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[1] Aeolian transport is an important characteristic of many arid and semiarid regions
worldwide that affects dust emission and ecosystem processes. The purpose of this
paper is to evaluate a recent model of aeolian transport in the presence of vegetation.
This approach differs from previous models by accounting for how vegetation affects
the distribution of shear velocity on the surface rather than merely calculating the
average effect of vegetation on surface shear velocity or simply using empirical
relationships. Vegetation, soil, and meteorological data at 65 field sites with
measurements of horizontal aeolian flux were collected from the Western United States.
Measured fluxes were tested against modeled values to evaluate model performance, to
obtain a set of optimum model parameters, and to estimate the uncertainty in these
parameters. The same field data were used to model horizontal aeolian flux using three
other schemes. Our results show that the model can predict horizontal aeolian flux
with an approximate relative error of 2.1 and that further empirical corrections can
reduce the approximate relative error to 1.0. The level of error is within what would
be expected given uncertainties in threshold shear velocity and wind speed at our sites.
The model outperforms the alternative schemes both in terms of approximate relative
error and the number of sites at which threshold shear velocity was exceeded. These
results lend support to an understanding of the physics of aeolian transport in which
(1) vegetation’s impact on transport is dependent upon the distribution of vegetation
rather than merely its average lateral cover and (2) vegetation impacts surface shear
stress locally by depressing it in the immediate lee of plants rather than by changing
the bulk surface’s threshold shear velocity. Our results also suggest that threshold
shear velocity is exceeded more than might be estimated by single measurements of
threshold shear stress and roughness length commonly associated with vegetated
surfaces, highlighting the variation of threshold shear velocity with space and time in
real landscapes.
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Notation
a equation (1) fitting constant, m�2

A constant present in equations forQu�
x=h of the form

Ar/gu*
X (Table 3), m3-X sX-3

AB average area of a single vegetation element
(plant) projected onto the ground (i.e., basal
area), m2

AP average area of a single vegetation element (plant)
projected onto a plane perpendicular to the ground
(i.e., profile area), m2

b equation (1) fitting constant, m�1

b ratio of drag coefficient for vegetation to drag coef-
ficient for ground (b=202) [Shao, 2008, p. 307]
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c equation (1) fitting constant, gm�2 s�1

C e-folding distance for the recovery of u*s in the
lee of a plant as it approaches u*

d constant, d = 0 when u*< u* t and d = 1 when
u*> u* t

�D average plant diameter, m
DP particle size diameter, used in MAR model, m
EF erodible fraction used in RWEQ model
er approximate relative error of model estimates
feff drag partition coefficient [Marticorena et al.,

1997b]
feff ;z1 drag partition coefficient induced by soil surface

roughness [Marticorena et al., 1997b]
feff ;z2 drag partition coefficient induced by soil vege-

tation [Marticorena et al., 1997b]
Fg fraction of the ground that is covered by plants
g acceleration due to gravity, m s�2

h plant height, measured as Frisbee™ drop height, m
K Von Karman’s constant, 0.4
K0 soil roughness factor used in RWEQ model
�L average size of unvegetated gaps between

plants, m
l lateral cover
m empirical parameter [Raupach et al., 1993]
n number of field sites

Pd(x/h) probability that a point on the landscape is dis-
tance from the nearest upwind plant measured
as x/h

PU probability distribution of wind speeds, U,
during measurement period

Pu� probability distribution of wind shear velocity,
u*, during measurement period

Qt,act field-estimated horizontal flux, gm�1 d�1

Qt,corr empirically corrected model-estimated horizon-
tal flux, gm�1 d�1

Qt,pred model-estimated horizontal flux, gm�1 d�1

Qt
u� model-estimated horizontal flux at shear veloc-

ity, u*, gm
�1 d�1

Qu�
x=h horizontal flux at shear velocity u* and distance

from nearest upwind plant measured as x/h,
gm�1 d�1

q(z) time-averaged horizontal flux density at height
z above the surface, measured with a BSNE,
gm�2 d�1

r density of air, gm�3

RMSEL root mean squared error of the logs of horizon-
tal flux

s ratio of roughness-element basal area to frontal
area, AB/AP

SCF soil crust factor used in RWEQ model
SD soil snow cover correction in the RWEQ model

SLRC soil loss ratio correcting for the growing plant
canopy cover in the RWEQ model

SLRF soil loss ratio correcting for flat residue in the
RWEQ model

SLRS soil loss ratio correcting for the plant silhouette
in the RWEQ model

SW soil wetness correction in the RWEQ model
Ut threshold wind speed at 2m in the RWEQ

model, m s�1

Uz horizontal wind speed at height z, m s�1

u* shear velocity of the wind, m s�1

u*s shear velocity in the lee of a plant (as a function
of x/h), m s�1

u�s
u�

� �
x¼0

ratio of shear velocity in the immediate lee of a

plant (x = 0) to shear velocity as estimated with
the Law of the Wall

u*t threshold shear velocity of the soil, m s�1

u*tv threshold shear velocity of the surface in the
presence of vegetation [Marticorena et al.,
1997b; Shao, 2008], m s�1

�W average plant width along a transect, equal to
p/4 �D for circular plants, m

WF weather factor in RWEQ model, gm�1 d�1

x distance to nearest upwind plant, m
x/h distance to nearest upwind plant measured as

distance, x, scaled by plant height, h
X1 reciprocal of distance between soil roughness

elements [Marticorena et al., 1997b], set to 0.1m
X2 one-third of the distance between plants

[Marticorena et al., 1997b], m
Y regression-derived value of Qt in equation (10),

gm�1 d�1

z height above ground surface, m
zo aerodynamic roughness length, m

zo,1 aerodynamic roughness length induced by soil
surface [Marticorena et al., 1997b], m

zo,2 aerodynamic roughness length induced by
[Marticorena et al., 1997b], m

zos aerodynamic roughness length for a smooth
surface, 10�5m [Marticorena et al., 1997b]

1. Introduction

[2] Aeolian transport is a fundamental process in the
world’s drylands, and it has direct impacts on climate,
ecosystem dynamics, soil biogeochemical cycling, snow
accumulation and melt, precipitation runoff, and public
safety/health [Sokolik and Toon, 1996; Li et al., 2007, Li
et al., 2008, Reynolds et al., 2001; Painter et al., 2007,
Painter et al., 2010; Griffin et al., 2001]. Most aeolian
transport occurs in arid and semiarid lands that cover nearly
40% of the land surface [Reynolds and Stafford Smith,
2002]. A report by Seager et al. [2007] predicts reduced
soil moisture and increasingly arid conditions in the next
decades over large areas of the arid Southwest United States
and other studies have predicted aridification elsewhere
[e.g., Thomas et al., 2005]. The ability to estimate aeolian
activity from process-based models is important for
predicting future changes in aeolian activity given expected
changes in climate, vegetation, and land use in the world’s
drylands. This is particularly true given the difficulty of
measuring aeolian transport at the large scales that charac-
terize the world’s rangelands (e.g., greater than 100s of
square kilometers), which is the most common form of land
use in drylands.
[3] Aeolian transport is strongly affected by nonerodible

roughness elements such as immobile clasts and vegetation
[Lancaster and Baas, 1998; Tegen et al., 2002; Gillies
et al., 2006], which absorb a portion of the shear stress
exerted by the wind. On a vegetated surface, the amount of
roughness encountered by the wind has been most widely
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quantified by an index of “lateral cover”, l, which is defined
as the average frontal area of plants projected onto a
plane perpendicular to both the ground surface and direction
of the wind multiplied by their number density. Since
Marshall [1971], lateral cover has been the primary parame-
ter representing the amount of vegetation in shear stress
partitioning models [e.g., Marticorena et al., 1997b;
Raupach, 1992] and subsequent models for wind erosion
and dust emission on vegetated surfaces [e.g., Marticorena
and Bergametti, 1995; Mahowald et al., 2002; Zender
et al., 2003]. Application of the Raupach [1992] shear
stress partitioning model does lead to shear stress ratios
(i.e., the ratio of shear stress on the soil to the total shear
stress) that are consistent with experimental results [King
et al., 2005]. However, this model estimates threshold
shear velocities in the presence of vegetation [Raupach
et al., 1993] that are too high to produce horizontal flux
given normal erosive winds when the lateral cover is
greater than about 0.1 [Okin, 2008]. Field experiments,
including those of Lancaster and Baas [1998] in Owens
Valley, Li et al. [2007] in the Chihuahuan Desert (Figure 1),
and Belnap et al. [2009] on the Colorado Plateau, in contrast,
show that significant flux occurs even at relatively high
lateral cover values.
[4] Okin [2008] pointed out that the discrepancy between

model-predicted aeolian transport using lateral cover [e.g.,
Marticorena et al., 1997b; Raupach, 1992] and field-
observed fluxes potentially results from the requirement
that threshold shear velocity be the same everywhere.
Conceptually, this is due to the fact that lateral cover only
provides information on the density of vegetation but says
nothing about how that vegetation is distributed and therefore
the model can provide only estimates of the surface stress
averaged over the exposed soil area. This issue was identified
originally by Raupach et al. [1993], who introduced an
empirical parameter (the m parameter) that was intended to
adjust the lateral cover so that surface stress would be
given by the maximum surface stress on the exposed soil
area rather than the surface stress averaged over the exposed
soil area.
[5] Field observations have shown that horizontal sedi-

ment flux can be strongly affected by the spatial distribution
of vegetation [Okin and Gillette, 2001; Gillette et al., 2006].
Recently, Okin [2008] developed a new aeolian transport
model using the distribution of erodible gaps between plants
to characterize shear stress partitioning and distribution of
shear stress at the soil surface. This new model provides
very good estimates of shear stress ratios compared to
laboratory and field experiments. In addition, it predicts
horizontal flux in vegetation with relatively high densities
(l> 0.1), consistent with field observations (e.g., Figure 1).
It does so by not requiring the flux to occur at all points in
the landscape at the same time; winds in some areas protected
by vegetation can be below threshold while winds in
more exposed area can be above threshold. The physics
represented by this model are consistent with a host of
measurements and independent model results. For example,
the model represents shear stress in the lee of plants in a
way consistent with the field measurements of Bradley
and Mulhearn [1983], the wind tunnel measurements of
Minvielle et al. [2003] and wind speed distributions modeled
using a fluid flow model [Bowker et al., 2006].

[6] The purpose of this paper is to evaluate the Okin
[2008] model of aeolian transport in the presence of
vegetation (hereafter referred to as OK) and to estimate the
best values for its parameters. Our strategy was to collect
vegetation, soil, and meteorological data for wind erodible
sites where aeolian transport was actively monitored at the

Figure 1. Horizontal flux versus lateral cover for (a and b)
field experiments and (c) model prediction. Figure 1a: data
from individual storms from Owens Dry Lake [Lancaster
and Baas, 1998]; Figure 1b: data from two seasons in the
Chihuahuan Desert [Li et al., 2007]; and Figure 1c: estimates
of total horizontal flux using the shear stress partitioning
model of Raupach et al. [1993] and the flux equation of
Shao and Raupach [1992] using two values of m, 0.5 and
1.0. Light lines are horizontal flux estimated at constant shear
velocity (1.0m s�1) and heavy lines are flux estimates for
actual wind speed records of the Jornada Experimental
Range in New Mexico from 1997 to 2001. Figure redrawn
from Okin [2008].
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time of the research. Measured aeolian fluxes were then
tested against modeled values to evaluate the model perfor-
mance, to obtain a set of optimum model parameters, and
to estimate the uncertainty in these parameters. The same
field data were used to model horizontal flux using other
schemes, including those of the Revised Wind Erosion
Equation (RWEQ) [Fryrear et al., 1998], Marticorena
et al. [1997b], and Shao [2008 p. 307], slightly modified
so that their treatment of vegetation can be directly com-
pared to that of the OK model using the same dataset. We
wish to determine whether this model can be used to predict
horizontal aeolian transport in real, structurally complex
vegetation. More critically, we wish to determine whether
aeolian transport can occur in some exposed areas and not
in other more protected areas (i.e., rather than requiring the
entire landscape to have a single threshold), which may
provide a more realistic picture of the physics of aeolian
transport in vegetated landscapes.

2. Methods and Data

2.1. Description of the Sites

[7] Our field sites were located in Utah, New Mexico, and
California (Table 1). These sites represent all of the known
actively monitored wind erosion sites in the western United
States at the time this project was conducted. None of these
sites were established for the purpose of conducting model
evaluation. Because sites were established for other reasons,
some measurements that would have been helpful for this
study, especially meteorological observations near flux
measurements, were not available and alternative, nearby
observations had to be used instead. Evaluation of the
impact of the uncertainty in meteorological observations is
discussed below.
[8] At each site, horizontal aeolian flux was monitored by

a set of samplers (“stems”) utilizing Big Spring Number
Eight (BSNE) aeolian sediment traps [Fryrear, 1986].
BSNEs at each site were located in an open and topograph-
ically flat area, without large shrubs in the immediate up-
wind or downwind area. The traps were able to move freely
with the direction of the wind so that the inlet always faced
into the wind. A total of 65 BSNE stems was found that met
the following criteria: (1) each BSNE stem was equipped
with at least three traps, and (2) the mass of windblown sed-
iment collected in the BSNE traps monotonically decreased
with the increase of trap height. The latter criterion ensures
that the sediment in traps is not dominated by nonlocal
sources [Bergametti and Gillette, 2010]. The heights of the
arithmetic center of the openings of the BSNE traps were
recorded. The lowest traps were located ~0.1-0.15m above
ground surface and the top traps were mounted at about
1m high. The deployment periods for the BSNE stems var-
ied at different sites (Table 1), and windblown sediments
were collected at the end of the experimental period.
[9] For the Fivemile Mountain sites in Utah, shrubs were

either removed or thinned by different mechanical treat-
ments that varied in their effects on soil stability, vegetation
structure, and the amount and distribution of residual woody
debris. BSNE stems on the Clear Spot Flat sites were mostly
located on lands burned by a severe wildfire in July 2007
and subsequently seeded using mechanical techniques
that impacted soil erodibility (more detail can be found in T
ab
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Miller et al. [2012]). At the Jornada Experimental Range
(JER), BSNE stems were located in a grassland with various
levels of vegetation removal [Li et al., 2007]. The reduced
vegetation cover at the JER sites has been maintained since
their establishment in summer 2004.

2.2. Additional In Situ Data Collection and Processing

[10] At each BSNE stem site, fractional (foliar) vegetation
cover and distribution of unvegetated gaps were measured
using a modified version of Standard NRCS National
Resources Inventory Methods [Herrick et al., 2005]. At
non-JER sites, all measurements were conducted along three
50-m transects oriented at 100�, 220�, and 340� from due
north and were set up beginning 5m from the BSNE stems.
At the JER sites, measurements were conducted along three
50-m transects oriented in the direction of the prevailing
wind. For intercanopy gap measurements, only perennials
and persistent woody debris from dead trees/shrubs were
counted as gap stoppers and a minimum gap size was set
as 20 cm. For each span of canopy between two gaps, can-
opy heights were determined by measuring the height of

the center of a Frisbee™ (186 g, with a hole in the center)
dropped along a meter stick from a height of 10 cm above
the maximum canopy height. This empirical approach was
used to approximate the effect of wind shear stress bending
the top of the plants and to eliminate the effect of small/thin
leaves or stems that may protrude significantly from the
main canopy but which probably have little impact on
airflow. A distribution of scaled gap sizes was calculated
as the ratio between a gap and the adjacent plant canopy
height (Frisbee dropped height) for all gaps and canopies
along each of the transects (Figure 2a). Subsequently, a
histogram of the gap size, scaled by adjacent plant height,
was constructed (Figure 2b).
[11] Threshold shear velocity (u*t) for unvegetated soils

(Table 2) (i.e., for the soil itself rather than the vegetated
surface as a whole) was estimated using a method
developed by Li et al. [2010]. In this method, u*t was
quantitatively related with the resistance of the soil surface
to disturbances created by a penetrometer and projectile shot
by an air gun at the soil. Briefly, at each BSNE stem, a total
of 15 repeated air gun and penetrometer measurements were

Plant base
(top-down view)

Not a canopy gap
(<20 cm) 

Canopy gap from 
40 to 77 cm

Basal gap from
8-34 cm 

0 cm 50 cm 100 cm

Plant canopy
(top-down view) 

#1 #2 #3

(a)

(b)

Figure 2. (a) Illustration of unvegetated gap and plant canopy measurement in the field, with three plants
(indicated by #1–#3) and one effective gap in a 1-m section of a plant transect. In this section, the only
canopy gap has the size of 77� 40 = 37 cm, and assuming the plant immediate follow the gap (#3) has
the canopy height of 10 cm, the scaled gap would be 37/10 = 3.7. In the field, a distribution of the scaled
gap was calculated for all gaps and canopy heights along each of the 50-m long transects. Revised from
Herrick et al. [2005]. (b) An example of a histogram of the scaled gap size measured in Moab, Utah,
constructed based on the size of a gap and the height of an adjacent plant canopy for all gaps and canopies
along three 50-m transects.
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conducted along each transect starting from 5m with an
interval of 10m. Both air gun and penetrometer were
applied at 45� to the soil surface, and the readings from the
penetrometer and sizes of the surface soil disturbance
(length�width) created by the air gun were recorded.
Average values were used to evaluate a regression equation
to estimate u*t.
[12] Horizontal wind speed (U) data were obtained from

on-site meteorological towers or wind towers located nearby
and operated by other organizations (Table 1). The interval
of the wind speed records varied from 5min to 1 h. Wind
data used in modeling were compiled for each horizontal
flux estimate for the same period of sample collection.
[13] Total horizontal mass flux from the BSNEs (Qt,act,

expressed in units of mass per unit distance perpendicular
to both the wind and the ground per unit time, ML�1 t�1)
was calculated based on the weight of sediments collected
in each BSNE trap and their deployment time by using the
method described in Li et al. [2007]. The mass of sediments
collected in the BSNE traps was divided by the inlet area of
the trap (1.05� 10�3m2) and the time of the collection to
obtain the time-averaged horizontal mass flux density q(z)
in gm�2 d�1, where z is the height of the arithmetic center
of the inlet above the ground (m). Values of q(z) were fitted
to an empirical formula [Shao and Raupach, 1992]:

q zð Þ ¼ cExp ah2 þ bh
� �

(1)

[14] where a, b, and c are fitting constants. The values for
total horizontal flux Qt,act, in gm

�1 d�1, were calculated by

Qt;act ¼
Z1m
0m

q zð Þdz (2)

[15] The maximum height of integration was set to 1m
because only a small percentage of the flux (generally less
than 10%) occurs at heights >1m [Li et al., 2007].

2.3. Description of the Model

[16] The details of the wind erosion model have been
described by Okin [2008]. In brief, prediction of the
horizontal aeolian flux Qt

u� for a specific wind shear
velocity, u* (m s�1), is achieved by modeling the distribution
of gaps downwind of plant canopies as

Qu�
t ¼ 1� Fg

� �X
x=h

Qu�
x=hPd x=hð Þ (3)

where Fg is the ground fraction that is covered by vegeta-
tion, x is a distance from the nearest upwind plant (m), h is
the height of that plant (m), Qu�

x=h is the horizontal flux for
a point x/h away from the nearest upwind plant at the shear
velocity, u*, and Pd(x/h) is the probability that any point in
the landscape is a certain distance from the nearest upwind
plant expressed in units of height of that plant. The overall
horizontal flux (Qt,pred) for all wind speeds is calculated by

Qt;pred ¼
X
u�

Pu�Q
u�
t (4)

in which Pu� is the probability distribution of wind shear
velocity, u*, during measurement period.
[17] In the OK model as originally published, horizontal

flux at a certain point, Qu�
x=h, is calculated using the formula-

tion of Owen [1964] and redefined by Shao et al. [1993] and
Gillette and Chen [2001]:

Qu�
x=h ¼ A

r
g
u� u�2 � u�t2
� �

d (5)

where A is a dimensionless constant that may vary between
0 and 1, r is the density of air (gm�3), g is the acceleration
due to gravity (m s�2), u* t is the threshold shear velocity of
the unvegetated soil (m s�1), and d is a constant with d= 0
when u*< u* t and d = 1 when u*> u* t. In the OK model
and all the other wind erosion models evaluated in this
paper, the units of model simulated horizontal aeolian fluxes
(Q) were converted from gm�1 s�1 to gm�1 d�1. Although
not standard SI units, we use gm�1 d�1 because we believe
that this unit provides a better relation to the temporal scale
at which aeolian flux was measured (days to months).
[18] The OK model assumes each plant is associated with

a reduced shear stress wake zone and this zone of reduced
shear stress is described by an exponential curve:

u�s ¼ u�
u�s
u�

� �
x¼0

þ 1� u�s
u�

� �
x¼0

� �
1� e�C= x=hð Þ
� �� �

(6)

where u*s is the shear velocity downwind of a plant,
u�s
u�

� �
x¼0

is the value of u*s/u* in the immediate lee of a plant,

and C is the e-folding distance for the recovery of the shear
velocity in the lee of plants (that is, C is the exponential
constant that describes the rate, in units of plant height, h,

Table 2. The Characteristics of Vegetation, Wind, and Estimated Threshold Shear Velocity for Unvegetated Soils

Parameters Moab, UT
Fivemile Mountain,

UT
Clear Spot Flat,

UT
Jornada Experimental

Range, NM Owens Valley, CA

Fractional plant cover (Fg, %) ~0–58 9–33 ~0–36 11–27 29–78
Max gap (m) >50 8 22 21 34
Median gap (m) 2.35 0.59 2.28 1.83 1.13
Max gap/canopy height 2212 446 2179 994 752
Median gap/canopy height 40 9 35 22 12
Max wind speed (m s�1) 12.0a 13.9a 15.2a 18.3b 26.4b

Threshold shear velocity (u*t, m s�1) 0.26–0.97 0.31–0.54 0.26–1.04 0.19–0.54 0.36–0.91

aAt the height of 3m.
bAt the height of 10m.
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at which the shear velocity, u*s, recovers to the value it
would have in the absence of vegetation, u*). The physical
meaning of these parameters is summarized in Table 3.
[19] In the model, u* is related to the mean wind speed, U,

at height z (m) by a rearranged form of Law of the Wall:

u� ¼ UK
ln

z

zo

� ��
(7)

where K is von Karman’s constant (K= 0.4), and zo is
aerodynamic roughness length (m).
[20] At the scale of many wind erosion models, the rough-

ness length (zo) varies over heterogeneous landscapes as it is
related to both plant lateral cover and canopy height [e.g.,
Marticorena et al., 1997a]. In the OK model, zo is set as a
constant for all sites. This allowed us to treat zo as a fitting
parameter in our model validation and meant that zo would
not have to be estimated at each field site. Other model input

parameters, including A, C, and u�s
u�

� �
x¼0

, were also treated as

constant for the purpose of the model validation. In the OK
model, the impact of the shrub structure is accounted for

mostly in the u�s
u�

� �
x¼0

parameter. In reality, to some extent,

the vegetation structure will impact shear stress partitioning

and therefore u�s
u�

� �
x¼0

, but there is in fact a remarkable

degree of overlap in shear stress partitioning ratio amongst
solid and porous objects [King et al., 2005]. When examin-
ing all available shear stress partitioning ratio in light of

the OK model, there was no clear value of u�s
u�

� �
x¼0

that

separated solid from porous objects, although there was a

slight bias toward higher values of u�s
u�

� �
x¼0

for porous

objects. In light of these observations, it is unclear how

much u�s
u�

� �
x¼0

would vary amongst porous objects. In short,

there is no compelling reason based on existing data to treat
u�s
u�

� �
x¼0

as anything but a bulk constant. The parameter C,

too, may vary with shrub structure or porosity, but in the
absence of experimental or theoretical guidance on this and
for the purpose of parsimony, it has been treated as a constant.
[21] In recognition of the fact that zo does change with

vegetation density, a modified version of the Okin [2008]
model (hereafter called the “modified Okin [2008] model”
or MOK) was also implemented. In this modified model,
zo was allowed to vary as a function of lateral cover, using
the approach of Marticorena et al. [1997b] as presented by
Shao [2008, p. 318], with additional modifications. First, zo
was calculated using

zo ¼ 0:48lþ 0:001ð Þh l < 0:11
0:0538h l ≥ 0:11

	
(8)

Okin [2008] showed that lateral cover, l, was related to
average gap size by

l ¼ AP �W

A
B �Lþ �W
� � (9)

where AP is the profile area of a plant, AB is the basal area of
a plant, �L is the average size of unvegetated gaps between
plants, and �W is the average width of a plant along a transect
(equal to p/4 of the plant diameter, �D, for circular plants).
The fractional cover of a plant, Fg, is given, in these
terms, by

Fg ¼
�W

�Lþ �V
(10)

[22] Assuming cylindrical geometry (i.e.,AB ¼ p=4�D2 and
AP ¼ �Dh), it can be shown that

l ¼ 1� Fg

� � h
�L

(11)

[23] Initial tests using equation (8) for aerodynamic
roughness length alone showed that for field sites without
vegetation cover, the model produced no flux because zo
was too low and the resulting u* never exceeded u*t. This
is in direct contradiction with our field measurements; bare
sites did produce significant amount of horizontal flux. So,
a modified aerodynamic roughness length, z0o, was used in
MOK instead of zo calculated from equation (8). Specifi-
cally, a linear relationship was applied that adjusted all
roughness values:

z
0
o ¼ zo;min þ zo

zo;tie � zo;min

zo;tie

� �
(12)

where zo,min is the minimum value for z00 and was set to
0.01m and zo,tie was set to 0.1m.
[24] In this study, several different horizontal flux equations

were tried in place of equation (5) in both the OK and MOK
models. Over the past few decades, many experimental and
numerical studies have investigated the variation of horizontal
mass flux with shear velocity. These studies have led to
different equations but predominantly with the form that Qt,

pred scales with approximately the third power of the shear
velocity. We tested the model performance in combination

Table 3. Description of the Important Input Parameters Used in the Model

Parameters Physical Meaning Range/Value in Literature Relevant Literature

zo Roughness length, m 10�7–10�1m Marticorena et al. [1997a]; Gillette et al. [2006]
A Constant with variable unitsa 0 to ~1 Gillette and Chen [2001]
C e-folding distance for recovery of the shear stress

in the lee of plants, dimensionless
4.8–10 Minvielle et al. [2003], Bradley and Mulhearn [1983]

u� s
u�

� �
x¼0

Shear velocity ratio in the immediate lee of a plant,
dimensionless

0.0–0.32 Okin [2008], Bradley and Mulhearn [1983]

aUnits of A depend on the form of the flux equation in Table 4: u*
4 = sm�1, u*

3 = dimensionless, u*
2 =m s�1.
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with the horizontal mass flux equations in Table 4, and since
there is some question in the literature concerning the expo-
nent of the shear velocity in mass flux equation, equations
from the second to the fourth power were used. For the OK
model, the best equation was identified, together with the set

of model parameters: zo, A, C, and
u�s
u�

� �
x¼0

. For the MOK

model, the best equation was also identified, together with

the set of model parameters: A, C, and u�s
u�

� �
x¼0

.

2.4. Parameter Estimation and Cross-Validation

[25] An algorithm aimed at finding the global minimum
error was employed. Random values of Log[A], C,
u�s
u�

� �
x¼0

, and Log[zo] (for OK) were chosen from uniform

distributions bounded by physically reasonable values of
each of the parameters (Table 5). Predicted values of Qt,pred

were calculated for all BSNE stems used in the minimiza-
tion, and the root mean squared error of the logs (RMSEL)
was calculated as

RMSEL ¼ 1

N

X
N

Log Qt;pred

� �� Log Qt;act

� �� �2 !1=2

(13)

where Qt,pred is the predicted value of horizontal flux using
the randomly selected parameter values, Qt,act is the value
of horizontal flux estimated from the BSNE stems, and N
is the number of measurements used in the minimization.
RMSEL is dimensionless because the difference between
the logs of two quantities, as in equation 13, is equal to the
log of their ratio. A small constant (≪ minimum (Qt,act))
was added to both Qt,pred and Qt,act to prevent values of
negative infinity if either equals zero. This was done 1000
times and the set of parameters that yielded the lowest
RMSEL was chosen as the best-fit set of parameters.
[26] This iterative process was conducted 65 times. Each

time, 64 sites were used in the error minimization (N= 64),
while one was left out (i.e., each site was left out once).
The final RMSEL was calculated using equation (13) but
substituting the predicted values for the omitted site as Qt,pred

and the actual horizontal flux values of the omitted site as
Qt,act. This leave-one-out cross-validation analysis was

conducted to provide mean estimates of key model parame-
ters and was done for every flux equation in Table 4.
[27] Error estimation and model comparison are further

discussed below.

2.5. Empirical Model Improvement by Stepwise
Regression of Residuals

[28] Although the main goal of this study was to validate
the process-based OK, additional steps were taken after the
best-fit flux equation and model parameters were deter-
mined. From this best model, a stepwise regression was
conducted on residuals in log space:

residual ¼ Log Qt;act

� �� Log Qt;pred

� �
(14)

[29] In this process, the field-derived parameter that had
the highest absolute correlation (i.e., |r|) with Qt,act was
determined and residuals were regressed against this
parameter. A correction was then calculated based on the
following regression:

Log Qt;corr

� � ¼ Log Qt;pred

� �þ Y (15)

where Log(Qt,corr) is the regression-corrected value of Log
(Qt,pred) and Y is the value given by the regression equation.
Next, the field-derived parameter with the highest |r| with the
remaining residual, calculated with Log(Qt,corr) replacing
Log(Qt,pred) in equation (14), was identified and a regression
of the remaining residual against both field-derived parame-
ters was conducted. New corrected values of Log(Qt,corr)
were calculated using this multiple regression. This process
was repeated until little reduction of RMSEL was obtained
with the addition of a new parameter. In addition, the single

Table 4. Representative Mass Flux Equations Used in the Total Horizontal Mass Flux Calculation

Expression Citation

Qt,pred/ u*
4 A r

g u
4
� 1� u�t

u�

� �
Gillette and Passi [1988]a

Qt,pred/ u*
3 A r

g u
3
� 1� u2�t

u2�

� �
Owen [1964], Shao et al. [1993], and Gillette and Chen [2001]

A r
g u

3
� 1� u2�t

u2�

� �
1þ u�t

u�

� �
Kawamura [1951]

A r
g u

3
� 1� u�t

u�

� �
1þ 17:75 u�t

u�

� �
Sorensen [1991]

A r
g u

3
� 1� u�t

u�

� �
Lettau and Lettau [1978]

Qt,pred/ u*
2 A r

g u
2
� 1� u2�t

u2�

� �
Modified Shao et al. [1993]b

Note that the constants at the beginning of each of the original equations were replaced by a variable A that may be determined by model runs.
aThe Gillette and Passi [1988] equation was originally suggested for vertical flux. However, it is included here because it is the fourth-power version of

Lettau and Lettau [1978] and the simplest reasonable version of a fourth-power flux equation.
bThe Shao et al. [1993] equation was revised to provide a relationship such that Q scales with the second power of u*.

Table 5. Bounding Values of Uniform Distributions Used for
Random Selection of Values for Error Minimization

Parameter Minimum Value Maximum Value

Log[A] �6 �3
C 4.8 9.0
ðu� su�

Þx¼0 0.0 0.4

Log[zo] �1.0 0.5
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regression corrections using each of the two field-derived
parameters with the highest |r| were investigated (that is,
rather than simply the sequential approach described above).

2.6. Sensitivity of Errors to Uncertainty in
Site Parameters

[30] To determine the effect that uncertainty in the plot-
level parameter values (u*t, mean wind speed, mean scaled
gap size, and vegetation cover) might have in overall model
performance, a series of simulations were conducted. For all
65 sites used in this study, model predictions of horizontal
flux were made, using the Gillette and Passi [1988] flux
equation and final fitting parameters and plot-level parame-
ters for that site. The choice of flux equation here should
not impact the interpretation of these results. Wind speed
distribution was estimated as a Weibull distribution [Gillette
and Passi, 1988] with a shape parameter equal to two and
mean equal to that measured at the tower closest to the site.
These model predictions were set as reference values (Qt,act).
[31] Next, 100 new predictions were made (Qt,pred),

drawing the values of threshold shear velocity (u*t),
and mean wind speed for each iteration from normal distri-
butions with means equal to the measured value at each site
and a given coefficient of variation (CV). Error (section 2.8)
was calculated for the set of predictions. Values of the CV
for both variables were 0.05, 0.10, 0.15, 0.20, and 0.25.
All combinations of CV for both variables were used
resulting in 25 (52) estimates of error. CV for fractional
cover and mean scaled gap size was set to be 5% because
they were found to not contribute significantly to the
total error.

2.7. Other Models

[32] Field data were used to parameterize three additional
models of the impact of vegetation upon horizontal aeolian
flux: theMarticorena et al. [1997b] (hereafter MAR) model,
the Shao [2008] model (hereafter SHAO), and the RWEQ
[Fryrear et al., 1998]. Because the OK model is fundamen-
tally a model of how vegetation impacts horizontal flux,
only those portions of MAR, SHAO, and RWEQ that
pertain to the effect of vegetation upon horizontal flux
were implemented. That is to say, to provide the most
reasonable basis of comparison, threshold shear velocity
for the soil (i.e., without the effect of vegetation) in all model
calculations was set to that estimated in the field. In the
RWEQ and SHAO model, where there are multiple factors
related to soil that were not measured, these were set to
constant values to allow a consistent basis of comparison.
[33] The RWEQ, MAR, and SHAO models all have a

multiplicative A term. Unlike our treatment of OK and
MOK, in which we optimized on A, we accounted for this
multiplicative factor for RWEQ, MAR, and SHAO in a
simpler way. The A that minimizes the RMSEL must be the
average of Log(Qt,act)/Log(Qt,pred). When calculated this
way, unfortunately, A is negative for the MAR and SHAO
models. This is an undesirable result resulting from the fact
that Qt,pred is negatively offset from Qt,act. In order to get a
more realistic view of the prediction error of these models,
the values of Qt,pred were corrected for both the slope and
the intercept of the regression of Qt,pred versus Qt,act. All
RWEQ, MAR, and SHAO model results discussed hereafter
are these corrected values of Qt,pred.

2.7.1. Marticorena et al. [1997b] Model
[34] The basic flux equation for the MAR model is

Qtot;pred ¼ 1� Fg

� �
A
r
g

X
u3�

Z
Dp

1þ u�tv
u�

� �
1� u�tv

u�

� �2
 !

dDp

(16)

where Dp is the particle diameter and u*tv is the threshold
shear velocity for a vegetated surface, which is given by

u�tv ¼ u�t
feff

(17)

[35] In the model as originally published, u*t is evaluated
for each particle size. Here, u*t is set to that measured in
the field and therefore (16) simplifies to

Qt;pred ¼ 1� Fg

� �
A
r
g

X
u3� 1þ u�tv

u�

� �
1� u�tv

u�

� �2
 !

(18)

[36] For a surface with vegetation,

feff ¼ feff ;z1 feff ;z2 (19)

where feff ;z1 accounts for the roughness of the rough soil
surface and feff ;z2 accounts for the roughness provided by
the vegetation. In the absence of vegetation, feff is calculated
as feff ;z1 only.
[37] feff ;z1 is given by

feff ;z1 ¼ 1� 1n
zo;1
zos

� �� �
1n 0:35

X1

zos

� �0:8
 ! !�1

(20)

where zos is the roughness length of the smooth surface
[set to 10�5m;Marticorena et al., 1997b], X1 is the distance
between soil roughness elements [set to 0.1m; Marticorena
et al., 1997b], and zo,1 is the roughness length imparted by
the soil roughness. zo,1 was set to 5.38� 10�4m, which is
consistent with lateral cover of soil roughness elements
≥0.11 and soil roughness elements 0.01 m in height
(equation (8)).
[38] feff ;z2 is given by

feff ;z2 ¼ 1� 1n
zo;2
zo;1

� �� �
1n 0:35

X2

zo;1

� �0:8
 ! !�1

(21)

where zo,2 is the roughness length imparted by the vegetation
and X2 is one-third the distance between plants and can
be calculated from our field data calculated by
�Lþ 0:5 �Wð Þ=3:zo;2 was calculated using equation (8).
[39] For the implementation of the MAR model here, u*

was determined using equation (7) and zo,2 or in the absence
of vegetation zo,1.
2.7.2. Shao [2008] Model
[40] The basic flux equation for the SHAO model is

Qtot;pred ¼ 1� Fg

� �
A
r
g

X
u3�

Z
Dp

1� u�tv
u�

� �2
 !

dDp (22)

u*tv is given by
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u�tv ¼ u�tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� msbð Þp

1þ mblð Þ (23)

where u*t is evaluated for each particle size, m is an empiri-
cal constant (m= 0.16) [Shao, 2008, p. 307] and b is the ratio
of element to surface drag coefficients (b= 202) [Shao, 2008
p. 307]. s=AB/AP and is given by Shao [2008] as a constant
but can be calculated from our field data assuming cylindri-
cal plant geometry (i.e., AB ¼ p=4�D2 and AP ¼ �Dh). In the
original SHAO model, u*tv also had corrections for soil
moisture, salt concentration, and surface crust. Since we
had direct measurements of u*t, these were not used (i.e.,
were set to one) nor was the dependence upon grain size
used. Therefore, equation (22) simplifies to

Qt;pred ¼ 1� Fg

� �
A
r
g

X
u3� 1� u�tv

u�

� �2
 !

(24)

u* was determined using equation (7) with zo calculated
from equation (8) using lateral cover calculated from
equation (9).
2.7.3. Revised Wind Erosion Equation
[41] The RWEQ model calculates horizontal transport as it

increases across an agricultural field toward maximum
value. This maximum value was used here as the main point
of comparison:

Qt;pred ¼ A�0:1098�WF�EF�SCF�K 0 �SLRF �SLRS �SLRC (25)

where WF is the weather factor (gm�1 d�1), EF is the
erodible fraction (dimensionless), SCF is the soil crust factor
(dimensionless), K0 is the soil roughness factor (dimension-
less), SLRF is the soil loss ratio for flat cover (dimension-
less), SLRS is the soil loss ratio for plant silhouette
(dimensionless), and SLRC is the soil loss ratio for growing
plant canopy (dimensionless). WF is given by

WF ¼ 4:8� 10�2 r
g

X
U2

U2 U2 � Utð Þ2�SW �SD (26)

where U2 is the wind speed (m s�1) at 2 m and Ut is the
threshold wind speed (m s�1) at 2m. SW is a factor that
corrects for soil wetness and SD is a factor that corrects
for snow cover; both were set to one. The coefficient
4.8� 10�2 includes both an empirical factor (1/500) and
corrections to yield units of gm�1 d�1 for consistency with
the other models in this application. Wind speed at 2m
was calculated using measured wind speed at height z, Uz:

U2 ¼ Uz
1n 2=zoð Þ
1n z=zoð Þ (27)

where zo was calculated using equation (8). Threshold wind
speed at 2m, Ut, was calculated as

Ut ¼ u�t
K

1n
2

zo

� �
(28)

[42] EF is a complicated function of soil texture:

EF ¼ 1

100

�
29:09þ 0:31%sand þ 0:17%silt

þ0:33 %sand=clayð Þ
�0:259%organicmatter � 0:95%CaCO3Þ

(29)

[43] Texture data were not available, so the maximum
possible value of EF (0.630) was calculated using the soil
parameters given in Fryrear et al. [1998]: 0.18% organic
matter, 93.6% sand, 0.5% silt, 5.9% clay, 0% CaCO3. Using
these same soil parameters, SCF, given by

SCF ¼ 1þ 0:0066 %clayð Þ2 þ 0:021 %organicmatterð Þ2
� ��1

(30)

was calculated as 0.813, which is close to the highest value
reported by Fryrear et al. [1998], 0.823. K0 is a correction
for soil random roughness, which was not measured, so it
was set to its maximum value, 1.0, which corresponds to a
rough soil. SLRF corrects for the amount of flat plant residue
on the surface, which we assumed to be zero because our
field sites were not agricultural fields with residue and was
therefore set to 1.0. SLRS is given by

SLRS ¼ Exp �0:344l0:6413
� �

: (31)

[44] SLRC corrects for the amount of soil covered by
plants, i.e., (1�Fg), and is given by

SLRC ¼ Exp �0:5614Fg
0:7366

� �
(32)

[45] For the RWEQ model, maximum values of soil pa-
rameters (SD, SW, EF, SCF, and K0) were set as constants
to obtain a consistent set of predictions for which soil
conditions (except Ut) are common to all sites. Because the
purpose of using additional models’ horizontal flux predic-
tions in this report is to compare how they treat vegetation
with respect to how the OK model treats vegetation, the
use of constant values for soil parameters is justified. This
is particularly true with the RWEQ model because of the
linear way in which these parameters are included in the
flux equation (i.e., equation (25)).

2.8. Model Comparison and Error Metrics

[46] The RMSEL was utilized instead of the root mean
squared error (RMSE, the error calculated without first
taking the log) because the horizontal flux estimates spanned
two orders of magnitude. The use of RMSEL instead of
RMSE is justified by the purposes of this study, one of which
is to estimate horizontal aeolian transport over a wide range
of field conditions including those with low flux. The use of
RMSE would emphasize errors of prediction for larger fluxes
considerably more than errors of prediction for smaller
fluxes because the same relative error in the both cases
yields a larger error in the case of the larger flux. It is our
contention that locations with higher horizontal transport
are not necessarily more meaningful in terms of the
total amount of transport in or dust produced from natural
landscapes. This is particularly true when the potential for
horizontal aeolian transport to produce atmospheric dust is
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considered. The amount of dust produced from landscapes
(i.e., the vertical flux in units of ML�2 t�1) can be approxi-
mated as a linear function of the horizontal flux with the
constant of proportionality, the dust production efficiency,
depending on soil characteristics [e.g., Gillette, 1977].
Therefore, the amount of dust produced from a landscape
is the product of the horizontal flux, the area over
which the horizontal flux occurs, and the dust production
efficiency. That is to say, large areas with relatively low flux
may produce as much dust as small areas with higher flux.
With this in mind, it would seem necessary to have a model
that can estimate both the small fluxes and the large fluxes
equally well. Thus, we chose to use as our error metric
RMSEL, which emphasizes error for small fluxes and large
fluxes equally, over RMSE, which emphasizes error for large
fluxes over small fluxes.
[47] An additional benefit of the use of RMSEL over

RMSE is that RMSEL provides an estimate of relative error
whereas RMSE provides only an estimate of absolute error.
Relative error is arguably more important than absolute
error when the model/measured data span two orders of
magnitude, as they do here. It can be shown that 10RMSEL

is the geometric mean of the ratio of Qt,pred to Qt,act. Because

Qt;pred � Qt;act ¼ e (33)

where e is the absolute error, the ratio of Qt,pred to Qt,act can
be expressed as

Qt;pred

Qt;act
¼ 1þ e

Qt;act
(34)

where e/Qt,act is the relative error. 10
RMSEL is the geometric

mean of equation (34) and thus, we propose as a metric of
error, er:

er ¼ 10RMSEL � 1 ¼ 1þ e
Qt;act

� �
� 1 (35)

[48] Although er is not strictly equal to the relative error, it
is an approximation of it with the property that it is equal to
zero when there is no prediction error. er values for the
MAR, SHAO, and RWEQ models were calculated after
correcting Qt,act from these models by the slope and intercept
of their regression against Qt,act.

3. Results

3.1. Characteristics of the Model Input Data and
Horizontal Flux Estimates

[49] Characteristics of model input data, including vegeta-
tion, threshold shear velocity, and wind are given in Table 2
and further in Table S1, Supporting Information. Bare sites
were found in both Moab and Clear Spot Flat, Utah, and
the latter study site also had the largest average gap of
11m. Average scaled gap (gap size/canopy height) ranged
from 18 in the shrubland of Fivemile Mountain, Utah to
282 in the burned Clear Spot Flat, Utah sites. Threshold
shear velocity for unvegetated soil fell in the range of
0.19–1.04m s�1. During the experimental period, a large
proportion of the wind speeds were lower than 5m s�1 for

all study sites, and peak wind speeds varied from 12 to over
26m s�1, observed in the Owens Valley, California site
(Table 5, Figure 3).
[50] The fit of q(z) to equation (1) generally gave very

good fits (Table S1, Supporting Information). Coefficients
of determination for these fits, r2, are not particularly useful
because many of the sites had only three BSNE traps on a
stem and equation (1) has three parameters, thus resulting
in r2 = 1. However, for sites with more than three BSNEs
on a stem (i.e., all sites excluding the Utah sites), the fits
are generally very good, with only two being fit with
r2< 0.9. BSNE-estimated Qt,act spanned two orders of
magnitude, with the greatest flux of 98 gm�1 d�1 found in
a site at the JER, New Mexico, where grass cover had been
removed (Figure 4). Qt,act was generally the lowest in the
shrubby grassland of Owens Valley sites, despite the high
wind speeds at these sites.

Figure 3. Frequency distribution of wind speeds used in
the mass flux modeling for major study sites. More details
related to the characteristics of the study sites may be found
in Tables 1 and S1.

Figure 4. Horizontal mass flux (Qt,act, gm
�1 d�1) measured

by BSNEs located in the major study sites. More details of
the study sites are listed in Table 1.
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3.2. Model Evaluation

[51] As expected, different mass flux equations (Table 4)
yielded different best-fit values of key model parameters
for the OK model (Table 6). The mean optimum values
for the roughness length (zo), e-folding distance for recovery

of shear stress (C), and u�s
u�

� �
x¼0

ranged 0.77–0.83, 5.6–6.2,

and 0.28–0.32m, respectively. The A constants have a
variety of magnitudes due to the different forms of the mass
flux equations. Uncertainties of the fits from the leave-one-
out cross-validation are small relative to parameter values,
indicating confidence that the fitting procedure was stable
and that these are the best predicted values of these
parameters.
[52] The performance of the OK model in combination

with different mass flux equations was evaluated by regres-
sion of Qt,pred against Qt,act (Table 7). The regression
equations generally had a slope close to 1 and a fairly small
intercept (�0.053 to 0.058) except in the case of the
modified Shao et al. [1993] flux equation. r2 ranged from
0.41 to 0.45 and er ranged from 2.1 to 2.4, except for
the modified Shao et al. [1993] flux equation for which er
was 6.0. The Gillette and Passi [1988] and Sorensen
[1991] flux equations had the best and essentially the same
values of r2 and er for the OK model (Figure 5). Correction
for those field-measured parameters with the highest
correlation with residuals (median plant height, Fg, u*t, and
median wind speed) lowered er to 1.0 for both flux equations
(Table 8, Figure 5).

[53] The MOK model, in which zo was allowed to vary
with lateral cover and plant height, did not perform as well
as the original OK model which sets zo to a constant for all

Table 6. Optimum Mean Values of OK and MOK Model Parameters Obtained by Leave-One-Out Cross-Validation for Different Mass
Flux Equations

Mass Flux Equation zo(m) A (�10�3) C ðu� su�
Þx¼0

OK model
Gillette and Passi [1988] 0.077� 0.015 0.54� 0.23 5.6� 0.63 0.32� 0.072
Shao et al. [1993] 0.079� 0.015 26� 10 5.6� 0.89 0.29� 0.078
Kawamura [1951] 0.077� 0.015 16� 5.9 5.7� 0.75 0.31� 0.072
Sorensen [1991] 0.078� 0.015 7.3� 1.2 5.8� 0.86 0.31� 0.086
Lettau and Lettau [1978] 0.081� 0.015 39� 17 5.8� 0.93 0.30� 0.080
Modified Shao et al. [1993] 0.083� 0.012 780� 150 6.2� 1.0 0.28� 0.11

MOK model
Gillette and Passi [1988] — 4.3� 0.72 5.1� 0.28 0.34� 0.045
Shao et al. [1993] — 180� 27 5.1� 0.24 0.33� 0.063
Kawamura [1951] — 110� 16 5.1� 0.24 0.33� 0.073
Sorensen [1991] — 23� 3.3 5.1� 0.28 0.33� 0.059
Lettau and Lettau [1978] — 310� 51 5.1� 0.23 0.33� 0.073
Modified Shao et al. [1993] — 880� 72 5.3� 0.52 0.33� 0.071

Table 7. Regression Analysis of OK and MOK Model Performance in Predicting Total Horizontal Mass Flux Based On Different Mass
Flux Equations

Slopea Intercepta,b r2 er

Mass Flux Equation OK MOK OK MOK OK MOK OK MOK

Gillette and Passi [1988] 1.06 0.97 �0.053 �0.052 0.45 0.56 2.1 3.0
Shao et al. [1993] 1.03 1.04 0.019 0.026 0.41 0.57 2.3 3.3
Kawamura [1951] 1.07 1.05 0.061 0.043 0.44 0.58 2.3 3.2
Sorensen [1991] 1.05 1.05 0.058 0.041 0.45 0.58 2.1 3.2
Lettau and Lettau [1978] 1.07 1.05 0.032 0.050 0.42 0.56 2.4 3.6
Modified Shao et al. [1993] 1.06 1.10 �0.57 �1.29 0.41 0.56 6.0 33

aFor regression of Log(predicted) versus Log(actual).
bUnits of Log(gm�1 d�1).

Figure 5. Comparison between OK model-estimated and
BSNE-monitored horizontal aeolian fluxes at various sites
in the western United States, using the Gillette and Passi
[1988] mass flux equation. More information about basic
predictions and corrected predictions may be found in
Tables 7 and 8, respectively.
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data points. Values of C and u�s
u�

� �
x¼0

were close to those

found with the OK model, and A varied across several orders
of magnitude in much the same pattern as the OK model
(Table 6). r2 for Qt,pred from the MOKmodel with Qt,act were
in the range 0.31–0.34 and values of er were 3.0–3.6 for all
flux equations except the modified Shao et al. [1993] equa-
tion, which had a very high er of 33. In all, the Gillette and
Passi [1988] flux equation provided the best estimates (lowest
er) for the MOK model (Table 7). Empirical corrections to the
MOKmodel using this flux equation were able to reduce er by
about half, to 1.6 (Table 8).
[54] Results from the uncertainty analysis show that

minimum expected er when both u*t and median wind speed
are known within 5% (i.e., when CV=0.05) is around 0.4
(Figure 6). Uncertainty in u*t and mean wind speed of 25%
leads to an expected er ~7.

3.3. Other Models

[55] Of the other models evaluated here, only RWEQ
predicted flux for all 65 sites (Table 9). The MAR model-

predicted flux for only three sites (i.e., no flux was predicted
for 62 sites) and the SHAO model-predicted flux for 38 sites
(i.e., no flux was predicted for 27 sites). In comparison
to these models, the OK model showed the highest value
of r and the lowest value of er, except for the MAR model.
The low value of er for the MAR model is somewhat
misleading as this represents the error for only the sites
where the MAR model predicts any flux. We believe that
the failure of MAR to predict flux at the vast majority of
sites constitutes a serious failure of this model.
[56] Among the models that use lateral cover to describe

vegetation distribution as a control on threshold shear
velocity (i.e., SHAO and MAR), SHAO predicted flux for
more sites than MAR. 33 of the 38 sites at which SHAO
predicts that flux had absolute value of error of the logs
(i.e., |Log(Qt,pred)�Log(Qt,act)| indicating error greater
than an order of magnitude (i.e., >1) (Figure 7). For OK
results among these 38 sites, error was greater than an
order of magnitude for only two sites. For the sites with
the most positively skewed scaled gap size distributions
(i.e., (mean scaled gap size)/(median scaled gap size)

Table 8. Stepwise Regression Analysis and the Corrected Errors by Adding Different Factors for Horizontal Mass Flux Prediction for
Both OK and MOK Models

Intercept Plant Height (m) Fractional Cover, Fg u*t (m s�1) Median Wind Speed (m s�1) r2 er

OK model
Original 0.45 2.1
�0.41 0.024 0.53 1.4
�0.49 1.61 0.36 1.6
�0.59 0.020 0.88 0.48 1.2
�1.21 0.022 0.68 0.014 0.52 1.1
�1.97 0.020 1.15 0.015 0.0022 0.56 1.0
MOK model
Original 0.31 3.0
�0.28 0.018 0.32 2.6
�1.32 0.028 0.29 2.1
�1.73 0.020 0.030 0.32 1.6
�1.72 0.021 0.030 �0.086 0.34 1.6
�1.71 0.021 0.030 �0.090 �1.9� 10�5 0.34 1.6

Calculations were based on the Gillette and Passi [1988] mass flux equation. Original r2 and er refer to the cross-validation values in Table 7. The
empirically corrected horizontal mass flux values are given by original flux estimate + Intercept + Sum (Coefficient * Factor) for all of the factors.

Figure 6. Expected error, plotted as er, when u*t and mean wind speed are uncertain. The degree of
uncertainty is estimated using the coefficient of variation (CV). (a) The surface plots er against CV of
mean wind speed and u*t. The surface has been interpolated. (b) er plotted against the sum of the CVs
of mean wind speed and u*t.
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> 1.5, 35 sites, scaled gap size is the gap size divided by
plant height), absolute value of error of the logs for SHAO
predictions exceeded an order of magnitude at 28 sites.
For these same positively skewed sites, absolute value of
the error of the logs for the OK model exceeded an order
of magnitude at only two sites. These same comparisons
cannot sensibly be made for MAR because the model-
predicted flux for only three of the 65 sites.

4. Discussion

[57] The present work uses a large number of sites (n= 65)
over a wide geographic area with a variety of soil and
vegetation types and with temporal periods from 4–5months
(Tables 1 and 5). The sites that were chosen for this study
were all those that we could identify at the time of the
research and were not established for the purposes of this
project. Aeolian activity was observed at all sites, only two
of which were unvegetated (Table 1). In the present
study, the OK-modeled values of Qt,pred were significantly

correlated with Qt,act at the 99% level (rcrit< 0.325 [Rohlf
and Sokal, 1981]) with approximate relative errors (er)
around 2–3, depending on flux equation, without empirical
correction. With empirical correction, er can be as low as
1.0 when all four field measures are incorporated (h, Fg,
u*t, and median wind speed), but the addition of just h and
Fg can bring er to 1.2–1.3. Although inclusion of median
wind speed does improve model performance in terms of
er, it provides at best a small improvement. For the empirical
correction, h, Fg, and u*t can easily be estimated in the field,
and therefore, their use for empirical correction of model
estimates should be straightforward in most cases. The fact
that these parameters are significantly correlated to model
error suggests that future improvements to the model should
involve modifications related to these parameters.
[58] The OK model, as originally conceived, treated zo as

a constant. It was thought that the zo in the model was the
roughness length due to the roughness of the soil alone.
However, our estimation of model parameters shows in
all cases that the best results are obtained when zo is
0.07–0.08m, which is the roughness length expected for
vegetated surfaces rather than due to the soil roughness
only. There are reliable published relationships between
vegetation cover and zo [e.g., Marticorena et al., 1997b],
and a modification of the OK model was evaluated to
determine whether taking into account vegetation rough-
ness in the model might improve it. Although Qt,pred from
this MOK model is still significantly correlated with Qt,act,
the correlations are lower (and the relative errors, er, are
higher) than the original OK model. In order to obtain
even these results, the relationship for zo had to be adjusted
to increase roughness (equation 12).
[59] From a modeling perspective, the fact that the surface

must be treated as if it were rougher than the bare soil and
also rougher than predicted from the published relationships
between vegetation and zo suggests one of the two things
under the long-term field measurement scenarios; either the
surface really behaves as if it is rougher than expected or
u*t behaves as if it is lower than expected. Because airflow
over rough surfaces is better understood from theoretical
considerations and laboratory experiments and is also more
predictable than soil surface characteristics over extensive
temporal and spatial scales, the latter explanation is more
likely. This conclusion is independent of the OK or MOK
treatment of vegetation. Consider, for example, two of our
sites that were unvegetated. These sites experienced flux
and had values of Qt,act in the middle of our measured range.
Use of typical values for zo for bare soil (<0.01 m) did not
yield any times at which u* exceeded u*t even though the
estimated u*t values were not particularly high (u*t = 0.48
and 0.71m s�1).
[60] Our understanding of the physics of aeolian transport

requires that, on certain temporal and spatial scales, trans-
port can only occur when u*t exceeds u*. We do not refute
this. Nevertheless, over spatially extensive real landscapes
in which transport is measured over a period of several
months, our results suggest that u*t behaves as if it is lower
than what is measured at a single time period. The
values of u*t used here were the minimum values measured
at 10-m intervals extending 50m outward from the BSNE
stems. They should, therefore, provide a reasonable estimate
of the minimum threshold in the area over which saltation

Figure 7. Error, |Log(Qt,pred)�Log(Qt,act)|, plotted against
a proxy for the skewness of the gap size distribution (i.e.,
mean scaled gap size divided by median scaled gap size).
OK results are plotted as closed circles. SHAO results are
plotted as open circles. Only sites (n= 38) for which the
SHAO model predicts flux are plotted.

Table 9. Summary of the Performance of OK and Other Models
Compared in This Study

Model n r2 er

OK* 65 0.45 2.1
MOK* 65 0.35 2.8
MAR 3 0.27 0.6
SHAO 38 0.08 41
RWEQ 65 0.03 240

The OK and MOK models used the Gillette and Passi [1988] flux
equation and the values of the best-fit parameter values from Tables 6. n
is the number of sites predicted by the model with nonzero aeolian flux,
r2 is coefficient of determination between Qt,pred and Qt,act (r), and er is
relative prediction errors given by equation (35).
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flux may be expected to contribute to measured BSNE
fluxes. But, these measurements were only taken at one time.
Further research is required to understand how u*t varies
through time in natural landscapes experiencing aeolian
transport. Until this discrepancy can be reconciled, our
results suggest that adequate modeling results can be
obtained by treating the surface as if it is rougher (i.e.,
greater zo) than expected. Using a constant zo, as in the OK
model, provides a better fit to the observational data than a
zo that varies with vegetation density and height, as in the
MOK model. For the sake of better predictions as well as
model parsimony, the OK model should be preferred over
the MOK model for the time being.
[61] Our evaluation of the OK model shows that it

compares quite favorably to other studies that have evalu-
ated models of horizontal aeolian flux quantitatively in the
field. Van Pelt et al. [2004] compared estimates of aeolian
soil loss from bare fields around Big Springs, Texas, USA,
for 41 events and modeled the flux using the RWEQ. Using
the same method of error evaluation used here, we
calculated an er of 2.9. The RWEQ users guide published
by Fryrear et al. [1998] provided data on measured and
modeled flux at 51 agricultural fields for periods of several
months that were used to calibrate the model. For the
sites for which transport was predicted (n= 49), we calculated
er = 4.6. Buschiazzo and Zobeck [2008] measured 26
individual events on a bare field in the Argentine Pampas
and compared these measurements with model estimates
using the RWEQ and the stand-alone erosion submodel
of the Wind Erosion Prediction System. Both models
underestimated flux by 45% and 40%, respectively. Because
they did not report actual measured values in a table or easily
extractable figure format, it is impossible to conduct the
same type of error evaluation used here, but taking the
reciprocal of the underestimations gives 2.2 and 2.5,
respectively, meaning that the models were within a factor
of about 2.2–2.5 from field estimates, albeit systematically.
For fields with cover under conventional and no-till agri-
culture fields in this same study, these two models failed
to predict any sediment movement for all but one event
despite observations of transport for over half of the events.
For the events where flux was measured, flux was nonethe-
less high, averaging 6500 and 5000 gm�1 d�1 for conven-
tional and no-till fields, respectively. Feng and Sharratt
[2007] measured aeolian flux from fields (average cover =
50%) on a single soil type on the Columbia Plateau for
six 1-week to 2-week periods and compared these with
estimates from the Wind Erosion Prediction System. The
model failed to predict any soil loss for half of the periods
and significantly over predicted soil loss for the other three
periods. In their study, the overall r2 between predicted and
modeled soil loss was 0.49, which is not statistically signif-
icant (a = 0.95, rcrit = 0.811, tcrit = 0.867 [Rohlf and Sokal,
1981]). The fact that both the Buschiazzo and Zobeck
[2008] and Feng and Sharratt [2009] studies had a consid-
erable number of cases in which no flux was predicted
despite being measured, particularly in the presence of
vegetation, highlights the difficulty of simulating aeolian
activity in the presence of vegetation. It is critical in these
comparisons to note that all of the studies referenced above
were from agricultural fields, many of them were bare,
and on which soil parameters could be measured in detail.

All of the studies cited above except Feng and Sharratt
[2009] were also for individual storms. Bare soil or
homogenous crop plantings and single events with on-site
meteorological measurements are arguably much simpler
systems for modeling aeolian transport than the structurally
and spatially heterogeneous rangelands used in this study.
In addition, the fact that there were several cases in which
aeolian activity was not modeled, even though it was
observed, constitutes a significant failure of these models.
There are no such cases in the present study for the
OK model and we believe that these comparisons show
that the OK model performs well above benchmarks set
by previous studies.
[62] Using the extensive dataset collected for this study,

both the OK and MOK models outperformed the MAR,
SHAO, and RWEQ models. The RWEQ model, though
based on physical processes that impact aeolian transport,
is a largely empirical model, with the forms of equations
and their constants unconstrained by the physics of aeolian
transport. The form of equations (30) and (31), for instance,
do not seem to be determined by any physical process, even
though l and Fg certainly are related to the processes in
question. Nonetheless, the RWEQ model has a significant
advantage over the MAR and SHAO models, at least as
far as the dataset used here is concerned; the RWEQ
model-predicted transport for all of our sites. Unfortunately,
the values it predicted showed little relation to those that
were measured (er = 240).
[63] The RWEQ model does not use lateral cover to

control threshold shear velocity. Among the models that
do (MAR and SHAO), both failed to predict transport for
many of our sites (i.e., u*tv was never exceeded). Modifica-
tions to the parameterization of zo by increasing the rough-
ness 100-fold, to bring zo into the same order of magnitude
as for the OK and MOK models, result in predicted transport
for 34 of the sites in the MAR model and 63 of the sites in
the SHAO model, but r and er (for the sites for which
flux is predicted) for these scenarios are worse (MAR:
r2 = 0.01, er= 5600; SHAO: r

2 = 0.01, er= 2400). The failure
to predict flux at many sites, particularly since the sites
where transport was not modeled were not simply those
locations with the lowest transport, suggests difficulties in
their representation of the surface.
[64] The OK (and MOK) model treats the surface funda-

mentally differently from the MAR and SHAO models. In
the OK model, horizontal flux is possible in some locations
of the landscape that are exposed while other, more
protected areas do not experience transport. In the MAR
and SHAO models, the entire landscape is characterized by
a single threshold and transport must occur everywhere at
the same time or not at all. In other words, according to
the OK model, vegetation alters the distribution of shear
stress on the surface, whereas in the MAR and SHAO
models, vegetation changes the threshold shear stress for
the entire surface. Field observations [e.g., Gillette et al.,
2006] show that flux does not have to occur on the landscape
at all places during a transport event. Laboratory results from
Walter et al. (2012a, 2012b) corroborate this finding,
showing that the area undergoing transport in an array of
nonerodible elements increased with increasing wind speed.
In this sense, the OK model represents the physics of trans-
port better than the MAR and SHAO models. The fact that
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the OK models show better correspondence with our field
data provides further support for this view of vegetation’s
impact on aeolian transport.
[65] As a further test of the importance on gap size

distribution, we plotted the absolute value of the error of
the logs for the OK and SHAO models against the ratio of
the mean scaled gap size to the median scaled gap size
(Figure 7). This ratio is a proxy for the skewness of the scaled
gap size distribution (values >1 are positively skewed). If
our argument is correct that representation of the surface as a
distribution of gaps whose size controls where and when the
threshold of the surface is exceeded, the OK model should
predict flux well for the most skewed sites (i.e., error at least
within one order of magnitude). Conversely, the SHAOmodel
(as well as the MAR model, but this model only predicts flux
at three sites so the same comparison cannot sensibly bemade)
uses lateral cover to represent vegetation on the surface, which
carries with it the implicit assumption that gap size distribution
does not matter. If the size distribution of gaps matters, this
assumption implies that the skewed sites should not have
greater error than the unskewed sites.
[66] The OK model does indeed predict flux well for the

most skewed sites. However, among 38 of the 65 sites that
SHAO predicts any flux for, it fails to predict transport
within an order of magnitude at 28 sites. All of these sites
are highly skewed (mean scaled gap size/median scaled
gap size >1.5). This suggests strongly that incorporating
explicit information about the distribution of vegetation is
a superior way to represent vegetation in aeolian transport
models compared to representing vegetation by a single
lateral cover.
[67] In seeming contrast to these results, Brown et al.

[2008] was a wind tunnel study that indicated that the
distribution of roughness elements is not important to shear
stress partitioning. However, shear stress partitioning is not
horizontal flux, the topic of this paper, so these studies are
not in conflict. Indeed, the original Okin [2008] paper
showed simultaneously that the OK model represents
measurements of shear stress partitioning quite well,
whereas the flux calculated from the OK model did not
match that calculated from models that do not take the distri-
bution of roughness elements into account. Shear stress
partitioning is a bulk property of the surface, but the initia-
tion of aeolian transport is a point process. Thus, there is
no reason that shear stress partitioning cannot be distribution
independent whilst flux is distribution dependent.
[68] Imagine, for instance, an area with roughness ele-

ments and that the lateral cover of these elements is such that
the threshold shear stress is not exceeded by a constant wind
according to, say, a shear stress partitioning model like that
of Raupach et al. [1993]. Next, allow that the wind shear
is almost, but not quite, at threshold and therefore there is
not yet any aeolian transport. Next, envision moving these
roughness elements from the center of the area toward its
perimeter. Since the number of roughness elements is
conserved, the lateral cover is conserved and therefore the
shear stress partitioning on the surface is also conserved
(at least according to the Raupach et al. [1993] model and
the results of Brown et al. [2008]). However, the absence
of roughness elements in the middle of the area will present
a large blank spot where the wind shear will exceed thresh-
old, and therefore, transport will occur since the system as a

whole was already near threshold. This brief mental experi-
ment shows one way in which shear stress partitioning does
not have to depend on roughness distribution, but flux can
depend on roughness distribution.
[69] Finally, aeolian transport is a threshold-controlled

process and flux is nonlinear when shear velocity exceeds
the threshold. Therefore, the difference between measured
and modeled values of horizontal flux is highly dependent
upon errors in wind speed and threshold shear velocity. To
examine the impact of uncertainty in these site-level param-
eters, we examined the sensitivity of our error estimates on
uncertainty in mean wind speed and u*t. Other parameters
also carry uncertainty, but these two have the largest impact
on model error. Uncertainty in u*t and mean wind speed
of 5% using our simulation approach gave a minimum
er of 0.4, whereas uncertainty at the level of 25% for both
of these site-level parameters gave er of ~ 7 (Figure 6a).
Our validated model using both Gillette and Passi [1988]
and Sorensen [1991] gave er of 2.1 (uncorrected). These
uncorrected er values are consistent with a total uncertainty
of mean wind speed and u*t of ~25% to 35% (Figure 6b).
The method used in this study for estimation of u*t is
associated with an error of about 10% [Li et al., 2010] and
in this study, we were not able to measure u*t during the
entire period of flux measurement, meaning that the error
in u*t is likely greater than 10%. Furthermore, we were
constrained to use a relatively small number of meteorolog-
ical observation stations that were, in some cases, distant
from the site where flux was estimated. Thus, wind speed
measurements were not collocated during the time of
flux estimates, likely resulting in considerable mismatch
between the winds experienced by the site and the wind
speed records used in the model calibration/validation.
Given the uncertainty of these site-level parameters, it is
highly unlikely that the model might have estimated flux
with er of less than 2 or 3. We therefore consider that uncer-
tainty in wind speed and u*t is contributing significantly to
our model error and that er ~ 2.1 constitutes a very good
agreement between measured and modeled values.

5. Conclusions

[70] In this study, we parameterized and validated the
Okin [2008] wind erosion model on a variety of field sites
ranging from shrubby grassland in southern New Mexico
to grassland and shrubland in Utah and California, including
both degraded and undegraded plant communities. The
model predicted the occurrence of wind erosion at each of
the sites during the experimental period, which is in
agreement with the field observations, with approximate
relative errors of 2.1, which we consider satisfactory,
particularly given constraints in knowledge of wind speed
and u*t. Empirical corrections were able to further improve
the approximate relative error, bringing it to 1.0. The OK
model also predicted flux better than a revised version and
three other published models. This comparison is made both
on the basis of the statistics for those sites where transport
was modeled (i.e., r and er) and the number of sites on which
it was modeled.
[71] In the OK model, the distribution of shear stress on

the surface is modified by the presence and distribution of
vegetation. In the MAR and SHAO models, vegetation alters
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shear stress on the surface, but this effect is only incorpo-
rated as a bulk property of the surface impacting overall sur-
face shear stress. This difference allows the OK model to
predict flux at higher vegetation covers than the MAR and
SHAO models. The effect of changing the distribution of
shear stress on the surface rather than merely changing the
average shear stress experienced by the surface is seen in
the inability of the MAR and SHAO models to predict trans-
port for many of our sites.
[72] No modeling study can, by itself, show that one

physical model is better than another, especially in systems
as complex as those investigated here and as the saying goes
“All models are wrong, but some are useful” [Box and
Draper, 1987, p. 424]. However, the arguments and results
that we have presented here show that the OK model not
only succeeds but that the underlying reason for the success
is the fundamentally different representation of the surface
compared to models where the threshold for initiation of
transport is represented solely by lateral cover (i.e., MAR
and SHAO). To recapitulate, these arguments are as follows:
(1) lateral cover models fail to predict flux at high cover
despite ample evidence in our dataset and others that
flux does indeed occur and (2) measurements and models
of shear velocity in vegetated landscapes show that shear
velocity does decrease in the lee of vegetation.
[73] Our results (i.e., lower er and flux predicted at all

sites) also suggest that the understanding of vegetation’s
impact of shear stress in the OK model is a more realistic
representation of the physics involved in aeolian transport.
Indeed, even when it predicts flux, the MAR model fails to
predict flux well when the distribution is highly skewed
whereas the OK model’s predictive capacity is independent
of the skewness. Of course, some aspects of our understand-
ing of transport in real environments remain elusive. Our
results indicate that the u*t that leads to sediments captured
in aeolian traps is in effect lower than that estimated directly,
even over a relatively large area in the vicinity of the trap.
This result suggests that temporal and spatial variability of
u*t in vegetated landscapes is likely a fruitful avenue of
research for the future. In addition, the positive correlations
of plant height, vegetation cover, and u*t with model error
suggest directions for the modification of the model. In
particular, we believe that modification of the model to
incorporate capture of saltating material by vegetation
would improve it. There has been some theoretical work
on this [e.g., Raupach et al., 2001] and some work in well-
controlled outdoor systems [Gillies et al., 2006], but so far
as we know, no field research in natural landscapes.
[74] A further advantage of the OK model over the

alternate models is the ease with which vegetation parame-
ters can be measured. Despite its long history, l is extremely
difficult to measure in the field. Gap size distribution, in
contrast, may be obtained by a standard transect-based
vegetation survey technique [e.g., Herrick et al., 2005].
Recent research by Vest et al. [2012] supports this view.
Alternatively, vegetation characteristics could be obtained
by an image-based technique [Karl et al., 2011; McGlynn
and Okin, 2006], supplemented by knowledge of plant
height. Additionally, the recent development of high-
resolution terrestrial laser scanner [e.g., Jupp et al., 2008]
or airborne lidar might make it possible to capture the
distribution of unvegetated gaps and canopy height at a

much higher spatial resolution, minimizing the possibility
of missing wind erosion “hot spots” while using the
line-intercept method.
[75] Development of the OK model was motivated by

observations of aeolian processes in semiarid shrubby
grasslands of the southwestern United States and it was
subsequently developed for estimating wind erosion in
rangeland ecosystems. However, because the model is based
on shear velocity partitioning and physical principles, its use
may not be limited to rangelands. Further investigation is
required to implement the OK model in other ecosystems,
particularly agricultural lands, where wind erosion models
have existed for decades.
[76] This study shows that the OK model provides reliable

flux estimates in vegetated systems. With the calibration and
error analysis that was conducted here, it is now suitable for
using in modeling transport in the world’s drylands. In the
United States, the Natural Resource Conservation Service’s
Natural Resource Inventory program uses vegetation
monitoring protocols that provide information on gap size
and vegetation height for over 10,000 points in nonfederal
lands in the Western US [Toevs et al., 2011]. These
protocols are fully consistent with the OK model. Natural
Resource Inventory methods have also been recently
adopted by the Bureau of Land Management for application
to most federally owned rangelands in the United States. An
electronic field data collection system is now available
which automatically provides the gap and height informa-
tion required [Courtright and Van Zee, 2011]. Similar data
are now being collected as part of Mongolia’s national
monitoring system and used in a number of countries includ-
ing China and Mexico. Compatible data can be collected by
pastoralists using even simpler methods [Riginos et al.,
2011]. As consistent gap size datasets are developed for
other lands, the OK model could provide improved
modeling of aeolian transport elsewhere. Moving beyond
local or regional studies, incorporating the OK model into
global models of aeolian transport may improve estimates
in vegetated regions, thus improving underestimations in
these regions and contributing to better modeling of chang-
ing dust emission in response to global environmental
change. This step will require reliable ways to translate
modeled or remotely sensed estimates of vegetation struc-
ture into scaled gap size.
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