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Chapter 4

Cross-Site Comparisons of 
State-Change Dynamics

D.P.C. Peters, W.R. Fraser, T.K. Kratz, M.D. 
Ohman, A. Rassweiler, S.J. Holbrook, and R.J. 
Schmitt

Changes in the state of a system—for example from 
grassland to shrubland or from dominance by one fish 
species to another species—with associated changes 
in other parts of the system, are often irreversible. 
These state changes are related to changing climatic 
conditions (chapter 11) interacting with human 
activities (MEA 2005b). State changes can lead to 
positive effects on ecosystems; but more frequently, 
such as with the invasion by an exotic species, the 
changes are negative and result in altered levels of 
biodiversity, shifts in rates of nutrient cycling, changes 
in air and water quality, and increased losses of soil 
and nutrients to wind and water erosion (Scheffer et al. 
2001, Scheffer and Carpenter 2003). 

Examination of the dynamics of state changes across 
a variety of ecological systems can identify common 
interactions among patterns and processes that can 
provide new insight into the drivers of these dynamics 
(Bestelmeyer et al.  2011). It is only through the use of 
long-term data that we can identify persistent changes 
in states, the drivers influencing these shifts, and 
potential reversals or modifications of shifts through 
time. 

Here we illustrate common features of state changes for 
six systems with a diverse set of organisms (plankton, 
invertebrates, fish, plants, or penguins).

Vegetation state changes in deserts. In the American 
Southwest and throughout arid systems globally, large 
areas of land have converted from perennial grassland 
to shrubland over the past several centuries (Reynolds 
and Stafford Smith 2002). This state change is self-
reinforcing as positive feedbacks between shrubs 
and soil properties allow continued shrub survival 
and promote grass mortality (Schlesinger et al. 1990, 
Rietkerk et al. 2004). The result is a discontinuous 
cover of shrubs and unvegetated areas that increases 
movement of soil and nutrients from bare areas to 
beneath shrub canopies. In arid systems where average 

annual precipitation is typically less than 300 mm, one 
consequence of this shift from grassland to shrubland 
is a reduction in above-ground net primary production 
(figure 3-5). 

Although this process of desertification has been 
well studied (MEA 2005a), little is known about the 
conditions which affect rate and pattern of shrub 
dominance or variation in grass survival at patch to 
landscape scales (Peters et al. 2006). Researchers at 
the Jornada ARS/LTER (JRN) and Sevilleta LTER 
(SEV) sites have documented this shift using long-term 
observations (figure 4-1) and are using experimental 
manipulations to test the importance of biotic and 
abiotic processes to threshold behavior through time 
and across space (Peters et al. 2004, 2009).

Penguin dynamics in Antarctica. Along the rapidly 
warming western Antarctic Peninsula (Vaughan et 
al. 2003), southward climate migration is driving 
replacement of Adélie penguins by Gentoo and 
Chinstrap penguins (Ducklow et al. 2007, McClintock 
et al. 2008). Adélie penguins are a true polar species, 
with a life history that is critically dependent on 
the availability of sea ice, especially during winter 
(Fraser et al. 1992, Ainley 2002). In contrast, the 
other two species originate in sub-Antarctic latitudes 
and are ice-intolerant (Fraser et al. 1992, Williams 
1995). The population trends shown in figure 4-2 are 
unprecedented, with the paleo-record indicating that 
neither Gentoo nor Chinstrap penguins have occupied 
the region over the past 700 years (Emslie et al. 
1998). The changes in penguin abundance and species 

Figure 4-1. State change from grassland (brown) to mesquite 
shrubland (green) in the Chihuahuan Desert based on chang-
es in area of each ecosystem type through time (Peters et al. 
2004). Reprinted with permission from the National Academy 
of Sciences, USA.
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will increase when smelt abundance is experimentally 
reduced.

Plankton dynamics in the Pacific Ocean. Along the 
coast of southern California, variations in plankton 
populations are closely linked to long-term changes 
in physical conditions in the ocean environment. A 

Figure 4-2. State change based on 
number of breeding pairs of birds from 
dominance by (a) Adélie penguins, a 
polar species, to (b) dominance by the 
ice-intolerant Gentoo and Chinstrap 
penguins in Antarctica. (Updated from 
McClintock et al. 2008.)

Figure 4-3. State change in lakes in Wisconsin based on fish 
catch data from dominance by native cisco and yellow perch 
to dominance by the introduced rainbow smelt. (Updated from 
Hrabik et al. 1998, Wilson and Hrabik 2006.)

composition near Palmer Station LTER (PAL) reflect 
a reduction in the extent and duration of sea ice cover 
in the area (Ducklow et al. 2007), which is related to 
the positive Southern Oscillation Index during warm El 
Niño conditions (figure 3-1).

Fish dynamics in Wisconsin lakes. Similar state 
changes have been observed in lakes in Wisconsin 
(figure 4-3). The non-native rainbow smelt became 
established in Sparkling Lake in the mid 1980s and 
caused major changes in the lake’s fish community 
(Hrabik et al. 1998, Wilson and Hrabik 2006). Cisco 
were extirpated by smelt predation on juveniles. Yellow 
perch also have been greatly reduced because young-
of-year smelt out-compete young-of-year yellow perch 
for prey. Recent declines in rainbow smelt catch per 
unit effort may be attributed to a harvesting program 
intended to reduce abundance of this harmful non-
native species. It is unclear whether these changes 
are irreversible. Scientists from the North Temperate 
Lakes LTER (NTL) are conducting a decade-long 
experiment that combines manual harvesting of smelt 
with enhanced stocking and regulatory protection of its 
predators to reduce smelt to low numbers or possibly 
remove them from the lake. It is unclear whether the 
abundance of cisco (if reintroduced) or yellow perch 
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relatively abrupt change occurred in the mid 1970s in 
sea surface temperature (figure 3-6) (reflected by the 
Pacific Decadal Oscillation (PDO) index in figure 4-4), 
with accompanying changes in several members of 
the plankton assemblage. For example, a subtropical 
species of krill (Nyctiphanes simplex) increased in 
abundance in the mid 1970s (figure 4-4). Other types 
of suspension-feeding zooplankton known as salps, 
one group of which typically enters the study area 
from higher latitudes, decreased abruptly in biomass 
at this time (Ohman and Venrick 2003). Following the 
major El Niño of 1997-98, there was a decrease in sea 
surface temperatures in the northeastern Pacific Ocean 
with accompanying reversals of the changes in some 
plankton populations. 

Figure 4-4. Long-term variability in the northeastern Pacific Ocean off the coast of southern California: (a) anomalies of 
springtime abundance of the euphausiid Nyctiphanes simplex and (b) annual averages of the Pacific Decadal Oscillation 
(PDO) index. (M. Ohman, updated from Brinton and Townsend 2003.)

The nodal points of these ecosystem transitions are 
associated with changes in ocean circulation, but the 
persistence of the altered communities for two to 
three decades at a time appears to be related to biotic 
responses. Whether these ecosystem changes represent 
cyclical variations is under investigation by the 
California Current Ecosystem LTER (CCE) site.

Subtidal dynamics off the Pacific Coast. Rocky 
reefs are known to exhibit sudden changes in state 
in which one type of benthic community is replaced 
by another. Scientists at the Santa Barbara Coastal 
LTER (SBC) have documented a particularly dramatic 
example of this shift on shallow subtidal reefs at Santa 
Cruz Island: The density of a small filter-feeding sea 
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cucumber, Pachythyone rubra, increased from near 
zero to thousands per square meter (figure 4-5). This 
change occurred within 2 years and resulted in P. rubra 
covering more than 90 percent of the bottom at many 
sites (Rassweiler 2008). Manipulative experiments 
show that P. rubra competes for space with understory 
macroalgae, which had dominated these sites prior to 
the increase in sea cucumber density. For more than 
a decade, macroalgae were unable to recover at these 
sites, in part because sea cucumbers consume algal 
spores in the water column. 

Once the filter feeders reach a high enough abundance, 
they can reduce settlement rates of macroalgal spores 
to levels that are low enough to prevent reestablishment 
of macroalgae. Shifts from an algal-dominated state to 
one dominated by invertebrate filter feeders represents 
a major change in the trophic structure of the benthic 
food web, as energy is derived from captured plankton 
instead of from primary production by macroalgae. The 
decline in macroalgae has reduced the abundance of a 
wide variety of organisms that use the algae for food 
and shelter, including small crustaceans, which are a 
key food resource for many reef fishes.

Shifts in coastal fish assemblages in the Pacific 
Ocean. Similar to the dynamics of plankton along the 
coast of southern California, communities of rocky 
reef organisms in the same region underwent dramatic 
changes in response to the abrupt shift from the cool 
phase to the warm phase of the PDO in the mid 1970s. 
This climate shift brought warmer, nutrient-poor surface 
waters to nearshore regions, as well as increases in the 
intensity and frequency of El Niño Southern Oscillation 
episodes. Composition of reef fish assemblages changed 

in response to this abrupt shift in physical conditions 
of the nearshore ocean environment. For example, at 
coastal sites near Los Angeles, CA, dominance of the 
assemblage shifted from cold-affinity, northern species 
to warm-affinity, southern species following the abrupt 
warming of surface waters (figure 4-6). In addition, by 
the mid 1990s abundance of nearly all fish species had 
declined by an average of 69 percent (Holbrook et al. 
1997, Brooks et al. 2002). 

The lower productivity of the coastal marine ecosystem 
was also accompanied by large effects on population 
abundance and reef trophic structure. At the SBC 
study sites on Santa Cruz Island, CA, declines of a 
similar magnitude were observed for several linked 
trophic levels in a model food web (several species of 
surfperches [Pisces: Embiotocidae], the standing stock 
of their crustacean prey, and the biomass of understory 
macroalgae on which the prey reside) (Holbrook and 
Schmitt 1996, Holbrook et al. 1997). The SBC is 
exploring whether observed changes in composition 
of the fish assemblage and in trophic structure of the 
community represent reversible phases driven by 
cyclical climatic variation.

Figure 4-5. State changes in subtidal reefs off the coast of 
southern California. Sea cucumber biomass increasing over 
time. (Redrawn from Rassweiler 2008.)

Figure 4-6. Temporal patterns in composition of the fish as-
semblage on reefs in the Southern California Bight. Shown 
are the proportions of the annual total species present that 
were northern species (cold water affinity: circles) and south-
ern species (warm water: triangles). (Redrawn from Holbrook 
et al. 1997.)
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Conclusions

These examples clearly show the effect of global 
environmental change (warming, invasive species, 
altered trophic structure) on the abundance and 
distribution of dominant and subordinate species in 
aquatic, marine, and terrestrial systems. In many cases, 
environmental drivers have shifted to the point that 
current conditions are leading to threshold changes in 
species abundance within communities and are altering 
species range distributions both regionally and globally. 
However, this era of rapid environmental change is 
only beginning to be manifested in species responses. 
Thus, researchers will continue to need long-term data 
to quantify and predict the nonlinear system responses 
expected in the future. 
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