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Abstract

The amount and distribution of gaps in vegetation canopy is a useful indicator of multiple ecosystem processes and functions. In
this paper, we describe a semiautomated approach for estimating canopy-gap size distributions in rangelands from high-
resolution (HR) digital images using image interpretation by observers and statistical image classification techniques. We
considered two different classification methods (maximum-likelihood classification and logistic regression) and both pixel-
based and object-based approaches to estimate canopy-gap size distributions from 2- to 3-cm resolution UltraCamX color
infrared aerial photographs for arid and semiarid shrub sites in Idaho, Nevada, and New Mexico. We compare our image-based
estimates to field-based measurements for the study sites. Generally, percent of input points correctly classified and kappa
coefficients of agreement for plot image classifications was very high. Plots with low kappa values yielded canopy gap estimates
that were very different from field-based estimates. We found a strong relationship (R2 . 0.9 for all four methods evaluated)
between image- and field-based estimates of the total percent of the plot in canopy gaps greater than 50 cm for plots with a
classification kappa of greater than 0.5. Performance of the remote sensing techniques varied for small canopy gaps (25 to
50 cm) but were very similar for moderate (50 to 200 cm) and large (. 200 cm) canopy gaps. Our results demonstrate that
canopy-gap size distributions can be reliably estimated from HR imagery in a variety of plant community types. Additionally,
we suggest that classification goodness-of-fit measures are a potentially useful tool for identifying and screening out plots where
precision of estimates from imagery may be low. We conclude that classification of HR imagery based on observer-interpreted
training points and image classification is a viable technique for estimating canopy gap size distributions. Our results are
consistent with other research that has looked at the ability to derive monitoring indicators from HR imagery.

Resumen

La cantidad y distribución de espacios en la cubierta vegetal es un útil indicador de múltiples procesos y funciones del ecosistema. En
este artı́culo describimos un enfoque semiautomático para estimar la distribución del tamaño del espacio de la cubierta en pastizales
de imágenes digitales de alta resolución usando interpretación de imagen por observadores y técnicas estadı́sticas de clasificación de
imagen. Consideramos dos diferentes métodos de clasificación (clasificación de máxima probabilidad y regresión logı́stica) y
enfoques basado en pixel y basado en objetivo para estimar la distribución del tamaño del espacio de la cubierta de fotografı́as
aéreas infrarrojas con 2–3 cm de resolución UltraCamX para sitios de matorral áridos y semi áridos en Idaho, Nevada y Nuevo
México. Comparamos nuestras estimaciones basadas en imagen con medidas basadas en campo para los sitios de estudio.
Generalmente, el porcentaje de puntos clasificados correctamente y los coeficientes de acuerdo kappa de la clasificación de imagen
de parcela fue muy alto. Parcelas con valores bajos de kappa resultaron con estimaciones de espacios de cubierta que fueron muy
diferentes de los estimados basados en campo. Encontramos una fuerte relación (R2 . 0.9 en los cuatro métodos evaluados) entre
imágenes y estimaciones basadas en campo del porcentaje total de la parcela con espacios de cubierta mayores de 50 cm por parcela
con una clasificación kappa mayor que 0.5. El desempeño de las técnicas de sensores remotos varia de espacios pequeños de cubierta
(25 a 50 cm) pero fueron muy similares de espacios de cubierta moderado (50 a 200 cm) a grande (. 200 cm). Nuestros resultados
demuestran que la distribución de espacios de cubierta puede ser estimada con certeza de imágenes de alta resolución en diversos
tipos de comunidades de plantas. En suma, sugerimos que las medidas de clasificación de bondad de ajuste son una herramienta
potencialmente útil para identificar y explorar parcelas donde la precisión de estimación de imágenes podrá ser baja. Concluimos
que la clasificación de imágenes de alta resolución basadas en puntos de entrenamiento de observar-interpretar y clasificación de
imágenes es una técnica viable para estimar la distribución del tamaño del espacio de cubierta. Nuestros resultados son consistentes
con otra investigación que ha buscado la habilidad de derivar indicadores de monitoreo de imágenes de alta resolución.
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INTRODUCTION

There is a critical need for quantitative information on the
ability of rangelands to sustain basic ecological functions (e.g.,
soil productivity, water infiltration) and produce ecosystem
services (National Research Council 1994; Herrick et al. 2010).
In grassland, shrubland, and savannah ecosystems, basic
measurements of the amount and distribution of vegetative
and bare ground cover are useful indicators for assessing
ecosystem function and monitoring change over time. The
amount and distribution of gaps in vegetation canopy (where
canopy is defined as ground surface covered by a vertical
projection of living or dead plant material; Herrick et al. 2009)
is a particularly useful indicator of multiple ecosystem pro-
cesses and functions, including erosion by wind and water,
wildlife habitat suitability, grazing impacts, and susceptibility
to invasive species (Gillette 1977; Schlesinger et al. 1990;
Milton et al. 1994; Pierson et al. 1994; Bautista et al. 2007;
Okin 2008; Herrick et al. 2009). Additionally, the amount and
distribution of vegetation canopy gaps has been used to identify
sites at risk of crossing a threshold to an undesired state
(Bestelmeyer et al. 2009).

The size of canopy gaps on a site is an important indicator
because it is directly related to ecosystem processes and func-
tions. For example, Okin (2008) found that the best vegetation
structure metric for predicting wind erosion was the ratio of
average canopy gap size to canopy height, suggesting canopy
gap size distribution for wind erosion susceptibility will differ
among communities depending on vegetation stature. Modeled
shear stresses and horizontal sediment fluxes in canopy gaps
greatly increased at gap to height ratios greater than approx-
imately one. Thus, critical canopy gap sizes should correspond
to the height of vegetation. In grassland communities with
short stature vegetation, 50 cm could be an appropriate critical
gap size. In taller shrub or savanna systems, the critical gap size
would be much larger (,200 cm). Similarly, Pierson et al.
(1994) and Bautista et al. (2007) found that water erosion
increased with amount and connectivity of bare ground but
appeared to have less of a threshold response to gap distri-
butions than observed with wind erosion. Therefore, it is im-
portant that a method for measuring canopy gaps is capable of
accurately estimating gaps of various sizes (e.g., , 50 cm, 50–
200 cm, and . 200 cm).

To date, however, broad-scale quantitative data on vegetative
cover, particularly canopy gap size distributions, are generally
lacking due to the high costs of measuring these indicators in the
field. Estimates of total or fractional vegetative cover can be
reliably produced from satellite or aerial imagery (Knapp et al.
1990; Hansen and Ostler 2001; e.g., Booth and Tueller 2003;
Hunt et al. 2003; Marsett et al. 2006; Karl 2010), but most
common remote-sensing imagery is not of high enough spatial
resolution to measure the sizes of canopy gaps that are important
leading indicators for land managers (i.e., canopy gaps as small
as 50-cm across). This critical limitation has largely relegated the
measurement of canopy gap distributions to field-data collection
efforts and may hinder a broader use of canopy gap data for
predicting ecosystem processes like wind and water erosion or
attributes such as wildlife habitat suitability.

Interpretation or classification of high-resolution (HR; i.e.,
pixels with a ground-separation distance [GSD] , 1 m but . 1 cm)

and very-high-resolution (VHR; i.e., pixels with GSD , 1 cm)
aerial images has been demonstrated to be a viable option for
collecting information on vegetation cover across a variety of
ecosystems (Hansen and Ostler 2001; Fensham et al. 2002;
Booth and Tueller 2003; Booth et al. 2005a; Luscier et al. 2006;
Booth and Cox 2008; Duniway et al. in press). Estimating the
presence and distribution of canopy gaps from HR and VHR
aerial images has been more limited, however, especially in
nonforested ecosystems. Fox et al. (2000) found that forest
canopy gaps mapped from HR imagery were more accurate than
field-mapped canopy gaps. McGlynn and Okin (2006) used
coarser 1-m resolution aerial photographs to map the distribution
of shrubs vs. nonshrubs in a desert shrubland but did not compare
their results to field measurements. So while interpretation of HR
and VHR imagery appears to be a promising technology for
estimating canopy gap distributions, the factors affecting the
accuracy and precision of such estimates are largely unknown.

While HR and VHR imagery is becoming more widely
available and affordable, it is currently expensive enough to
acquire, store, and analyze that it is typically used within a
sampling framework. Rather than acquire continuous HR or
VHR image coverage of an area, images are collected for specific
locations selected according to a sample design, and statistical
inferences are drawn to a larger area. Efforts such as the Natural
Resource Conservation Service’s National Resource Inventory
(NRI), a national-level monitoring program, are already collec-
ting HR imagery (,30 cm GSD) for thousands of sampling
locations annually for reference and to extract general informa-
tion on land use, but standard estimates of vegetation cover are
not made from these images. A method for extracting additional
information like canopy gap size distributions from these images
could add value to programs like NRI.

In this paper, we describe a semiautomated approach for
estimating canopy-gap size distributions from HR images using
image interpretation by observers and statistical image classifica-
tion techniques. We consider two different classification methods
(maximum-likelihood [ML] classification and logistic regression
[LR]) in using both pixel-based and object-based approaches and
compare our results to field canopy gap measurements. We
demonstrate this method for multiple study areas in the western
United States where gaps in vegetation are of concern, represent-
ing a range of plant communities and gap size distributions.
Finally, we discuss the benefits and limitations of this technique
and make recommendations on the level and type of field and
expert-observer input information needed for accurate and precise
canopy gap estimates in different ecosystems.

STUDY AREA

For this study we used a subset of the aerial images and field
data collected by Duniway et al. (in press). We selected three
sites in each of three states: Idaho, Nevada, and New Mexico
(Table 1). To assess the ability to extract canopy gap infor-
mation from HR digital aerial photographs, we selected study
sites to represent a broad range of plant communities and
canopy gap amounts within grazing lands of the western United
States (see Figure 1). Vegetation on the sites was a mix of arid
and semiarid shrubland communities common to the Owyhee
High Plateaus; Mojave Desert; and Southern Desertic Basins,
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Plains, and Mountains major land resource areas (Natural
Resources Conservation Service 2006). Site elevations ranged
from 366 m to 2 082 m, and average annual precipitation
ranged from 15 cm to 88 cm (Table 1).

Three 50 3 50 m sampling plots were established within
each site using a nested approach similar to that used by the
NRI (Nusser and Goebel 1997). This gave a total of 27 plots
(three plots per site, three sites per state, and three states). Sites
and plots were selected nonrandomly to capture a range of
vegetation and bare ground cover conditions. See Duniway
et al. (in press) for more on site and plot selection.

METHODS

Image Acquisition and Processing
For each study plot (three plots per site, three sites per state),
color-infrared (red, green, blue, and near-infrared spectral
bands) imagery was acquired using an UltraCamX (Vexcel
Imaging, Graz, Austria) flown at approximately 1 000 feet
above ground level. Flying at this altitude with this sensor
yielded a GSD of 2 cm to 3 cm and an image with a ground
footprint of approximately 210 3 330 m. Imagery was col-
lected within 2 h of solar noon to minimize the amount of
shadow. Dates of image acquisition were timed, as closely as
possible, to correspond to peak ‘‘greenness’’ of vegetation in
each study area. All image acquisition, georeferencing, and
orthorectification was completed by Aerographics Inc. (Salt
Lake City, UT). The stated horizontal accuracy of the delivered
products was less than 2 m. Because the objective of this
research was to determine if plot-level estimates of canopy-gap
size distributions could be obtained through image analysis,
and image-based virtual transects did not need to precisely
align with field-based transects, this level of positional accuracy
was acceptable.

Image Interpretation and Classification
Duniway et al. (in press) describe in detail the procedure for
interpreting the image for each plot. Six 50-m virtual transects
oriented north-to-south were spaced evenly across each plot
image. Points were established every meter along the transects
(50 points per transect, 300 per plot image). The image
interpreter (i.e., observer), after having gone through an image
interpretation training and calibration process, used a custom
tool in ArcGIS 9.3 (Esri, http://www.esri.com) to evaluate each
transect point at a fixed scale (1:40) and assign it to one of 10
predefined cover types (e.g., shrub, grass, litter, and soil).
Interpreters were instructed to assign cover-type values to
points in shadow only if they were confident in its cover type.
Otherwise, points falling in shadows were coded as shadow.
Because Duniway et al. (in press) were assessing between-
observer variability, seven observers evaluated each plot image.
For the purposes of our study, however, we used the majority
decision of all seven observers for each transect point. In cases
where no class had a clear majority (i.e., two or more classes
tied), the class was assigned randomly from the competing
classes. Cover type values were collapsed into canopy and
noncanopy. These points, attributed with either canopy or
noncanopy, became the training dataset for statistical classifi-
cation of the plot images (Fig. A).

One of the objectives of this research was to compare pixel-
based and object-based methods for estimating canopy-gap
size distributions from imagery. Object-based image analysis
(OBIA), a technique that groups adjacent, similar pixels to-
gether into polygons (i.e., objects) by minimizing local variance
(Burnett and Blaschke 2003; Blaschke 2010), has repeatedly
been shown to yield high accuracy classifications (Dorren et al.
2003; Wang et al. 2004; Karl and Maurer 2010a), especially
with HR imagery (Laliberte et al. 2004; Laliberte and Rango
2009). With OBIA, the objects, not the image pixels, are the
basic analysis unit. We segmented each plot image into objects

Table 1. Locations of study sites and acquisition dates of the color infrared digital aerial photographs used in this study.

Study area Site Geographic coordinates Average elevation, m Average annual precipitation,1 cm Photo acquisition dates

Idaho 1 Lat 43u12935.90N,

long 116u44915.60W

1 227 28 27 August 2008

2 Lat 43u6932.10N,

long 116u46933.80W

1 629 69 27 August 2008

3 Lat 43u3958.10N,

long 116u45923.20W

2 082 89 27 August 2008

Nevada 1 Lat 36u21945.40N,

long 114u2591.90W

366 15 17 March 2009

2 Lat 36u22912.50N,

long 114u26950.90W

470 16 17 March 2009

3 Lat 35u17950.70N,

long 115u33914.00W

1 601 24 17 March 2009

New Mexico 1 Lat 32u34937.00N,

long 106u0942.00W

1 230 26 23 August 2008

2 Lat 32u29938.80N,

long 105u40959.70W

1 641 48 23 August 2008

3 Lat 32u22933.80N,

long 105u39925.60W

1 440 37 23 August 2008

1Average annual precipitation from 1971 to 2000 from the 800-m resolution US Average Annual Precipitation layer, PRISM Group at Oregon State University (http://prism.oregonstate.edu,
Accessed July 22, 2011).
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using the eCognition Developer 8.0 (Trimble, http://www.
ecognition.com) multiscale resolution segmentation process
(scale parameter, 200; shape parameter: 0.1; compactness,
0.5). This yielded an average of 45 540 objects with a median
size of 159 cm2 per plot image. The mean and standard
deviation of pixels within an object for each of the four image
bands were calculated and used as independent variables in the
image classifications.

For the pixel-based analysis, we performed a 5 3 5 cell
moving window to calculate the average and standard de-
viation of pixels in a neighborhood around each image pixel.
This did not change the native resolution of the image but
allowed us to calculate independent variables for the pixel-
based images to match the OBIA-segmented images. Also,
while observers were instructed to interpret only the precise
location under each transect point when assigning cover type

Figure 1. Examples of the high-resolution (HR; 2-cm to 3-cm resolution) digital images acquired for each plot in the study. A total of 27 images
were considered for this study: three plots per site; three sites in Idaho, Nevada, and New Mexico. Images are displayed in color infrared. Sites were
selected to represent a variety of arid and semiarid vegetation types common in western US rangelands (see Table 1).
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values and not the area surrounding the point, in practice, due
to the cartographic scale at which interpretation was taking
place, assignment of cover types was likely based on a col-
lection of image pixels.

Images for each plot were classified into two cover types
(canopy and noncanopy) using two different methods: an ML
classifier and LR. The 300 transect points attributed as canopy
or noncanopy by image interpretation were used as training
data for the classification. The ML classifier used the variance
and covariance of image values that corresponded to sample
locations to construct a sample distribution for each class. The
probability of membership in each class is calculated for each
pixels or object in the image and assigned to whichever class
has the higher probability (Lillesand and Kiefer 1994). The ML
classification for this study was accomplished using the ArcGIS
MLClassify command.

LR is a statistical modeling technique that can be used to
predict the probability of occurrence of an event or membership
in a single class by fitting the data to a logit function. In our
case, LR was used to predict the probability (ranging from 0.0
to 1.0) that a given pixel or image object belonged to the
canopy or noncanopy class. By selecting a threshold probability
value, a thematic map can be produced consisting of canopy
and noncanopy classes. We constructed LR models predicting
probability of membership in the noncanopy class and
generated canopy vs. noncanopy layers for each plot image in
R (software package version 2.10.1; R Development Core
Team 2009). We used the 300 observer-evaluated points as
dependent variables and the eight-image band values (mean
and standard deviation of the original image bands) as
independent variables. LR is a type of generalized linear
regression model and assumes normality of input variables. We
tested whether each input variable followed a normal
distribution using a Wilk-Shapiro test (Royston 1982). We
used a backward variable selection technique starting with all
eight input variables to achieve a parsimonious model for each

plot image. No interaction terms were considered in the LR
models. The best threshold value for each plot image was
determined by evaluating the percent of the original input
points that were correctly classified for all possible threshold
values from 0.05 to 0.95 ranging in increments of 0.05. The
regression coefficients and variables from the final LR models
were used to create a spatial layer of probability of belonging to
the noncanopy class for each plot image. The threshold value
was then used to split the probability surface into canopy and
noncanopy classes (i.e., any pixel or object with a probability
less than the threshold was assigned to the canopy class; those
above or equal to the threshold were assigned to the noncanopy
class).

For both the ML and LR classifications, validity of the final
classifications for each plot image was assessed by calculating
the percent of the 300 observer-evaluated points that were
correctly classified and a kappa coefficient of agreement
(Cohen 1968; Congalton 1991). Kappa ranges in value from
21.0 to 1.0, but in practice values are constrained between
0.0 and 1.0 (negative values mean that the predictions are
reversed). It measures the likelihood of observed agreement
between two classifications (i.e., in this case, observed classes
for a set or points vs. predicted classes) arising from chance.
Kappa can be interpreted as the proportion by which an
observed classification is better than a random classification
(Lillesand and Kiefer 1994), and we considered kappa values of
0.5 or greater (i.e., 50% better than chance assignment of
image pixels or objects to canopy and noncanopy classes) to
reflect an acceptable amount of agreement between the two
classifications.

Calculation of Canopy Gaps From Images
Canopy gaps were calculated from the four raster classifica-
tions of each plot image by first extracting the noncanopy class
pixels or objects and converting them to polygons (Fig. 2B).
The noncanopy polygons were intersected with lines repre-

Figure 2. Diagram illustrating the process of classifying each plot image and calculating the canopy gaps from the virtual transects. A, Trained
observers assigned a cover class to each of 300 points arranged into six 50-m transects. B, The cover classes were collapsed into canopy vs.
noncanopy, and the points were used to classify the image using two approaches (object-segmentation and pixel-based) and two classification
methods (logistic regression and maximum-likelihood classification). Gray areas represent the noncanopy class. C, Each classified image was
intersected with the virtual transects, and segments of the noncanopy class greater than 25 cm in length were identified as canopy gaps. The
proportion of the total transect length in canopy gaps of different sizes was calculated as the image-based canopy gap estimate.
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senting the virtual transects, and the length of each remaining
transect segment was calculated. Virtual transects were located
and aligned to match field transects to the extent possible (see
Field Data Collection section). Noncanopy transect segments
larger than 25 cm were considered canopy gaps, and the total
proportion of all transect lines in three canopy gap sizes (25–
50 cm, 50–200 cm, and . 200 cm) was calculated for each plot
image (Fig. 2C).

Field Data Collection
For each 50 3 50 m sampling plot, canopy-gap data were
collected along six 50-m transects oriented north to south and
evenly spaced across the plot. Plot corner locations were
recorded using a differentially corrected global positioning
system with submeter accuracy (GeoXT 2005, Trimble,
Sunnyvale, CA). The start and stop distance along the transect
was recorded for all canopy gaps larger than 20 cm following
Herrick et al.’s (2009) protocol and the size of each canopy gap
calculated. Canopy was defined as any 3-cm segment of the
transect that had at least 50% cover of live or dead plant
material based on a vertical projection from the canopy to the
ground. Litter (detached plant material) was not considered
part of the plant canopy. Measurements for each plot were
summarized as the proportion of the total plot transect length
(300 m) in canopy gaps of the three different size classes (25–
50 cm, 50–200 cm, and . 200 cm).

Statistical Analysis of Canopy Gap Estimates
Proportion of the transect in each of the three size classes as
measured for each plot in the field was compared to estimates
from the four-image classification techniques. The linear
relationship between the field measurements of canopy gap
and the image-based estimates was established via regres-
sion, and the strength of the association (i.e., coefficient of
determination) and the slope of the regression line were
evaluated (lm command in R). Poor association between field-
and image-based estimates would suggest a method is not
reliable for estimating canopy gap size distributions. Regression
line intercepts different than zero and slopes different than one
suggest that a method either over- or underestimates canopy
gap proportions. Poor image classifications could obscure
relationships between field- and image-based estimates. This
could occur for several reasons such as difficulty in discrimi-
nating between grass cover and litter (considered noncanopy)
when litter is abundant in a plot, poor image interpretation by
the observers, or poor calibration of observers to the plots. In
any case, poor classifications can be easily identified by their
low kappa scores. For the purposes of comparison, we present
results with all plots and results using only plots with classi-
fication kappa scores greater than 0.5. We conducted non-
parametric analysis of variance (ANOVA) on kappa score
ranks between each classification method and approach for
each state, and followed this with pairwise comparisons to
determine if there were significant differences between the four-
image classification techniques. Finally, for each image plot we
calculated and plotted the Euclidean distance between the field-
and image-based canopy gap estimates using the three size
classes as axes.

RESULTS

Image Classification Assessment
Generally, percent of input points correctly classified and
kappa coefficients of agreement for plot image classifications
were very high (Table 2). For New Mexico, ANOVA on kappa
values for the different classification methods indicated a
significant effects of classification method (ML classification
vs. LR, P 5 0.005) and approach (object segmentation vs.
pixel-based, P 5 0.021) at the a5 0.05 level. Pairwise compar-
isons showed that only kappa values for pixel-based LR and
object-segmented ML classification were significantly different
than each other at the a5 0.05 level (P , 0.001). This sug-
gested that pixel-based LR yielded better classification of
canopy vs. noncanopy for the New Mexico plots than did
object-segmented ML classification. For the Nevada and Idaho
plots, there was no significant difference in kappa coefficients
between the classification methods (P 5 0.390 and P 5 0.887
for Nevada and Idaho, respectively).

In New Mexico, all plot image classification for all four
methods had kappa coefficients greater than 0.5. For Nevada,
one plot had kappa scores below 0.5 for both ML classification
methods (k5 0.3844 and k5 0.0367 for object-segmented and
pixel-based ML classification, respectively). For Idaho, six
plots had kappa coefficients below 0.5 for at least one method,
and three of those plots had kappa coefficients below 0.5 for all
four methods.

Estimates of Canopy Gap Size Distributions
We found a strong relationship between image- and field-based
estimates of the total percent of the plot in canopy gaps greater
than 50 cm (Table 3; Fig. 3). When considering all plots, higher
coefficients of determination were found with the LR estimates
than with ML classification. When poor classification plots
(k, 0.5) were excluded, R2 values were all higher than 0.9 and
similar for all methods. Slopes of regression lines between field-
and image-based estimates were different from one for both LR
methods (P 5 0.0012 and P , 0.0001 for object-segmented and
pixel-based, respectively) and not significantly different from
one for both ML classification methods (P 5 0.0653 and
P 5 0.1147 for object-segmented and pixel-based, respectively)
at the a5 0.05 level.

The relationship between field- and image-based canopy gap
estimates varied with size class of the canopy gaps when all
plots were included (Table 3; Fig. 3). Canopy gaps between
25 cm and 50 cm gave the weakest relationship (R2 between
0.439 and 0.772). Each method had a regression slope coef-
ficient greater than one for this size class, indicating an under-
estimation of gaps of this size class by the image-based method.
However, for the pixel-based LR method, the difference was
not significant at the a5 0.05 level (P 5 0.1836). For the 50 cm
to 200 cm canopy gap size class, R2 values were higher for
all methods (R2 between 0.758 and 0.845). For all image
classification methods in this size class, regression slopes were
not significantly different from one at the a5 0.05 level. The
largest size class (canopy gaps . 200 cm) saw the best
relationship between field- and image-based canopy gap
estimates (R2 between 0.954 and 0.969). In this size class,
regression slope coefficients for ML classification methods
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were not significantly different than one, but both LR methods
were at the a5 0.05 level (P 5 0.0003 and P , 0.0001 for
object-segmented and pixel-based, respectively).

In all size classes and for all methods, image-based estimates
of canopy gaps from plot images with low classification kappa
scores were highly variable with respect to their field-based
estimates (Fig. 4). In all cases, the relationship between

field- and image-based estimates of canopy gaps improved
when the low-kappa-score plots were excluded (Table 3). With
large (i.e., . 200 cm) canopy gaps, LR results were less affected
by the poor classification images than ML classification.

Comparisons of the four methods within each canopy-gap
size class showed that ML classification produced higher asso-
ciations than LR between the field- and image-based canopy

Table 2. Correspondence between the image-interpreter training data and the resulting canopy/noncanopy classifications. Percent of input
observations correctly classified (% Correct) and kappa coefficients of agreement (Cohen 1968) were summarized by site.

Logistic regression ML1 classification

Segmented Pixel-based Segmented Pixel-based

% Correct Kappa % Correct Kappa % Correct Kappa % Correct Kappa

New Mexico

Mean 92.76 0.8004 94.76 0.8546 89.76 0.7332 91.97 0.7872

SD 2.79 0.0598 2.30 0.0537 4.11 0.0881 2.23 0.0597

Minimum 87.37 0.6858 91.03 0.7715 79.86 0.5734 88.29 0.7213

Maximum 97.96 0.8639 98.67 0.9867 93.56 0.8638 95.32 0.8924

Nevada

Mean 93.77 0.7433 95.47 0.8077 86.51 0.6785 83.82 0.6621

SD 5.03 0.1142 3.57 0.0973 18.74 0.2528 30.35 0.2789

Minimum 84.62 0.5614 90.30 0.6080 38.44 0.0294 3.33 0.0004

Maximum 98.68 0.9158 99.00 0.9301 97.35 0.8427 98.00 0.8820

Idaho

Mean 92.88 0.4172 94.86 0.3412 83.41 0.3633 80.89 0.3911

SD 6.97 0.3103 4.09 0.2985 16.48 0.2974 30.14 0.3103

Minimum 78.41 20.0045 86.05 0.0000 53.29 0.0000 1.68 0.0000

Maximum 98.99 0.7710 99.66 0.7144 99.66 0.6976 99.66 0.7171
1ML indicates maximum-likelihood; SD, standard deviation.

Table 3. Associations between field-measurements of canopy gaps and estimates from four different image-analysis techniques. Results are
presented for all plot images and for only those plot images with a kappa coefficient of agreement (Cohen 1960; Congalton 1991) . 0.5 (n 5 20).
Regression slope coefficients (Coef.) and standard errors (SEs) are from a linear regression between the field measurements and image estimates
(plots with kappa . 0.5) for each category.

Logistic regression ML1 classification

Segmented Pixel-based Segmented Pixel-based

Canopy and gaps , 50 cm

r2 all sites 0.916 0.921 0.667 0.437

r2 only k. 0.5 0.952 0.959 0.971 0.961

Coef. (SE) 0.844 (0.045) 0.805 (0.039) 0.939 (0.039) 0.944 (0.045)

Gaps 25–50 cm

r2 all sites 0.260 0.304 0.279 0.607

r2 only k. 0.5 0.534 0.439 0.628 0.772

Coef. (SE) 1.662 (0.336) 1.327 (0.354) 1.615 (0.293) 1.721 (0.221)

Gaps 50–200 cm

r2 all sites 0.486 0.380 0.712 0.330

r2 only k. 0.5 0.758 0.763 0.833 0.845

Coef. (SE) 1.042 (0.139) 0.906 (0.119) 1.078 (0.114) 1.129 (0.114)

Gaps . 200 cm

r2 all sites 0.941 0.858 0.654 0.474

r2 only k. 0.5 0.954 0.955 0.969 0.966

Coef. (SE) 0.825 (0.043) 0.792 (0.041) 0.972 (0.041) 0.956 (0.042)
1ML indicates maximum-likelihood.
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gap estimates in all size classes with low-kappa plots excluded
(Table 3; Fig. 4). However, in the 50 cm to 200 cm
and . 200 cm size classes, all four methods were generally
very similar in their performance. In the 25 cm to 50 cm and
50 cm to 200 cm size classes, the regression slope coefficients
were not significantly different at the a5 0.05 level. In
the . 200 cm canopy-gap size class, however, the LR regression
coefficients were significantly lower than the ML classification
coefficients at the a5 0.05 level.

We plotted the field- and image-based estimates for each plot
along three axes—canopy (including canopy gaps less than
50 cm), 50 cm to 200 cm canopy gaps, and canopy
gaps . 200 cm—in ternary plots for each of the four methods
with lines illustrating the distance between the field- and image-
based estimate for each plot (Fig. 5). The ternary plots allowed
us to compare the relative magnitudes and direction
of differences between field- and image-based estimates by
method. A large difference (longer line) would have greater
ramifications for estimates of wind and water erosion models
based on gap distributions than smaller differences (shorter
line). The ternary plots show that the ML classification method
generally produced smaller differences between field- and
image-based estimates (Table 4).

We also found that the LR estimates tended to either over-
predict proportions of large canopy gaps if there were some
large canopy gaps present or underpredict canopy gaps in plots
with high cover (Fig. 5). This was evidenced in the ternary
graphs by the tendency for the image-based LR estimates of a
plot to be closer to the graph corners than its corresponding
field-based estimate. Conversely, image-based estimates using
ML classification did not show any noticeable directional
trend, which would be expected with a robust estimator.

DISCUSSION

Our results demonstrate that size distributions of canopy-gaps
larger than 50 cm can be reliably estimated from HR imagery

in a variety of plant community types. Association between the
field- and image-based estimates increased as the size of the
canopy gaps increased, which is to be expected as large canopy
gaps are generally easier to discriminate in aerial photographs.
We found that the ML classifications out-performed LR as a
technique for estimating canopy gaps from HR imagery even
though their classification accuracies and kappa coefficient
scores were, on average, lower than those of LR. This could be
an expression of LR overfitting the input data and creating
classifications that were not as generally applicable as the ML
classifications.

We found little difference between pixel-based and object-
based approaches even though previous studies have suggested
that OBIA would perform better (e.g., Dorren et al. 2003; Yan
et al. 2006; Karl and Maurer 2010a). In our study, we
considered only one segmentation scale. However, studies on
applications of OBIA have demonstrated that classification
accuracy will vary with scale (Feitosa et al. 2006; Addink et al.
2007; Karl and Maurer 2010b). Consideration of other seg-
mentation scales in our analysis may have resulted in better
object-based results compared to the pixel-based analysis.

While there have not been many other published studies
looking at estimating canopy gaps from imagery, our results are
consistent with other studies that have estimated plant cover
from HR and VHR imagery. Booth and Cox (2008) found that
cover in shortgrass prairie could be estimated within 5% of
field-based estimates using manual interpretation of VHR
images with as few as 30 observations per image. They also
found, though, that automated image classification techniques
did not perform as well as manual image interpretation for
estimating cover in their shortgrass prairie system. Luscier et al.
(2006), however, found that an object-based classification of
VHR images could estimate cover to within 1% to 4% for
different general land cover types (e.g., grass, shrub, and bare
ground). Similarly, Duniway et al. (in press) found that manual
point interpretation of general cover types (woody, herbaceous,
and noncanopy) from HR imagery was consistently related to
field-based estimates across a diversity of ecosystems.

Hansen and Ostler (2001) and Fensham et al. (2002) found
overprediction in shrub cover increased as scale of imagery
became smaller (i.e., image resolution became coarser) due to
obscuring of edges of plants from larger pixel sizes. This
phenomenon would also affect estimation of canopy gap size
distributions by causing individual canopy gaps to appear
smaller than they really are. In this study, we did not directly
measure the ability to detect canopy edges from imagery. We
would expect that delineation of canopy edges would increase
as image resolution became finer, and that small canopy gaps
would be most susceptible to errors in edge definition. This
could partly explain our results for canopy gaps smaller than
50 cm and argues for using the highest-resolution imagery
attainable for estimating vegetative cover and canopy gap size
distributions. However, rather than automatically obtaining
the highest-resolution imagery possible for estimating vegeta-
tion cover or canopy-gap size distributions, image resolution
should be matched to the system being considered. In
environments with clumpy vegetation and large bare ground
patches (e.g., Fig. 1, New Mexico Site 1), coarser-resolution
imagery may yield acceptable results, whereas in environments
with different plant growth forms highly intermixed (e.g.,

Figure 3. Relationship between field- and image-based estimates of
proportion of total transect length in canopy gaps greater than 50 cm.
Results are presented only for plots with image classifications having
kappa coefficients of agreement . 0.5 for all methods. The dotted line
represents a 1:1 relationship.
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Fig. 1, Idaho Site 2), finer-resolution imagery would be
necessary to accurately estimate canopy gap size distributions.

Shadows in the imagery can also cause problems for de-
tecting canopy edges and could lead to underestimation of
canopy gaps when automated image classification techniques
are used. While efforts were taken to minimize the effects of
shadows in our images, some shadows did occur. When images
are manually interpreted, the analyst can often determine the
land cover class in a shadow and decide if a shadow should be
considered canopy or noncanopy. In our image classifications,

because we were using only two classes, shadows were
generally classified as canopy. This could lead to an underes-
timation of canopy gaps. An alternative technique could be to
classify shadows as a separate class and then attempt to sub-
classify the shadows into canopy and noncanopy.

In some cases, estimates of vegetation cover or canopy gaps
from HR or VHR imagery may be more precise than estimates
made in the field. Seefeldt and Booth (2006) found that image-
based estimates of vegetation cover in a sagebrush (Artemisia
spp.) environment had equal or lower standard errors than

Figure 4. Comparison of image and field estimates of proportion of transect in three canopy gap sizes for the four different classification
techniques. The dashed line is the regression line between field and image estimates for all plots. Gray squares represent plots with a classification
kappa score of , 0.5. The solid line is the regression line for plots with a kappa coefficient of agreement . 0.5. Regression R2 values are given in
Table 3. The dotted line represents a 1:1 relationship.
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field-based estimates from either ocular estimation or point-
frame measurements. This type of result can occur if the size or
density of vegetation make it difficult to place transects or
sample frames within the plot in an unbiased fashion. Addi-
tionally, slope and landscape position can cause directional
trends (i.e., anisotropy) in the shape, size, and distribution of
noncanopy patches that can be difficult to detect from an
oblique ground angle. Sampling canopy gaps without knowl-
edge of such trends within a plot could lead to biased estimates.
Image-based techniques, because the images are nadir-looking,
have a better ability to detect anisotropy and adjust canopy gap
measurements through different orientations of transects. Also,
image-based estimation of canopy gaps opens up the possibility

of making area-based canopy-gap estimates that take advan-
tage of a richer set of features relevant to landscape ecology
(e.g., shape, convolution, and patch size). Such metrics allow
for directional estimates of run-off and water erosion (Ludwig
et al. 2002; Ludwig et al. 2007) and wind erodability
(McGlynn and Okin 2006). Further research is needed to
relate these area-based canopy gap measurements to other
ecological processes (e.g., wildlife habitat).

It is important to note that because we did not use a separate
dataset for assessing the performance of the classifications, the
values in Table 2 cannot be considered an accuracy assessment
of the models but an expression of goodness-of-fit. Even so,
these results are useful for identifying plots where it was

Figure 5. Ternary plots of all plots based on proportion of total plot transect length in 1) canopy and canopy gaps less than 50 cm, 2) canopy gaps
between 50 cm and 200 cm, and 3) canopy gaps greater than 200 cm. Black circles are estimated proportions from the different image classification
techniques. The white circles represent the field-based estimates for each plot. Dashed lines show the Euclidean distance between the field-based and
image classification estimates of canopy gaps.

Table 4. Euclidean distances between field and estimated proportion of transects from the four different classification methods in three different
canopy gap sizes: gaps , 50 cm gaps plus canopy cover, canopy gaps between 50 cm and 200 cm, and canopy gaps . 200 cm.

Logistic regression Maximum-likelihood classification

Segmentation Pixel-based Segmentation Pixel-based

Mean distance 0.1470 0.1562 0.0962 0.0980

Median distance 0.1439 0.1217 0.1064 0.1000

Standard deviation 0.0763 0.0872 0.0410 0.0569
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difficult to construct reliable predictions of canopy vs.
noncanopy from image interpreter classification. Seven of our
27 plots had very low classification accuracies that resulted in
our excluding them from our analyses. All seven of these plots
had either high amounts of litter or low overall bare ground
cover as measured in the field (Duniway et al. in press). Booth
et al. (2005b) reported difficulty in discriminating litter and
bare ground in interpretation and classification of VHR imag-
ery. While that may have contributed to the poor classifications
we observed in these seven plots, a larger problem we
experienced was confusion between grass and litter cover
types. In assessment of canopy gaps, litter is not considered part
of the plant canopy because it is subject to movement by wind
and water and does not provide forage or habitat for most
wildlife and livestock species (Herrick et al. 2009). From the
standpoint of image interpretation, however, litter and
senescent grasses look similar and can be difficult to reliably
discriminate. Other factors could also contribute to confusion
between classes including poor observer interpretation of the
images and bad training and calibration of the observers.

Regardless of which classes are being confused, the result is a
poor relationship between the observers’ interpretations and
the image data. The kappa coefficient of agreement is a metric
of the strength of this relationship and was useful in separating
plots where we could successfully estimate canopy gap size
distributions from those where we could not. Having an ob-
jective means for identifying plots that likely have poor point
classifications opens up an opportunity to explore more fully
the causes of and possible remedies for classification difficul-
ties. An advantage to using the kappa coefficient in this manner
is it is based solely on the relationship between the observers’
interpretations and the image data and does not require inde-
pendent field data to identify locations where estimation of
canopy gaps will be difficult. Thus, we recommend the use of
classification goodness-of-fit measurements such as kappa
coefficients be included routinely in estimation of canopy gaps
from HR or VHR imagery.

MANAGEMENT IMPLICATIONS

We consider the approach described above as a semiautomated
technique for deriving canopy-gap estimates from HR imagery.
We conclude that classification of HR imagery based on
observer-interpreted training points and ML classification is a
viable technique for estimating canopy gap size distributions.
Our results are consistent with other research that has looked
at the ability to derive vegetation cover estimates from HR or
VHR imagery using manual, semiautomated, and fully auto-
mated techniques. Additionally, we suggest that classification
goodness-of-fit measures are a potentially useful tool for iden-
tifying and screening out plots where precision of estimates
from imagery may be low, and this should be more rigorously
investigated.

Many studies have touted the cost-effectiveness of deriving
ecosystem indicators from HR and VHR imagery (e.g., Seefeldt
and Booth 2006; Booth and Cox 2008). While this may be true
for single indicators, cost effectiveness of HR image-based
techniques will increase in general as we develop techniques
to extract additional indicators from the same image. Also,

archives of HR imagery will provide a rich source of data that
can be mined as new techniques are developed. The availability
of HR imagery is constantly increasing, and our ability to store,
distribute, and analyze these images is also increasing faster
than information can be extracted from them by fully manual
interpretation methods. To meet the requirements of monitor-
ing vast landscapes at scales fine enough to inform management
decisions, more research and development is needed into semi-
and fully automated techniques for deriving precise estimates of
ecosystem indicators from this rich supply of data.
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