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The availability of numerous spectral, spatial, and contextual features with object-based image analysis
(OBIA) renders the selection of optimal features a time consuming and subjective process. While several
feature selection methods have been used in conjunction with OBIA, a robust comparison of the utility
and efficiency of approaches would facilitate broader and more effective implementation. In this study,
we evaluated three feature selection methods, (1) Jeffreys—Matusita distance (JM), (2) classification tree
analysis (CTA), and (3) feature space optimization (FSO) for object-based vegetation classifications with
sub-decimeter digital aerial imagery in arid rangelands of the southwestern U.S. We assessed strengths,
weaknesses, and best uses for each method using the criteria of ease of use, ability to rank and/or reduce
input features, and classification accuracies. For the five sites tested, JM resulted in the highest overall
classification accuracies for three sites, while CTA yielded highest accuracies for two sites. FSO resulted
in the lowest accuracies. CTA offered ease of use and ability to rank and reduce features, while JM had
the advantage of assessing class separation distances. FSO allowed for determining features relatively
quickly, because it operates within the OBIA software used in this analysis (eCognition). However, the
feature ranking in FSO is not transparent and accuracies were relatively low. While all methods offered
an objective approach for determining suitable features for classifications of sub-decimeter resolution
aerial imagery, we concluded that CTA was best suited for this particular application. We explore the
limitations, assumptions, and appropriate uses for this and other datasets.

© 2011 Elsevier B.V. All rights reserved.
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1. Introduction term “feature” describes spectral (image bands, band ratios), spa-

tial (area, compactness, etc.), contextual (difference to neighbor),

The selection of appropriate spectral bands and/or image fea-
tures is a crucial step in any image analysis process. Using a set
of optimal features ensures that the classes in question are dis-
criminated effectively and with sufficiently high accuracy, and that
the dimensionality is reduced for efficient use of training samples
(Jensen, 2005). With increased use of high resolution aerial and
satellite imagery, object-based image analysis (OBIA) has become
more commonplace in recent years due to its ability to extract
meaningful image objects by segmentation, and to bridge remote
sensing and GIS (Blaschke, 2010; Blaschke et al., 2008; Hay et al.,
2005). The ability to incorporate elements used traditionally in
aerial photo interpretation (color, size, shape, texture, pattern, and
contextual information), is one of the strengths of OBIA. However,
the availability of hundreds on spectral, spatial, and contextual fea-
tures for each image object can make the determination of optimal
features a time consuming or subjective process. In this paper, the

* Corresponding author. Tel.: +1 575 646 3557.
E-mail address: alaliber@nmsu.edu (A.S. Laliberte).

0303-2434/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.jag.2011.05.011

and texture properties in an OBIA context.

Feature selection techniques range from graphic methods to
statistical approaches involving separation distances for image
classes. Several feature selection methods have been used in con-
junction with OBIA. Herold et al. (2003) and Carleer and Wolff
(2006) used the Bhattacharyya distance, while Nussbaum et al.
(2006), Marpu et al. (2008), and Zhang et al. (2010) employed the
Jeffreys—Matusita distance for feature selection. Van Coillie et al.
(2007) used a genetic algorithm, and Johansen et al. (2009) eval-
uated feature space plots, box plots, band histograms, and feature
space optimization. Classification tree analysis for selection of opti-
mal features was successfully applied by Chubey et al. (2006), Yu
et al. (2006), Laliberte et al. (2007), and Addink et al. (2010).

The above-mentioned studies used satellite images (QuickBird,
Ikonos, SPOT) or aerial photography at resolutions ranging from
0.3 to 1.25m. In recent years, the use of digital mapping cam-
eras has greatly increased, and examples for use of these images
include mapping benthic habitats (Green and Lopez, 2007), land
use/land cover mapping (Rosso et al., 2008), border monitoring
(Coulter and Stow, 2008), and mapping changes in shrub cover
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(Stow et al., 2008). Digital airborne imagery can now be acquired
at sub-decimeter resolution while maintaining sufficient image
overlap for photogrammetric processing, allowing for creation of
orthophotos and digital surface models at very high resolution
(Wiechert and Gruber, 2010). This imagery exhibits great potential
for vegetation mapping at very high resolution, despite multiple
challenges such as high spatial frequency, the effect of shadows,
viewing geometry, and illumination (Laliberte et al., 2010a).

The ability to map vegetation at fine resolution allows for com-
parison of ground- and image-based measurements of cover and
species composition at the plot level, and subsequent extrapo-
lation to the landscape level. This approach has the potential to
be implemented for monitoring purposes by land management
agencies (i.e., U.S. Bureau of Land Management (BLM) and U.S. Nat-
ural Resources Conservation Service (NRCS)) that are mandated
to monitor and assess millions of acres of rangelands. Broad-scale
implementation has been demonstrated to be well suited for very
high resolution remote sensing (Ehlers et al., 2003, 2006; Laliberte
et al., 2010b). This study is part of a larger research effort focused
on developing and implementing novel remote sensing acquisi-
tion and analysis techniques suitable for potential integration into
the National Resources Inventory (Nusser and Goebel, 1997). This
study builds on previous research examining the use of OBIA for
estimating vegetation cover in very high resolution digital imagery
(Laliberte et al., 2010a) by extending the analysis to classification
at the species level. In order to evaluate species separability in very
high resolution imagery, suitable features for classification have to
be determined.

Optimal features for classification may be scale dependent, and
features used in the analysis of moderate resolution imagery (i.e.,
satellite or aerial photography) may not be applicable to finer res-
olution data. Determination of appropriate features for very high
resolution imagery, and a robust comparison of the utility and effi-
ciency of various feature selection methods could facilitate broader
use of sub-decimeter aerial imagery for vegetation mapping.

We focus on assessing three commonly used feature selection
approaches used in conjunction with OBIA rather than present-
ing an exhaustive investigation of feature selection methods. The
objectives of this study were to (1) determine the optimal features

for fine-scale vegetation mapping, and (2) evaluate three feature
selection methods (i.e., Jeffreys—Matusita distance (JM), classifica-
tion tree analysis (CTA), and feature space optimization (FSO)), in
the context of object-based classification of rangeland vegetation
with digital aerial imagery with a 6 cm ground resolved distance.
Evaluation criteria for the feature selection methods were effi-
ciency and ease of use, ability to rank and reduce features, and
classification accuracies.

2. Methods
2.1. Study area and images

The study sites were located on the Jornada Experimental
Range (JER) and the Chihuahuan Desert Rangeland Research Cen-
ter (CDRRC) in southwestern New Mexico, USA (32°34'11"W,
106°49'44"N) (Fig. 1). Average elevation is ca. 1200 m, and rain-
fall amounts and distribution are highly variable, with more than
50% of the mean annual precipitation of 245 mm occurring dur-
ing July, August, and September (Wainwright, 2006). Much of the
historic semi-desert grassland has experienced marked increase in
shrub abundance and distribution over the last century, although
some grass-dominated areas remain (Gibbens et al., 2005). For
this study, imagery was acquired over five 150m x 150 m plots
in five vegetation communities. The five sites are a subset of fif-
teen plots established as long-term research plots as part of the
Jornada Basin long-term ecological research (LTER) program and
represent five plant communities with a wide range in vegetation
structure, primary productivity, and species composition. Of the
five plant communities, two are dominated by grass — upland grass-
lands (GIBPE), low-lying areas (i.e., playas) (PCOLL), and three are
dominated by shrubs with co-occurring mixed grasses - creosote
(Larrea tridentata) (CGRAV), tarbush (Flourensia cernua) (TEAST)
and mesquite (Prosopis glandulosa) (MWELL) (Peters and Gibbens,
2006).

The images were acquired 13 September, 2009 with an
UltraCam-L digital mapping camera at a flying height of
approximately 480 m above ground. The camera acquires multi-
spectral data in the red (580-700 nm), green (480-630 nm), blue

Fig. 1. Study area in southwestern New Mexico, USA, showing the five plots over which the UltraCam-L imagery was acquired at the Jornada Experimental Range (JER) and

the Chihuahuan Desert Rangeland Research Center (CDRRC).
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Table 1

Four-letter abbreviations, scientific names, common names, and growth forms of
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species mapped in five plots at the JER and CDRRC.

Abbreviation

Scientific name

Common name

Growth form

ATCA Atriplex canescens Four-wing saltbush ~ Shrub
EPTR Ephedra trifurca Longleaf ephedra Shrub
FAPA Fallugia pardoxa Apache plume Shrub
FLCE Flourensia cernua Tarbush Shrub
LATR Larrea tridentata Creosote bush Shrub
LYBE Lycium berlandieri Wolfberry Shrub
PRGL Prosopis glandulosa Honey mesquite Shrub
RHMI Rhus microphylla Littleleaf sumac Shrub
YUBA Yucca bacata Banana yucca Shrub
YUEL Yucca elata Soaptree yucca Shrub
GUSA Gutierrezia sarothrae Broom snakeweed Sub-shrub
ARPU Aristida purpurea Purple threeawn Grass
BOER Bouteloua eriopoda Black grama Grass
DAPU Dasyochloa pulchella Fluffgrass Grass
MUPO Muhlenbergia porteri Bush muhly Grass
PAOB Panicum obtusum Vine mesquite Grass
PLMU Pleuraphis mutica Tobosa grass Grass
SCBR Scleropogon brevifolius ~ Burrograss Grass
SPFL Sporobolus flexuosus Mesa dropseed Grass
GRSQ Grindelia squarrosa Curlycup gumweed  Forb
HECI Helianthus ciliaris Blueweed Forb
HYOD Hymenoxys oderata Bitterweed Forb
LACO Laennecia coulteri Coulter conyza Forb
LEVI Leptochloa viscida Gum sprangletop Forb
SONU Sophora nuttalliana Silky sophora Forb
ZIAC Zinnia acerosa Desert zinnia Forb
OP spp. Opuntia Prickly pear Cactus

(410-570 nm), and near infrared (690-1000 nm) bands. Five over-
lapping images were acquired over each site, orthorectified using
interior and exterior orientation values using a direct georeferenc-
ing procedure (no ground control points), and mosaicked using
Leica Photogrammetric Suite (Erdas, 2009). The image mosaic (6 cm
ground resolved distance) was subsequently co-registered to an
orthorectified QuickBird image using Erdas Imagine AutoSync®
with an average of 230 automatically generated tie points and an
average RMS error of 5 cm. Images were clipped to the plot bound-
aries for further analysis.

2.2. Field data

At each of the five plots, training and test samples for the dom-
inant vegetation species were collected in polygon format. Due
to the relatively small size of the plots (150 m x 150 m), training
samples were collected by systematically walking the plot area.
On average, 520 species-level samples were collected per plot, and
classes per plot ranged from 6 to 10. A total of 27 species-specific
classes were mapped (Table 1). Species with fewer than 20 samples
per class were omitted from the analysis, because CTA is sensitive
to large differences in sample size among classes.

Training and test samples were collected by digitizing vege-
tation boundaries over the displayed image using ArcPad on a
tablet PC. We chose this approach rather than delineating vegeta-
tion boundaries with a GPS due to the discrepancy between image
resolution and GPS positional error. At 6 cm image resolution and
sub-meter accuracy of differentially corrected GPS data, the error
of the vegetation boundaries would be a minimum of 10 pixels,
making it difficult to determine the precise location of a vegetation
patch. Half of the samples in each plot were randomly selected as
training sites, and half were retained for accuracy assessment.

2.3. Image analysis
2.3.1. Segmentation and rule-based classification

We used eCognition Developer 8 (Definiens, 2009) for the
object-based image analysis.

The images were segmented at two scales, a fine scale mul-
tiresolution segmentation with scale parameter 100, and a coarser
scale spectral difference segmentation with a maximum spectral
difference of 1500. A spectral difference segmentation allows for
combining adjacent image objects with similar spectral proper-
ties into larger objects while maintaining small spectrally distinct
objects. In this manner, small patches of vegetation can be
maintained within larger bare soil areas and vice versa, while simul-
taneously reducing the number of objects. All bands were weighted
equally for the segmentation; color/shape was set to 0.9/0.1, and
smoothness/compactness was set to 0.5/0.5.

The segmentation parameters were determined based on expert
judgment and visual interpretation. While more objective segmen-
tation approaches have been developed recently (Esch et al., 2008;
Dragut et al., 2010), we wanted to ensure that our segmentation
approach (multiresolution and spectral difference segmentation)
matched the one used over the same plots with 4-cm resolution
digital imagery (Laliberte et al., 2010a). In addition, evaluating
different segmentation approaches was not an objective in this
study.

All classifications were done at the coarser segmentation scale.
Arule-based approach was used to classify the images into shadow,
bare ground, and vegetation. In the tarbush, playa, and grassland
plots, a sparse vegetation class was added, consisting of widely
spaced tufts of sparse vegetation and litter, which were not of
interest in this study. A process tree, a collection of rules for seg-
mentation and classification, was developed on the first image and
applied to the remaining images for consistency in the analysis. The
threshold parameters for the rule-based classification of shadow,
bare ground, and vegetation were changed for each plot according
to differences in vegetation. A detailed assessment of threshold val-
ues in a related study using 4-cm digital mapping camera (DMC)
imagery over the same plots resulted in broad guidelines for these
threshold values, and demonstrated that small changes in values
did not affect the transferability of the rule to other plots (Laliberte
et al., 2010a).

2.3.2. Feature selection methods and nearest neighbor
classification

We tested the three feature selection methods for the species-
level classification only. We started the analysis with 31 spectral,
spatial, and texture features. The initial features were selected
based on previous OBIA projects using aerial imagery in the Jor-
nada Basin (Laliberte and Rango, 2009; Laliberte et al., 2010a,b).
The dominant grasses in the grass-dominant plots GIBPE and PCOLL
were black grama (Bouteloua eriopoda) and tobosa (Pleuraphis
mutica), respectively, and both species were relatively unique spec-
trally. Other mixed grasses in both grass- and shrub-dominated
plots, and several shrub species were more difficult to differenti-
ate unambiguously with visual analysis alone. The initial features
included a sufficiently wide range of spectral, spatial, and texture
features to determine suitable features for each species.

Spearman’s rank correlation analysis was used to eliminate
features with correlation coefficients >0.9 to reduce data dimen-
sionality. As a result, 12-18 features remained per plot (Table 2).
Three feature selection methods were tested, (1) JM, (2), CTA, and
(3) FSO. Inputs for all three methods consisted of the feature val-
ues of the training objects for each class. In this paper, we use
the abbreviation JM for the feature selection method based on the
Jeffreys—Matusita distance, and the abbreviation JMdist for the dis-
tance measure.

The Jeffreys—Matusita distance, JMdist, is a pair-wise measure
of class separability based on the probability distributions of two
classes and is calculated as:

IMdist = \/2(1 —eB), (1
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Table 2

Features selected from 31 input features using three feature selection methods (JM, CTA, FSO) for five plots. Uncorrelated features per plot have correlation coefficients <0.9.
Numbers in columns represent feature ranks for the JM method by largest JM distance, for CTA by primary splitter in decision tree, and for FSO by order of selection in the

FSO tool.
Plots CGRAV MWELL TEAST GIBPE PCOLL
Method M CTA FSO M CTA FSO M CTA FSO M CTA FSO M CTA FSO
Total uncorrelated 12 16 17 17 18
Total selected 7 7 7 7 9 13 8 5 16 7 6 15 10 4 15
Features
NDVI 2 2 1 1 7 3 2 11 2 13 2 3 14
Mean blue
Mean green 6 5 12
Mean NIR 3 6 16 6 3 10 6 13
Mean red 1 1 6 3 8 10 2 1 3 4 1 6 5 1
Max difference 6 13 8 13 7 15 7 6
Standard deviation blue
Standard deviation green 1
Standard deviation NIR 4 6 1 2
Standard deviation red 6 2 15 5 9
Ratio blue 3 5 2 7 5 1 4
Ratio green 7 2 5 4 7 11 3 1
Ratio NIR 4 8
Ratio red 5 2 1 2 1 2 8
Mean diff. to neighb. blue 8 4 5
Mean diff. to neighb. green 5 9 6
Mean Diff. to neighb. NIR 1 9 11
Mean diff. to neighb. red 7 10 5 8
Area 2 4 1 3 5 3 6 4
Compactness 14 7
Density 3 8 4 2 3
Roundness 7 9 9
Shape index
GLCM Homogeneity 11 14 7 12
GLCM contrast 9
GLCM dissimilarity 12 10
GLCM entropy 7 5 15
GLCM std. dev.
GLCM correlation 3 3 4
GLCM ang. 2nd moment 5 7 5 12 10
GLCM mean 6 3 4
where B is the Bhattacharyya distance: for the least separable pair of classes, a common strategy in feature
selection when multiple classes have to be considered (Swain and
B L p(GtC —1( b+ 4 I((C1 + C2)/2)) Davis, 1978).
=gt~ ( 2 ) M= p2)+ T (1G111G) For CTA, we used CART® software (Salford Systems) which out-
2) puts decision trees based on the algorithm developed by Breiman

and (1, uo are the means and Cj, C; the covariance matrices for
two classes, 1 and 2 (Ferro and Warner, 2002). Compared to the
Bhattacharyya distance, the Jeffreys—Matusita distance has a finite
dynamic range. This characteristic allows for easier comparison of
class separability between images.

For JM, we used the SEATH tool (Nussbaum et al., 2006; Marpu
et al., 2008) due to its compatibility with eCognition’s exported
object statistics. Based on the input sample data, a probability
distribution for each class is estimated based on the means and vari-
ances of the two classes in question. The thresholds are determined
by fitting a Gaussian probability mixture model to the frequency
distribution of a feature for the two classes (Nussbaum et al., 2006).
The class separation between two classes for each feature is mea-
sured on a scale of 0-2, with 2 indicating complete separability.
SEATH calculates the class separability and threshold for every fea-
ture and two-class combination and outputs individual text files for
each two-class comparison. The data were compiled to determine
the largest average JMdist (meaning the average of all two-class
combinations) for every possible 4-10 feature combination. Combi-
nations with fewer features always had lower average JMdist values
than combinations with more features, and selecting the lowest
average JMdist from the seven candidates (best 4 features through
best 10 features) would not have been appropriate. Therefore, we
selected the feature combination that resulted in the largest JMdist

et al. (1984). CTA is a nonparametric statistical technique, whereby
a dataset is successively split into increasingly homogenous sub-
sets. At each node in the tree, the splitting rule is defined by the
Gini index, a measure of heterogeneity. The Gini index at node t is
defined as

g6)=>_ p(p(i) (3)

where p(j) and p(i) are the probability of class j and i at node t, with
a range of g(t) from 0 to 1 (Steinberg and Colla, 1997). To prevent
overfitting of the tree, splitting was stopped when a terminal node
had less than ten classes. The optimal tree was determined by 10-
fold cross validation. The selection of optimum features and the
ranking was based on the variable importance scores of the primary
splitters in the decision tree. The scores reflect the contribution of
each feature in predicting the output class, with scores ranging from
0 to 100 (Steinberg and Colla, 1997).

FSO is a tool available in eCognition and it calculates an opti-
mum feature combination based on class samples. FSO evaluates
the Euclidean distance in feature space between the samples of all
classes and selects a feature combination resulting in the best class
separation distance, which is defined as the largest of the minimum
distances between the least separable classes (Definiens, 2009).

The broad vegetation class from the initial rule-based classifica-
tion was further refined into species-level classes using a nearest
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neighbor classification with the features obtained from the three
feature selection methods. A nearest neighbor method is sim-
ple to implement and generally has good results with carefully
chosen features, although it is sensitive to irrelevant predictors.
Because we used feature selection methods in this study, a near-
est neighbor classification approach was deemed appropriate. We
determined classification accuracies for the three output maps for
the species-level classes only by creating an error matrix to deter-
mine user’s, producer’s, and overall classification accuracies, and
Kappa statistics (Congalton and Green, 2009). Statistical differences
between classifications were assessed with McNemar's test, a non-
parametric test of contingency tables (Foody, 2004).

3. Results
3.1. Feature selection

The features selected with the three methods are shown in
Table 2. CTA selected the lowest number of features in three of
the five plots. FSO consistently selected the largest number of fea-
tures, in two plots twice as many features as JM, and in two plots
three times as many features as CART, with one noted exception
being the CGRAV plot. We observed more consistency in feature
selection between JM and CTA than between FSO and either of the
other two methods. For example, in CGRAV, FSO did not select NDVI
or Mean NIR, while both features were selected by JM and CTA
(Table 2). A similar observation was apparent with ranked features,
with greater similarity between JM and CTA, and less similarity
between FSO and either JM or CTA. For JM, the ranking is based
on the average JMdist of all two-class comparisons for a particular
feature space. For CTA, the ranking was obtained using the variable
importance scores of the primary splitters in the decision tree. The
FSO ranking is based on the order of selection within the FSO tool.
Overall, spectral features were more likely to be selected than spa-
tial or texture features, and on average the highest ranking features
were mean red, NDVI, and ratio red.

3.2. Classification accuracy

The highest overall classification accuracies and Kappa values
were obtained using JM for three plots (MWELL, GIBPE, CGRAV),
followed by CTA for two plots (PCOLL, TEAST). Classifications with
features from FSO had the lowest overall accuracies and Kappa val-
ues (Fig. 2). p-Values from McNemar’s tests for all two-method
comparisons were <0.001 except for the CTA vs. FSO comparisons in
MWELL (p=0.052) and GIBPE (p=0.029). In general, Kappa values
for individual classes showed more consistency across methods if
the class was highly separable from other classes (based on JMdist).
Conversely, less separable classes had greater variation in Kappa
values for the three methods (Fig. 3). For example, at the MWELL
site, ATCA (Fourwing saltbush) and YUEL (Yucca), which were con-
fused with each other, showed a large variation in Kappa values
for the methods, while highly separable species such as GUSA
(Broom snakeweed) and PRGL (Honey mesquite) had comparable
Kappa values for all methods. However, there were exceptions to
this observation related to the size class of certain shrubs. While
large PRGL (avg. diameter >0.6 m) were highly separable from other
species and had large Kappa values (as in plot MWELL), small PRGL
(avg. diameter <0.6 m) were often confused with other small shrubs
due to their higher reflectance, resulting in Kappa values around 0.5
for PRGL in CGRAV (Fig. 3).

The species-level producer’s and user’s accuracies summarized
by plot based on the feature selection method resulting in the high-
est overall classification accuracy were relatively high, with a mean,
standard deviation, and median of 70%, 25%, 72%, respectively, for
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Fig. 2. Overall classification accuracies and Kappa indices for classifications of five
plots with three feature selection methods (JM, CTA, FSO). p-Values from McNe-
mar’s tests for all two-method comparisons were <0.001 except for the CTA vs. FSO
comparisons in MWELL (p=0.052) and GIBPE (p=0.029).

producer’s accuracy, and 77%, 18%, 82%, respectively, for user’s
accuracy (Table 3). The variability in accuracy for a given species
was highly dependent on the size class of the species in question,
and the occurrence of species with similar spectral properties in
the same plot. The classification of plot TEAST shows the fine detail
achievable with this imagery (Fig. 4). In TEAST, three shrub species,
five grass species, and one forb were classified with the nearest
neighbor classification in addition to the classes bare, shadow, and
sparse vegetation obtained with the rule-based classification. Over-
all accuracy for TEAST was 80%.

3.3. Class separation distances

Both FSO and JM provide class separation distances, and while a
detailed comparison of the separation distances is beyond the scope
of this paper, we compared the values obtained with FSO and JM for
all two-class combinations for each plot. In contrast to the JMdist
calculation, the separation distances obtained from FSO are more
simplified. Distances between classes are calculated by determin-
ing for each sample of class a the sample of class b with the smallest
Euclidean distance to it. The process is repeated for samples of class
b compared to class a, and the Euclidean distances are finally aver-
aged over all samples. The correlations for the two measures were
relatively high with the exception of one plot (GIBPE), and p-values
were <0.001 for four plots (Table 4).

3.4. Processing times
All processing was performed on a computer with 4 GB of RAM

and two dual-core 2.6 GHz processors. The three methods for fea-
ture selection resulted in a range in processing times due to the
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Table 3

Percent vegetation cover and producer’s and user’s accuracies for species-level
classes in five plots. For each plot, the values are based on classifications based on
the feature selection method resulting in the highest overall classification accuracy:
JM for CGRAV, MWELL, and GIBPE, and CTA for TEAST and PCOLL.

Species Plot Vegetation Producer’s User’s
cover (%) accuracy (%) accuracy (%)
DAPU CGRAV 7.5 61 85
FAPA CGRAV 0.6 62 73
FLCE CGRAV 0.3 63 43
LATR CGRAV 9.0 65 65
MUPO CGRAV 7.4 66 62
OP spp CGRAV 0.8 22 94
PRGL CGRAV 33 71 68
RHMI CGRAV 10.9 89 88
YUBA CGRAV 3.8 65 84
ZIAC CGRAV 2.0 57 68
ARPU GIBPE 1.2 77 92
ATCA GIBPE 1.2 20 30
BOER GIBPE 41.1 100 91
EPTR GIBPE 3.6 51 59
GUSA GIBPE 1.7 84 85
PRGL GIBPE 14.0 94 93
YUEL GIBPE 23 66 82
ATCA MWELL 5.8 88 98
FORB MWELL 8.2 82 93
GUSA MWELL 9.2 87 93
PRGL MWELL 0.5 99 95
SPFL MWELL 1.7 74 93
YUEL MWELL 12.2 87 90
GRSQ PCOLL 0.3 35 67
HECI PCOLL 0.3 91 64
HYOD PCOLL 21.7 99 99
LACO PCOLL 7.3 81 42
LEVI PCOLL 232 96 100
PAOB PCOLL 4.8 91 100
SONU PCOLL 0.5 86 64
ATCA TEAST 1.5 100 83
BOER TEAST 30.6 70 60
FLCE TEAST 9.6 98 90
LYBE TEAST 1.8 56 81
MUPO TEAST 1.6 22 53
PLMU TEAST 10.3 87 71
SCBR TEAST 0.9 64 96
SPFL TEAST 0.7 50 80
SPFL TEAST 5.0 27 45
ZIAC TEAST 3.8 14 79

different steps required for each method. For all plots, CTA was
faster than JM, which was faster than FSO for obtaining an opti-
mum feature combination. However, the speed of FSO was entirely
dependent on how many texture features were included, because
texture determination is CPU demanding. In this analysis, between
one and four texture features were selected by the FSO tool for
each plot, slowing down the operation. For example, running the
FSO tool took on average 10s for a test using 10 features without
texture. With four texture features, this task required up to 2 h. If
no texture features are included, FSO has the potential to be the
fastest feature selection method.

Both CTA and JM required exporting the object statistics from
eCognition to another program for determining the optimum fea-
tures. CTA was more time efficient, because CART® processing times

Table 4
Correlations between JM distances and class separation distances obtained with FSO
tool for all two-class comparisons for five plots.

Plot Correlation coefficient p-Value n

CGRAV 0.88 <0.001 45
MWELL 0.81 <0.001 15
TEAST 0.82 <0.001 36
GIBPE 0.41 0.03 28

PCOLL 0.76 <0.001 21
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Fig. 4. UltraCam-L image with 6 cm ground resolved distance (a) and classification (b) for a portion of plot TEAST. The black box delineates the enlarged area in (c) and (d).
Classification was performed using CTA. Species are listed with four-letter abbreviations, details are in Table 1.

from import to outputs of results required only seconds. Feature
rankings based on variable importance scores of the primary split-
ters in the tree were easy to interpret. JM required the most data
manipulation, because several steps were required for analyzing
object statistics using the SEATH tool, compiling individual out-
put files for each two-class combination (up to 45), and obtaining
average separation distances for every possible 4-10 feature com-
bination before determining the optimum feature combination for
the least separable pair of classes. Classification times in eCogni-
tion were also highly dependent on the number of texture features
included. Plots without texture features were classified in minutes,
while plots with four texture features took up to 9 h to classify.

4. Discussion

Each feature selection method assessed in this study had advan-
tages and disadvantages. In order to assess the suitability of a
particular feature selection approach, classification accuracy is an
important criterion, because ultimately the analyst desires a result
with the highest achievable accuracy. However, other criteria have
to be considered as well, especially if multiple high resolution
images have to be analyzed. Ease of use, efficiency, and process-
ing times are equally important, and an efficient workflow may be

preferable to higher overall accuracy, especially if the difference in
accuracy consists of a few percentage points. The ability to clearly
interpret the results of a feature selection method also has to be
taken into consideration. Finally, a robust feature selection tech-
nique has to be capable of ranking and reducing a potentially large
number of input features. In most situations, training samples are
costly and therefore limited. Using a reduced number of features for
agiven set of training samples reduces dimensionality and prevents
what is known as the Hughes phenomenon, the deterioration of
classification accuracy due to the addition of unnecessary features
(Kim and Landgrebe, 1991).

We determined that CTA was best suited for this particular study
based on ability to rank and reduce features, relatively low process-
ing times, and relatively high accuracy. However, we acknowledge
that either of the other methods may be preferable for different
research objectives. CTA proved to be an excellent feature reduction
and ranking tool; it required few steps, and the results were easy
to interpret. CTA also has the advantage of being a non-parametric
approach. In terms of efficiency, if many classes and/or many fea-
tures are involved, JM can be time-consuming, because the analysis
is essentially based on multiple two-class comparisons. In cases
where the assumption of normality underlying the JM distance may
not be met due to limited sample sizes, CTA would be preferable.
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Table 5

Strengths and weaknesses of, and best uses for three feature selection methods for object-based image analysis of very high resolution digital aerial photography. The feature
selection methods are Jeffreys—-Matusita distance (JM), applied using the SEATH tool, classification tree analysis (CTA), and feature space optimization (FSO).

™M CTA

FSO

Strengths (1) Feature ranking for 2-class comparisons, (2)
JM distances and rules, (3) compatible with

eCognition export

Weaknesses (1) No initial feature reduction, (2) requires
multiple steps for feature selection, (3)
assumes normality

(1) Feature ranking for NN or rule-based
classification when separation distances are
needed, (2) for limited number of classes and
features

Best uses

(1) Feature reduction and ranking, (2)
non-parametric, (3) can obtain features or
specific rules, (4) fast analysis

(1) No class separation distances, (2) Potential
for overfitting decision tree

(1) Feature reduction and ranking for NN or
rule-based classification, (2) for many classes
and/or features, (3) for features with
non-normal distributions

(1) Feature reduction within eCognition, (2)
class separation distances, (3) fast analysis
without texture features

(1) “Black box” feature selection approach, (2)
unclear feature ranking, (3) no rules

(1) Feature reduction for NN classification

On the other hand, the JM method has the advantage of quan-
titative class separation distances. We found that class separation
distances offered new insights into the influence of size classes of
certain species. While larger mesquite shrubs were clearly separa-
ble from other species of shrubs, small mesquites had a tendency
to be confused with similarly sized individuals of other species.
FSO also provides class separation distances, but has certain limits.
The JMdist has the advantage of being scaled from 0 to 2, which
makes is convenient for comparing separability of the same classes
in different plots. This was not possible using the FSO-derived
class separation distances, because the maximum distances varied
greatly from plot to plot. However, the correlation between the two
distance measures was relatively high, indicating that either mea-
sure provides useful insight into class separation. FSO-derived class
separation distances have been shown to be a reasonable indicator
of classification accuracy in object based image analysis (Laliberte
and Rango, 2009).

When all factors were included, FSO was the lowest ranking
method in this study. While it can be applied directly in eCogni-
tion and can potentially be the fastest approach without texture
features, it consistently selected the largest number of features of
all three methods, thereby achieving the lowest relative feature
reduction capability. In addition, FSO appeared to be a “black box”
without clear transparent mechanisms that provided the lowest
classification accuracies.

We summarized strengths, weaknesses, and suggested best uses
for the three feature selection methods, demonstrating that classi-
fication objectives and logistical constraints are best considered a
priori (Table 5). We suggest that CTA is best suited for cases with
numerous image classes and many features due to its excellent fea-
ture reduction ability, ease of use, and easy interpretability. JM is
appropriate if class separation distances are of interest, and if the
analyst desires to rank input features for two-class comparisons.
In this study, we only tested nearest neighbor classification using
training samples. However, two of the methods, CTA and ]JM, also
provide threshold values that can be used as inputs for rule-based
classification. While CTA outputs thresholds based on the entire
classification tree, providing easy transfer to a rule-based classifica-
tion (Laliberte et al., 2007), the SEATH tool used for determination
of the JM distance provides threshold values for separating only
two classes, and the analyst has to choose how many features to
use per class. Nussbaum et al. (2006) and Gao et al. (2007) used
this approach, choosing first the two features with the highest sep-
arability for each class combination, and then limiting the inputs to
the final rule-base for each class to the features with the maximum
separability.

Classification accuracies in this study varied for the five plots,
although we did not interpret this as a lack of robustness of the
method. Because the plots were located in five distinct vegetation
communities with different size classes of the same species, dif-
ferent accuracy results were not deemed unusual. We expect the

method to be relatively robust if transferred to imagery taken at
another time of day or year. Due to different viewing geometry, illu-
mination, and the resulting effect on shadows, adjustments in the
thresholds would be required for the classes shadow, bare ground,
and vegetation. However, based on previous research (Laliberte
et al., 2010a), we expect that those adjustments would be minor
and would not affect the transferability to a large degree.

Our main objective was to evaluate the feature selection meth-
ods, but the classification accuracy results offered other valuable
insights. For example, classes with relatively low producer’s accu-
racies should be aggregated into higher parent classes, if the rule
base were to be applied to a larger image. Another aspect relates to
potential segmentation inaccuracies and their effect on classifica-
tion results. As in any OBIA study, there are always some under- or
over-segmented objects of interest. Our quality control consisted
of expert judgment and visual interpretation, which was feasible
on the small images we analyzed. For transferring the approach to
larger images, we would suggest the use of more objective segmen-
tation approaches (Esch et al., 2008; Dragut et al., 2010). Because
our comparison of feature selection methods was based on the
same segmentation, it was reasonable to assume that the clas-
sification accuracies could be attributed to the feature selection
methods.

Very high resolution digital aerial imagery has the potential to
be used for monitoring purposes by land management agencies,
and good correlations between ground- and image-based mea-
sures of cover have been achieved at the structure group level
(grass, shrub, etc.) (Laliberte et al., 2010a,b). This study shows
that relatively high classification accuracies can be achieved with
sub-decimeter digital aerial imagery for detailed species-level
classification with the use of training samples and an appropri-
ate feature selection approach. Lower resolution data (10-15 cm)
would offer advantages in processing times and might result in
comparable classification accuracies, although a direct compari-
son with coarser resolution data is needed to evaluate tradeoffs
between resolution, efficiency, and accuracy.

5. Conclusions

In this study, we assessed three feature selection methods
for object-based classification of rangeland vegetation using sub-
decimeter resolution digital aerial imagery. All methods offered
an objective approach for feature selection. ]M resulted in the
highest classification accuracies for three of the five sites; how-
ever, CTA was deemed to be the best method for this particular
imagery, because of the efficient workflow, the ability to both rank
and significantly reduce input features, and the lack of paramet-
ric assumptions for normality. Even though CTA ranked second in
terms of accuracy, we determined that it was the best method if
multiple images were to be analyzed. FSO was ranked third based
on feature reduction capability, the “black box” nature, and lowest
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accuracies. JM is an attractive method if class separation distances
are of interest. FSO also provided class separation distance, but they
are not scaled for easy comparisons. Further studies will investi-
gate the validity of these findings when the methods are applied to
classifications of larger areas.
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