources. New experiments are conducted for
the strategic collection of data based on knowledge gained from existing data. The knowledge base expands as
more data are used and reused, and explanatory and predictive relationships are developed from statistical and
simulation models. Products, including scenarios of future conditions with consequences for ecosystem services,
and tools to transfer information to the public, resource managers, and decision-makers are developed. Infusing
this scientific process with machine learning leads to more rapid refinements to theory and feedbacks to new data
collection than possible by hypothesis-driven or data-intensive approaches used in isolation.

conducted for the strategic collection of data
based on knowledge gained from existing data.
The knowledge base expands as more data are
used and reused, and explanatory and predictive
relationships are developed from statistical and
simulation models. Products, including scenarios
of future conditions with consequences for
ecosystem services, and tools to transfer infor-
mation to the public, resource managers, and
decision-makers are developed. Infusing this
scientific process with machine learning will lead
to more rapid refinements to theory and greater
feedbacks to new data collection than possible
using hypothesis-driven or data-intensive ap-
proaches used in isolation.

We first describe the traditional approaches,
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and how our approach to the scientific method
integrates them. We then illustrate how existing
long-term datasets can be reused in an iterative
analysis to generate, test, and refine subsequent
hypotheses, and how this leads to the strategic
collection of new data. Finally, we explain how
this manual process can be automated as a linked
knowledge-learning-analytics system (KLAS) to
test hypotheses in diverse ecosystems using a
combination of mixed quality data, both individ-
ual investigator-generated and large federated.
Based on its initial success, we believe KLAS has
tremendous potential to transform the way
ecologists think about big data and how, through
the development of a new suite of open access
software, ecologists can better take advantage of
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Fig. 2. The traditional hypothesis-driven scientific approach focuses on collecting new or reusing high quality
data, primarily collected by the individual scientist, with selective use of ancillary data. Source data
manipulations and analytics are maintained on the personal computer or workspace as part of the investigator’s
toolkit. Hypotheses are tested iteratively to understand mechanisms driving responses. Results and findings are
made available to the community after a time lag through publications and internet sites. Credit for the idea
remains with the individual, and the theory is refined through time with individual and community input.

the data deluge and move science rapidly
forward.

CURRENT APPROACHES TO THE DATA DELUGE

Although we present two current approaches
(hypothesis-driven, data intensive) as a distinct
dichotomy that has been studied by philosophers
of science (Callebaut 2012), debated by some
(Golub 2010, Weinberg 2010), and advocated for
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one approach or another by others (Kelling et al.
2009), we recognize that a gradient exists
between the two approaches. Individual scien-
tists may operate anywhere along the gradient,
and the complementarity of the approaches was
recently promoted conceptually for biodiversity
studies (Nichols et al. 2012).

The hypothesis-data driven approach, as practiced
most frequently by ecologists and environmental
scientists, is a primarily sequential, yet iterative
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process that begins with a theory and leads to
one or more hypotheses (Fig. 2). High quality
source data collected or directed by a scientist in
an experimental or observational setting are
supplemented with ancillary data from data
repositories or federated databases to test the
hypotheses. The statistical analyses used for
testing hypotheses often require: (1) aggregating
source data to standard spatial and temporal
units, and (2) transforming data to convert
structural characteristics (i.e., measured, sensed,
or collected data, such as plant biomass) to
functional responses (e.g., plant growth). The
theory is refined based on the outcome of the
analyses, and new or modified hypotheses are
developed and subsequently tested with addi-
tional data from new experiments or observa-
tions. Products (e.g., peer-reviewed publications),
tools (e.g., websites, computational scripts), and
open access to the data and metadata in public
repositories allow the community of scientists to
build on these results to refine the theory with
additional experiments, to develop new theories,
and to conduct new analyses. A primary driver
of this approach is that the individual scientist
receives credit for the original ideas, most often
following publication of the papers.

The focus of this approach is twofold: (1) high
quality data, either collected for a specific
question or accessed from known databases, are
analyzed locally on the individual’s computer,
and (2) an individual scientist’s creativity and
contributions to science are preserved. Patterns in
data available from other sources can be used to
support or help to refute hypotheses, but these
phenomenological observations have relatively
little use without an understanding of the
underlying mechanisms elucidated by experi-
mentation, most often conducted by the scientist
asking the question. This approach is the most
direct way to improve understanding; however,
it has limitations related to: (1) an under-
utilization of potentially important data, that
are not easily discovered or used, (2) the testing
of only a small subset of alternative explanations
defined by the observations or observer bias, (3)
the sequential and manual testing of new
hypotheses through time, and (4) the inaccessi-
bility of the aggregated and transformed data
with their analytical programs to the broader
community. These limitations often lead to an
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inefficient use of resources and a delay in
breakthroughs by the community that depend,
at least in part, on the time required for findings
to be published and released publicly. Additional
time is then needed for other scientists to recreate
the aggregated and transformed data from the
source data, and to reprogram scripts that are
seldom publicly available (Michener and Jones
2012). The result is a low probability of identify-
ing rare, yet important processes or drivers of
response, and a high probability of collecting
data that already exist or new data that are not
critical to testing the hypotheses. Thus, even
when high quality data are used, large unex-
plained variance in the functional responses can
arise that are attributed to stochastic processes or
unmeasured interactions.

The data-intensive approach begins with the data,
and uses statistical analyses and machine learn-
ing tools and techniques as the data increase in
size and complexity, to examine correlations
among variables of system response with poten-
tial drivers of that response (Fig. 3). No precon-
ceived relationships are derived from a theory
and many possible relationships are examined.
Sensed, monitored, and measured environmental
data of many types are analyzed from federated
databases, data repositories or virtual databases
(e.g., DataONE [www.dataone.org]; Pangaea
[www.pangaea.de]; Group on Earth Observation
System of Systems [www.geoportal.org]). The
data may undergo aggregation to standard units
in time and space, and transformations may be
needed to create more meaningful variables.
Data mining techniques and machine learning
are often used to improve the selection of
variables and to guide analysis methods. A
benefit of this approach is that as additional data
are included, the analyses become repetitive,
more refined, and thus more efficient. For
example, Google originally used PageRank to
prune and order search queries; new search
algorithms, however became even “smarter” as
the number and types of searches increased over
time, and more and better information was
included in the query algorithms (Bryan and
Leise 2006). Now, power users can direct the
analyses and develop products and tools based
on correlations that are then accessed by the user
community for more specific applications (Gar-
rett et al. 2006, Delaney and Barga 2009).
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Fig. 3. A data-intensive, machine learning method focuses on analyzing massive amounts of data of mixed
quality for correlations without a theory or guiding hypotheses. Machine learning leads to more efficient
analytics (decreasing red arrows) through time as data increase in amount and type (increasing red arrows).
Spurious correlations are possible, along with the identification of infrequent, yet important and novel

relationships.

This approach can find infrequent, but mean-
ingful observations, and can be used for short-
term forecasting (i.e., now-casting) over the time
period when correlations hold (Ginsberg et al.
2009). Ontologies (what entities exist, how such
entities are related within a hierarchy and
subdivided according to similarities and differ-
ences) can be used to identify, retrieve, and
process dynamically multifarious and changing
datasets (Callahan et al. 2011, Del Rio et al. 2013).
Elucidating patterns and correlations can be an
initial step in searching for mechanisms to
explain these patterns. Limitations of this method
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in the sciences result primarily from an inability
to apply a guiding theory in order to: (1)
eliminate spurious results that appear when
correlations among variables are not related to
physical causation, (2) avoid using more data
than are needed to extract knowledge when
boundaries on questions are unknown, (3)
determine when past relationships are poor
predictors of future dynamics, and (4) identify
outliers (Bollier 2010). Additional challenges,
exacerbated without guiding theory, are that
error propagation increases as the number of
variables increases (Peters et al. 2004), and that
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the large quantities of data are often of mixed
quality given the diversity of data sources.
Identifying data with the largest meaning and
filtering out low quality or misleading data are
particularly challenging, but once identified,
tagging data with this information has the
potential to improve the efficiency of future
applications. This approach, though not driven
by a traditional hypothesis-based method, has
become more readily accepted by scientists in
some fields because of success associated with
the Human Genome Project (Cohen et al. 2009).

INFUSING THE ScIENTIFIC METHOD WITH
MACHINE LEARNING

Our integrated approach begins with a knowl-
edge base containing theories by which hypoth-
eses could be generated, either by an individual
or a group of individuals (gray box, Fig. 4). The
hypotheses are iteratively tested and refined
using a number of data sources (federated, big
data; local, small data) and open access analytics
(yellow cloud, Fig. 4). These analytics include the
programming scripts used to create derived data
products (aggregated and transformed data)
from the source data as well as the models
(e.g., conceptual, mathematical, simulation)
needed to test the hypotheses against the theory
or to make predictions.

As part of the linked human knowledge-
analysis process (blue arrows, Fig. 4), the system
learns and builds on previous analyses such that
the analyses become more efficient, and easier to
access and use as users create successful analyses
(linking possibly new theories and hypotheses
with data) and as the volume and types of data
increase (red arrows in Fig. 4). The key machine
learning components of KLAS that allow it to
learn from usage patterns of data sets and
analysis tools include: (1) recommendations of
similar or complementary data sets and analyt-
ical tools based on previous user interactions
with the system, references to relevant research
work, and a history of user interactions with the
system; (2) caching of intermediate results that
may be useful for future users (e.g., data
generated through time-consuming processes,
such as model simulations, computations of
derived and summary features for large datasets,
and solutions to optimization problems); (3)
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precomputing data analysis tasks that could
provide insight to the user, reduce discovery
time, and broaden the user discovery experience.
Precomputing is linked to the nature of the data,
and includes linear and non-linear regression,
decision tree analysis, aggregation, and feature
selection; (4) prefetching data before it is request-
ed based on previous users’ interactions with the
system; and (5) filtering algorithms for flagging or
removing outliers and conducting quality assur-
ance/quality control analyses. Importantly, this
method provides an objective way to flag,
correct, or delete poor quality (e.g., missing or
out of range values, inadequate metadata) or
unimportant data (e.g., extraneous or repetitive
information) identified during the analysis. Be-
cause KLAS extends the knowledge base infor-
mation with how specific datasets relate to
certain theories or hypotheses as part of the
learning process, higher quality, annotated data
and associated metadata are available to future
users, and poor quality or irrelevant data are
flagged.

Making these intermediate and final data
products openly available reduces the time lag
for knowledge transfer from an individual to the
community, and increases the speed of scientific
progress, similar to the community-level sharing
of information and derived data products in
genomics and medicine (Hey and Trefethen
2005). New experiments can be strategically
designed based on feedbacks from the hypothe-
sis-data-analysis loop. Positive feedbacks to the
scientific community using the data and to new
scientific breakthroughs are generated in less
time than currently possible under the traditional
scientific approach. There are also positive
feedbacks to technological advances in CI, and
to the generation of more and different kinds of
federated data. These feedbacks are expected to
lead to future paradigm shifts that depend on,
and lead to advances in, the collection, accessi-
bility, and analysis of big data.

This integrated approach differs from the
traditional scientific method where the analytics
become more complicated and more difficult to
use as data increase in quantity and decrease in
quality (Fig. 2). Because current analytics are part
of individual investigator’s toolkits, the data
aggregations and transformations, and statistical
analyses need to be recalculated and repeated by
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Fig. 4. The traditional modified scientific approach consists of a knowledge, learning, analytics system (KLAS)
as a hypothesis-driven, yet data-intensive method for scientists to effectively and efficiently access and use big
and little data. The approach begins with a theory to generate hypotheses as part of the knowledge base (gray
rectangle) that are tested and refined using data and open access analytics (yellow cloud). Shared learning
between humans and computers (blue arrows) make the data and analyses more efficient, and easier to access
and use as the amount and types of data used by the community increase (red arrows). New experiments are
strategically designed based on this iterative loop. The credit for new ideas remains with individual scientists
(blue symbols in gray rectangle) whereas the analytics and data are developed in collaboration with the broader
scientific community (red symbols in gray box). This approach provides an objective way to filter poor quality
data with feedbacks from the analyses and learning by the system.

other members of the scientific community
before they can be used or reused. As the data
increase in volume, rate, quality, and type, only a
small proportion of the scientific community
currently has the technical skills or personal
connections with colleagues needed to access and
analyze the source data. Alternatively in KLAS,
the derived data products and their analyses as
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well as the source data and metadata (as needed)
are open access with continual change driven by
user-interactions (red arrows, Fig. 3). Machine
learning techniques allow new data to be
incrementally refined, similar to the data-inten-
sive approach, such that the process is scalable to
large datasets. Thus, derivatives of big data will
be easily accessible to the scientific community
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who may or may not be technologically adept.
This integrated approach also differs from the
data-intensive approach where machine learning
and data mining depend on the characteristics of
the data, and correlations are used to examine
known and unknown patterns in the data.
Although correlations can be used to investigate
patterns, scientific understanding and prediction
require knowledge about causation and under-
lying mechanisms governing the patterns (i.e.,
knowledge about theory). As a semi-automated
system guided by frequent human input, KLAS
maintains and learns from the history and use of
source data, programming scripts, and derived
data products, and uses this information to
provide feedback to the user as to the next
logical steps to be undertaken to guide the
refinement of hypotheses.

AN EcoLoacicaL ExampLE oF KLAS

We demonstrate the utility of this integrated
approach to catalyze timely knowledge discov-
ery using an ecological example. We recently
used this approach manually to provide new
insights into controls on primary production
(Peters et al. 2012; 2014b). Here we show how
an automated KLAS that integrates human
knowledge (i.e., the scientific approach) with
machine learning can increase the speed and
effectiveness of the process, and transform
ecology through improved understanding (Fig.
5).

An important theory in ecology is that water
drives dynamics in drylands. A common hy-
pothesis is that Aboveground Net Primary
Production (ANPP) is linearly related to annual
precipitation (PPT). We tested this hypothesis for
desertified shrublands of the Chihuahuan Desert
where grass production is typically very low.
Based on our experience, we developed two
alternative hypotheses: (1) grass production
increases linearly with increases in rainfall, as
theory suggests (Huxman et al. 2004), or (2) grass
production is not related to rainfall based on
previous desertification studies (Huenneke et al.
2002). Grasses may be unable to respond to large
rainfall years on desertified soils with low
organic matter and low rates of infiltration.

The first step to test our hypotheses was to
obtain relevant data for grass production in
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desertified shrublands. In our case, we used our
knowledge to locate 20 years of grass production
data in an open access database (hereafter
referred to as: JRN LTER database) maintained
by the Jornada Long Term Ecological Research
Program (http://jornada.nmsu.edu) from south-
ern New Mexico. In an automated KLAS, as
more users test similar hypotheses and more data
and findings are cached, the system would
recommend to the user the datasets and variables
that could be used, and would prefetch the data
and analyses of highest priority or likelihood of
being used based on these previous users’
interactions. For datasets that were previously
analyzed, these precomputed analyses would be
available to the user. For example, both the data
and the statistical relationship between ANPP
and PPT based on >9000 data points in the
Central Great Plains (published in Sala et al.
[1988] and cited 777 times through 2013) would
be available to users, after the data are part of
KLAS. This improved accessibility to data and
relationships from published papers would allow
users to rapidly build on previous research
without manually re-entering data and recreat-
ing analyses.

The user would then select the datasets to be
analyzed (including user-collected data), and
would perform exploratory analyses to view
patterns in the data (Fig. 5A). Unusual values
identified by the user or by KLAS would be
examined further, and either flagged as outliers
of unknown cause, corrected based on user
knowledge of the data, or maintained as valid
in the dataset. These exploratory analyses,
including the sequence of steps, the findings,
and identification of outliers, would be cached in
KLAS to be used in: developing recommenda-
tions to future users, improving the quality of the
data, and creating filtering algorithms to identify
outliers in future datasets.

In the second step, we used a linear model to
test our hypothesis about the relationship be-
tween grass ANPP and PPT (Fig. 5B). Our results
showed that a linear relationship was significant
for most years, but a cluster of points was clearly
above the regression line (Peters et al. 2012). We
then tried fitting lines to the points using
different forms, such as an exponential curve,
but were unsuccessful in improving the fit of the
regression. In an automated KLAS, the process of
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Fig. 5. A manual version of KLAS was used to identify the predictor variables associated with the processes
leading to nonlinear dynamics in aboveground primary production (Peters et al. 2012, 2014b). Existing long-term
datasets from the Jornada LTER were iteratively analyzed to generate and test hypotheses, and to inform the
subsequent hypotheses and selection of variables and equations for analysis. The approach was also used to
design a simulation model analysis that resulted in a specific hypothesis to be tested with targeted field
experimentation in the future. Here, we show how this process could be automated and informed through
machine learning in KLAS. The hypothesis generation steps will require human input (green text), the analyses
will be conducted by the computer (blue text), and machine learning will inform future decisions and analyses
(red text).
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selecting and testing alternative forms of the
equations would then be cached, and used for
precomputing and prefetching data for future
users.

In the third step, we had two options: we could
either further explore characteristics of precipita-
tion (e.g., seasonality, multi-year patterns), or
search for relationships with additional explan-
atory variables, such as temperature (Fig. 5C). In
examining patterns in precipitation, we discov-
ered that these points were from the years 2004-
2008, a sequence of wet years in southern New
Mexico, USA. When we graphed grass ANPP
through time, the increasing amount of ANPP
through time was evident (blue points), and even
though 2009 and 2010 were average rainfall
years, ANPP remained higher than expected
(Peters et al. 2012). This gave us confidence that
we could explain the patterns in ANPP if we
focused on processes occurring in the sequence of
wet years. In an automated KLAS, the analysis
used to classify individual years (dry, wet,
average) and trends in years (drought, wet
period, no trend) would be cached, and available
to future users. This important distinction of a
wet period in explaining patterns in ANPP is one
example of an ecological insight that is typically
contained only in published papers or through
personal communication that may be challenging
for the scientific community to find, in particular
as information posted on the internet increases.
Caching this information and making it readily
available to the community through a centralized
learning system, such as KLAS, is a paradigm
shift that would likely lead to more rapid
scientific advances than possible using current
approaches.

In the fourth step, we had two options: Option
1: Use a traditional hypothesis-driven approach,
and conduct an experiment to test a small set of
hypotheses about the underlying mechanisms
leading to patterns in ANPP during a multi-year
wet period. A number of measurements would
be needed in addition to ANPP, including soil
water content, root growth, photosynthetic rates,
etc. depending on the processes believed to be
most important. Because the patterns in ANPP
are non-specific, it is likely that either too many
measurements or the wrong variables, time steps,
and spatial resolutions would be obtained. In
addition, given inter-annual variability in precip-
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itation, our experiment would need to run for at
least 5 years before we are likely to have gained
an adequate understanding of the system. At that
point, we could refine our hypothesis, and
possibly conduct another experiment, add new
measurements to the existing experiment or we
may decide to move on to another question.

Instead of conducting an experiment, however,
we used a data-intensive approach. Option 2: Use
expert knowledge to focus on recruitment of
grasses that need to occur before grass produc-
tion can increase (Fig. 5D). Thus, we used
additional long-term data sets in the JRN LTER
database to examine the relationship between
annual precipitation and number of seeds pro-
duced or number of recruits. Because the number
of recruits was nonlinearly related to precipita-
tion, we further examined this relationship to
determine that recruitment is related to summer
precipitation, seed production, and the number
of consecutive wet years (Peters et al. 2014b).
These results provided a partial explanation for
our nonlinear relationship between ANPP and
precipitation in the first step (above), but we still
needed to identify the mechanism behind the
consecutive wet year term. Similar to previous
steps, the process of selecting datasets and
variables in these analyses would be informed
by previous users as part of an automated KLAS.

In the fifth step, we used additional long-term
data to show that rain-use efficiency (RUE) by
perennial grasses increases nonlinearly as the
number of consecutive wet years increases (not
shown). Thus, we refined our hypothesis further
to focus on the accumulation of biomass and
litter beneath individual grass plants that de-
crease evaporation and act as a positive feedback
to fine-scale water availability to plants (i.e.,
Plant Available Water: PAW) (Fig. 5E). Addition-
al long-term data and simulation model analyses
supported the increase in litter and biomass
during the period of wet years, and the increase
in PAW as litter and biomass accumulated (Peters
et al. 2014b). Under an automated KLAS, inputs
and outputs of the model would be cached for
use by future users.

Results from this step are leading to the design
of a new field experiment to test the hypothesis
that the accumulation of biomass and litter
beneath individual grass plants increases PAW
through time beyond the water available by
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rainfall alone. This is a very focused hypothesis
that can be tested over a period of weeks instead
of years. The measurements are restricted to soil
water content at different depths for different
amounts of biomass and litter. This targeted
experiment requires far less time and effort than
a multi-year rainfall manipulation experiment
with many response variables. If the hypothesis
is not supported by this experiment, then we
could repeat the process by generating alterna-
tive hypotheses to be tested via simulation model
analyses, recycling of existing data, or strategic
collection of new data. Under an automated
KLAS, the selection of variables and data would
be recommended to the user based on previous
experiences. Given that one-third of the world’s
land surface is arid and supports over one billion
people, understanding ecological processes re-
sponsible for land restoration from research
conducted in weeks or a few years rather than
decades is essential to the development of land
management policy, particular under a changing
climate.

This example illustrates: (1) how our KLAS
iterative process can reuse existing data to refine
hypotheses and design new experiments, and (2)
the logical steps required and decisions made by
ecologists and environmental scientists that
could be part of a machine learning environment
to improve understanding and prediction. Se-
lecting and analyzing independent and depen-
dent variables as part of a correlation exercise
leading to experimentation and causation is a
general process conducted, at least in part, by
many ecologists and environmental scientists
manually on personal computers or workspaces.
KLAS allows this process to be generalized,
automated, and openly accessible to the scientific
community, whose efforts would in turn feed
back to the KLAS framework to synergistically
and iteratively strengthen the system for future
users.

LimitaTioNs oF KLAS

The power of KLAS is a function of its use. As
user interactions increase in number and type,
the system will learn and provide more options
for the reuse of data and analyses by future users.
However, the number and type of options
provided to users will be limited in the early
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stages of KLAS. In addition, there is the potential
for KLAS to include inaccurate information if all
data and analyses are added to the system. We
envision a community of experts will be needed
to determine which data and analyses are
included in the system, similar to the way that
open source community pages, simulation mod-
els, and software programs currently operate
(e.g., http://en.wikipedia.org; https://www2.
cesm.ucar.edu). As KLAS grows and expands in
the types of data and analyses included, a peer-
review system may be needed to evaluate the
accuracy and usefulness of data, information,
and analyses to be included. Finally, KLAS will
need to allow for information that is protected by
privacy rights when local sources of data are
combined with federated databases.

IMPLEMENTING THE VISION: ADDRESSING
CONCEPTUAL AND TECHNOLOGICAL
CHALLENGES

Big data are rapidly making inroads in some
disciplines (e.g., particle physics, genomics)
where research centers or groups of scientists
have joint or open access to the CI required for
shared source and manipulated data, and anal-
ysis tools (e.g., Hey and Trefethen 2005, Green et
al. 2011). However, in many other disciplines,
there is a clear lack of interest, capacities, or, in
some cases disdain, by individual scientists for
the data deluge. These individual views reflect,
in part, the cultural, sociological, and technolog-
ical challenges of sharing, archiving, and man-
aging federated data for use in research, and a
frustration with the media hype and unfulfilled
promises of these data (The Economist 2010,
Reichman et al. 2011, Hamilton et al. 2013). But,
these views also reflect conceptual challenges
associated with datasets that are much larger in
size, scope, and complexity than previously
measured or even imagined. For scientists in
disciplines where experimentation has been the
primary mode of hypothesis testing, a shift from
small, highly controlled, high quality datasets to
extremely large, federated datasets of mixed
quality is an uncomfortable one.

To implement KLAS will require two key shifts
in thinking with associated changes in technolo-
gy. First, the full suite of analytics needs to be
publicly available and part of the iterative
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learning process. Much of the current focus is on
open access source data and metadata as part of
federated databases (Michener and Jones 2012,
Hamilton et al. 2013). However, a more efficient
use of resources will occur if the derived data
products and analyses are also in the public
domain and continually modified as more
scientists use and learn from the data. This
conceptual shift will require a CI that: (1)
incorporates machine learning techniques that
become more efficient as the number of user
interactions and data sources increase, (2) devel-
ops linkages between the knowledge and the
analysis components that allow the system to
learn through time to guide the analyses and
feedback to the hypotheses, (3) maintains a
community-level history of the data sources,
procedures, and findings to allow users to
quickly and easily build on previous studies,
and (4) accesses, checks, and potentially modifies
streams of data of mixed quality.

Second, there needs to be a shift towards the
use of existing and federated data before new
data are collected by individual researchers. As
shown in our example, more focused experi-
ments with targeted response variables and
treatments are possible after using powerful
insights obtained from big data. Many disciplines
have accumulated vast amounts of historic data
that can be integrated with the large datasets
being collected by new technologies and the
smaller datasets collected by individuals. Impor-
tantly, our approach is able to identify and filter
data of mixed quality from disparate sources.
KLAS provides a framework for taking advan-
tage of these data sources for knowledge
discovery and problem solving rather than being
overwhelmed by them.

CONCLUSIONS

Ecology and environmental sciences must be
more broadly informed by lessons of genomics
where it is recognized that large-scale studies
alone are insufficient, yet most data analysis and
interpretation come from individual researchers
(Green et al. 2011). Hypothesis-driven research
by individuals and research groups requires
access to data catalogues and technological tools
(Frew and Dozier 2012). However, analytical
tools and derived data products also need to be
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in the public domain to encourage multi-disci-
plinary, collaborative science (Hey and Trefethen
2005). Our knowledge-learning-analysis system
(KLAS) adapts the scientific method to accom-
modate vast amounts of data, and make them
accessible to a broad range of users via an open
access, iterative learning process. Use of this
hypothesis-driven, data-intensive scientific meth-
od will require a shift from individual efforts at
experimentation and analysis on personal work-
spaces to: (1) the reuse of historic data integrated
with new data streams followed by strategic
experimentation, (2) open access analyses that
become increasingly efficient as the data increase
in type, volume, and rate, and (3) an automated
machine learning approach that builds on past
experience of the broader community to guide
hypothesis testing and refinement by individu-
als. Positive feedbacks to both intellectual capac-
ity and technological developments resulting
from this modernized scientific method will lead
to rapid leaps in knowledge and future paradigm
shifts that depend on, and lead to advances in,
big data.
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