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Abstract Collection of standardized assessment and
monitoring data is critically important for supporting
policy and management at local to continental scales.
Remote sensing techniques, including image interpre-
tation, have shown promise for collecting plant
community composition and ground cover data
efficiently. More work needs to be done, however,
evaluating whether these techniques are sufficiently
feasible, cost-effective, and repeatable to be applied in
large programs. The goal of this study was to design
and test an image-interpretation approach for collecting
plant community composition and ground cover data
appropriate for local and continental-scale assessment
and monitoring of grassland, shrubland, savanna, and
pasture ecosystems. We developed a geographic infor-
mation system image-interpretation tool that uses points
classified by experts to calibrate observers, including
point-by-point training and quantitative quality control
limits. To test this approach, field data and high-
resolution imagery (∼3 cm ground sampling distance)

were collected concurrently at 54 plots located around
the USA. Seven observers with little prior experience
used the system to classify 300 points in each plot into
ten cover types (grass, shrub, soil, etc.). Good agreement
among observers was achieved, with little detectable
bias and low variability among observers (coefficient of
variation in most plots <0.5). There was a predictable
relationship between field and image-interpreter data
(R2>0.9), suggesting regression-based adjustments can
be used to relate image and field data. This approach
could extend the utility of expensive-to-collect field
data by allowing it to serve as a validation data source
for data collected via image interpretation.
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Introduction

Collection of standardized assessment and monitoring
data is critically important for supporting policy and
management at local to continental scales (NRC
1994). Of particular need are programs that collect
data for indicators closely linked to key ecosystem
services and sensitive to changes in land use and
climate (Feld et al. 2010; Parr et al. 2003). Some of
the most fundamental indicators relevant to ecosystem
services in grassland, shrubland, savanna, and pasture
ecosystems include ground cover (vegetation, rock,
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and litter cover) and vegetation community composi-
tion (NRC 1994). However, broad-scale data on such
indicators are generally sparse for such ecosystem
types that are not intensively managed. This low
sampling density occurs because measuring these
indicators in the field is time-intensive and expen-
sive, especially in remote areas (Elzinga et al.
1998, Holthausen et al. 2005), and broad-scale
remote sensing approaches typically cannot yet
produce consistent measurements with the required
accuracy and precision for long-term monitoring
(Marsett et al. 2006).

Data collection methods used for assessment and
monitoring programs need to be feasible, cost-effective,
and repeatable (House et al. 1998). Considerations for
feasibility include availability of sufficient equipment
and personnel with the required skills to complete the
sampling in the required time. Using cost-effective
methods increases the likelihood that data can be
collected on a sufficient number of plots to answer
relevant questions. Evaluation of cost-effectiveness
should account for equipment expenses, travel (if
necessary), hours of labor, and the level of skill required
(which affects hourly labor costs). Consistent and
repeatable methods need to be employed because (1)
extensive programs necessarily rely on data collection
by many different observers at one point in time and
across time periods, and (2) method consistency and
repeatability affect accuracy and precision of estimates.

National-scale programs in the USA that collect
standardized plant community composition and
ground cover data currently rely on field collection
methods, including the National Resource Inventory
(NRI) program (Herrick et al. 2010; USDA-NRC
2010) and planned monitoring initiatives by the
Bureau of Land Management (BLM; Mackinnon et
al. 2011). These agencies use field methods, primarily
line-point-intercept (Herrick et al. 2005), because they
are known to be feasible to complete at national levels
and, with proper calibration, potentially repeatable by
multiple observers (maximum difference in line-point
indicators collected by multiple observers of 5%
absolute cover; see Appendix E-Quality Assurance
Calibration for Rangeland Quantitative Protocols in
USDA-NRCS 2007). However, field visits are, by
their nature, expensive due to travel costs.

Remote sensing techniques (i.e., biophysical or
statistical models relating light reflectance to ecosystem
attributes) have shown promise for measuring plant

community composition and ground cover efficiently
(Booth and Tueller 2003; Hunt et al. 2003; Karl 2010;
Laliberte et al. 2010) but currently are not applied in
existing national-scale surveys (e.g., NRI). For such
techniques to be used in existing or future national-
scale surveys, it is necessary that they meet the criteria
outlined above (i.e., feasible, cost-effective, and repeat-
able). If a technique was developed that meets these
criteria, it would also likely be appropriate for local to
regional monitoring and assessment programs. Feasi-
bility considerations include whether imagery of
sufficiently high spatial resolution can be collected at
the scale of the survey and whether there is sufficient
expertise available to complete the required image
analysis. For example, it has been demonstrated that
vegetation cover data can be successfully collected
using very-high-resolution imagery [∼1 mm ground
sampling distance (GSD); Booth and Cox 2009].
However, collection of this scale of imagery requires
equipment (e.g., Booth and Cox 2009) not commonly
available from aerial imagery contractors. Similarly,
object-oriented image analysis techniques have shown
much promise for collecting accurate vegetation cover
data (Karl 2010; Laliberte et al. 2004; Laliberte et al.
2010) but many agencies that collect assessment and
monitoring data currently lack the software and
expertise to conduct such analyses. An analysis of
cost-effectiveness for remotely sensed data should
include evaluation of imagery costs and costs of
collecting the indicator data from the images, either
through image interpretation (manual classification by
a person) or image analysis (automated classification
by a computer; Laliberte et al. 2010). Interpretation can
often be done by individuals with minimal training
while analysis typically requires a remote sensing
specialist. Thus, if the time and imagery requirements
are similar, image interpretation can be more cost-
effective since it can be completed by entry-level
personnel with little training (Booth and Cox 2008).
Evaluation of the repeatability of remote sensing
techniques should consider whether the technique can
produce similar measurements when applied multiple
times to an area that has not changed. For image
interpretation, this includes evaluating consistency of
results from multiple observers at one point in time and
through time. Making measurements of ecosystem
indicators via remote sensing that are comparable to
field-based measurements can help address many of
these criteria.
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Several studies have demonstrated that equivalent
measurements to standard field collection methods
can be made using remote sensing techniques, either
through image analysis (e.g., Laliberte et al. 2010;
Luscier et al. 2006) or image interpretation (e.g.,
Booth and Cox 2009). These approaches have the
advantage of potentially allowing combination of
remotely sensed data with current and legacy field
data in analyses—a key requirement for incorporating
remotely sensed data in existing (e.g., NRI) and
planned (e.g., BLM) national surveys. Predictable
relationships between indicators collected with remote
sensing and those collected via field methods can
partially address the repeatability criterion by allow-
ing data collected using different sensors and techni-
ques to be adjusted or calibrated based on field data.
Furthermore, if relationships established through such
calibration on a limited set of images can be reliably
extended to other images without requiring additional
field data, large gains in sampling efficiency may be
possible.

There has been little research on the repeatability
of image-interpretation methods for measuring plant
community composition and ground cover by multi-
ple observers. In this context, repeatability is a
function of the degree of correspondence between
indicator measurements from independent observers
(i.e., different observers should produce similar results
when using repeatable methods). Repeatability should
be achievable through proper documentation of the
method and observer training and calibration. For
image interpretation, training includes teaching
observers to look for features such as tone, color,
texture, pattern, context, shape, and size (Morgan et
al. 2010). The calibration process applies these
concepts to a specific system to classify image
features into predefined types in a consistent way.
Previous work evaluating the repeatability of image
interpretation with experienced but un-calibrated
observers suggests that measurements made by each
observer need to be adjusted with field data separately
(Booth et al. 2005; Fensham and Fairfax 2007). To
evaluate whether an image-interpretation observer is
sufficiently calibrated, a standard or reference is
needed for calibration evaluation. Field data could
be used for this purpose, however, unless the imagery
is in very-high-resolution (∼1 mm ground sampling
distance, e.g., Booth and Cox 2008), there will likely
be a scale mismatch between the image resolution

(pixel size) and the size of area measured by typical
field methods for collecting cover (e.g., 1 mm
diameter; Herrick et al. 2005). An alternative is to
use image-interpretation classifications done by an
expert (a person trained in image interpretation and
familiar with the plant community) as the standard.
This approach has an additional advantage of allow-
ing for point-by-point training on correct classifica-
tions. If image interpretation is to be used in national-
level surveys that collect fine-scale data on plant
community composition and ground cover, more
work is needed to understand the effects of observer
training and calibration on the ability to derive
repeatable measurements from high-resolution aerial
imagery.

The goal of this study was to test a system for
measuring plant community composition and ground
cover from image interpretation that is applicable
to national-scale surveys of grassland, savanna,
and pasture ecosystems (hereafter referred to as
grazing lands). As discussed previously, for the
approach to be feasible for such large surveys, the
imagery needs to be obtained using aerial imagery
equipment available from vendors around the
USA. Therefore, we did not use the highest
resolution achievable (such as used by Booth and
Cox 2009) but sought to use the highest-resolution
imagery attainable with standard digital mapping
cameras. The specific objectives of this study were
to (1) develop a method for calibrating image-
interpreter observers that is feasible for national-
scale surveys, and (2) test if cover measurements
collected through interpretation of imagery obtained
with standard digital mapping cameras are repeat-
able by numerous observers calibrated using the
methods developed. An additional key criterion for
adoption of an image-interpretation approach by
existing surveys (e.g., NRI) is that plot-level
estimates derived from an image-interpretation
approach need to be highly correlated with plot-
level estimates from standard field collection meth-
ods. Therefore, an another objective was to (3) test
if there is a predictable relationship between plot-
level estimates derived using image interpretation
and those obtained using field methods employed
by such surveys. Finally, we discuss considerations
for feasibility, repeatability, and, though not directly
addressed by the study, cost-effectiveness of the
proposed approach.
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Materials and methods

Study locations

To test the applicability of this approach nationally,
we selected six study sites from across the USA that
represented a broad cross-section of grazing lands and
where local collaborators were available to assist with
plot selection and field data collection (Fig. 1a;
Online Resource Table 1). Within the study areas,
we used a nested approach both to maximize
efficiency of field and aerial data collection and to
simulate the NRI framework described by Nusser and
Goebel (1997). Within each study site, we selected
three 805×805-m areas (160 acres, referred to as
“segments” in NRI; see Nusser and Goebel 1997) and
three 50×50-m plots within each segment for field
and image-interpretation data collection (i.e., data
plots; Fig. 1b). An effort was made to select plots that
captured the range in variability of plant community
composition and ground cover in the region and to
maximize the variability among segments and plots
(Online Resource Fig. 1). Segment and plot locations
were selected using available imagery and through
consultation with local collaborators. For image-
interpretation calibration purposes, an additional plot
was selected adjacent to each data plot (i.e., calibra-
tion plots; Fig. 1b). A total of 54 data and 54
calibration plots were included in this study (i.e., six
study areas, three segments per study area, and three
data and three calibration plots per segment). The goal
of this study was to assess repeatability and accuracy
of the developed image-interpretation approach;
therefore the sample design was necessarily different
than a design intended for resource monitoring or
assessment.

Image acquisition

For each study area, we acquired color-infrared aerial
imagery (16-bit-depth; red, green, blue, and near-
infrared spectral bands) at the highest resolution
possible using a large-format, digital mapping camera.
Images were collected using an UltraCamX (Vexcel
Imaging; Graz, Austria) from approximately 305 m
(1,000 feet) above ground level. Flying at this altitude
with this sensor yielded a GSD of 2 to 3 cm and an
image with a ground field of view of approximately
210 by 330 m. Imagery was collected within 2 h of

solar noon to minimize shadows. Dates of image
acquisition were timed to correspond to the growing
season in each study area (Online Resource Table 2).
All image acquisition, georeferencing, and orthorecti-
fication was completed by aerial imagery and photo-
grammetry contractors. The stated horizontal accuracy
of the delivered products was less than 3 m (less than
2 m for most).

Two approaches were used to orthorectify and
georeference the imagery. In both approaches,
orthorectification and georeferencing of the imagery
was accomplished by collecting imagery with a
minimum of 60% forward overlap, using image
center-points [based on the airborne global posi-
tioning system (GPS) and inertial measurement unit
data] and auto-generated stereo-pair tie points (no
surveyed ground control points). In New Mexico
(NM), Idaho (ID), Pennsylvania (PA), and Florida
(FL), only single high-resolution images (2–3 cm
GSD) were collected over the plots. On the same
day that the 2–3 cm GSD imagery was collected,
coarser-resolution (9–15 cm GSD) images were
collected with the necessary overlap to develop a
stereo model. These coarser images were georefer-
enced and orthorectified as described above and
then used to georeference the high-resolution
images. In study areas flown later in the project
(California (CA) and Nevada (NV)), three overlapping
high-resolution images were collected allowing for
direct orthorectification and georeferencing of the 2–
3 cm GSD images.

Field data collection

Data plots were preselected for each location and
oriented with the cardinal directions. Data were
collected along six 50-m transects oriented north to
south and evenly spaced across the plot and entirely
within the corresponding high-resolution image
(Fig. 1b). Vegetation and ground cover data were
collected at 1-m intervals on each transect (total of
300 points per plot) using the line-point-intercept
(LPI) method (Herrick et al. 2005) with an approxi-
mately 1-mm diameter pin. All plant and ground
cover intercepted by the pin lowered vertically were
recorded, but only the top hit was used for analysis.
Top hits were classified to match the types used in
image interpretation (Table 1). Some plots were
moved <300 m from the original position due to
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flooding (FL), obstructive presence of feeding troughs
or livestock (PA), or when dense vegetation did not
allow proper plot placement in the field (FL). Field
data collection was completed within 2 weeks of
image acquisition.

Plot corner locations were recorded in the field
using a differentially corrected GPS with sub-meter
accuracy (GeoXT 2005, Trimble; Sunnyvale, CA).
All comparisons of field and image data (see
statistical analysis) were done at the plot-level,

Fig. 1 a Study area locations and b example arrangement of data and calibration plots, transects, and points
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never on a point-by-point basis. Thus, although the
additive geo-location error was up to 4 m in total
(maximum 3 m from the imagery and 1 m from the
GPS) and much larger than the image GSD (2–3 cm),
this level of accuracy was sufficient for co-registering
the 50×50-m plots.

Image interpretation

The image-interpretation calibration process devel-
oped for this project provided the observers (i.e.,
individuals collecting the point classification data)
with information and training necessary to differenti-
ate cover types and then tested their ability to classify
points in a calibration plot prior to interpreting points
in a data plot. The process was designed to train
individuals with little or no background in image
interpretation or natural sciences how to collect
vegetation community composition and ground cover
data in a repeatable fashion. The processes entailed
developing general background and training materials
as well as calibration datasets for each calibration plot
that could be used to train observers on a point-by-
point basis and then test that observers were suffi-
ciently calibrated prior to data collection (Fig. 2).

Image-interpretation points for the data plots were
projected along transects in the same arrangement and
location as the field transects, to the extent possible,
using the differentially corrected GPS locations in the
ArcMap geographic information system (GIS) soft-
ware (version 9.3, ESRI; Redlands, CA; Fig. 1b). No
further attempt was made to precisely match the
image-interpretation transects with the field transects.

To create calibration data sets for each data plot, a
paired calibration plot was selected in the available
area (i.e., area not in the data plot) in the high-
resolution aerial images (Fig. 1b). The selected
calibration plots were as similar in vegetation struc-
ture and composition to the actual data plots as
possible. Virtual transects (50 m long) and points (1-m
spacing) were projected on the calibration plots in the
same arrangement and density as in the data collection
plots, except for one plot in FL. A comparable
calibration plot was not achievable at this site, so a
25×25-m plot was used and the point and transects
spacing reduced by half to obtain the same number of
points (300) as the other plots. Field data were not
collected in the calibration plots.

The two personnel who conducted the field
surveys served as our “experts” and together classi-
fied each point on all 54 calibration plots using the
Image-Interpretation Tool (discussed below; Table 1;
Fig. 2; Online Resource Fig. 2). While classifying the
points in the three calibration plots in a segment, the
experts developed description keys with distinguish-
ing characteristics for each cover type, including color
in true color and color-infrared, shape, size, texture,
and pattern. The description keys were designed to
provide a logical path of deduction to determine cover

Table 1 Image-interpreter classification types

Fine cover types Aggregated general
cover types

Soil, litter, rock, lichen No-canopy

Grass, forb Herbaceous

Sub-shrub, shrub, tree, succulent Woody

Observer process

2a) Prepare calibration data: Establish
virtual point transects & develop expert
classification of 300 points in calibration
plot (Fig. 1b)

1) Review
background
material: photos,
 descriptions, &
decision tree

2b) Complete calibration plot training &
testing procedures:  Review 150 training
points twice. Classify 150 testing points &
compare to experts. If within 5% continue
to data collection step, if not repeat.

3) Classify
300 points
in data 
plot (Fig. 
1b)

4a) Collect 
independent 
cover estimates
in field

4b) Regression-
based 
adjustment 
to 
field 
data

Fig. 2 Image-interpretation approach developed for this study
includes observer calibration (with point-by-point training and
testing modules) (2b) and data collection (steps 1, 2a, and 3),

preparation of calibration data (2a), and regression-based
adjustments of image-interpretation data to field data (4a and b)
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type and to allow the observer to consistently classify
each point in a plot based on observations and
descriptive characteristics. Descriptive keys were
developed for each plot and provided to the observers
as part of the background material. After classifying
each point in the three calibration plots within a
segment, the experts then reviewed all their classi-
fications in the segment to verify that they were
consistent with the rules developed during the initial
round of classifications.

To allow for training, testing, and data collection by
multiple observers on 54 plots to be completed in as
smooth and efficient manner as possible, we developed
a tool for ArcMap using ESRI’s ArcObjects. This
Image-Interpreter Tool (IIT) has two main components:
a calibration procedure (including training and testing
modules) and a data collection module. The 300 points
in each calibration plot are divided into two groups—
training and testing points—by randomly assigning
every other transect as either a training or testing
transect (Fig. 1b). In calibration training mode, the
tool cycles through each of the 150 training points at
a set map scale (set to 1:40 for all steps) and
presents the observer with an interface to select an
appropriate cover type (Table 1; Online Resource
Fig. 2). Incorrect decisions cause the selected button
to be highlighted in red, providing immediate
feedback to the observer. Correct answers cause
the tool to cycle to the next sample point. In
calibration testing mode, the tool performs the same
tasks as in training mode without immediate
feedback for incorrect classification of points. When
the observer completes all calibration testing points,
calibration test summary statistics (percent cover of
each type) and comparisons of his or her results to
the expert calibration data set are presented (Online
Resource Fig. 2). The observers use the test results
to determine if they are sufficiently calibrated. In
this study, we required the observers to achieve less
than 5% difference in cover to the experts’ classi-
fication of each type before they could proceed to
data collection.

IIT data were collected on each plot by seven
observers working independently. All of the observers
were undergraduate students at New Mexico State
University (NMSU). None of the observers had any
prior experience in image interpretation, and the
majority had no background in GIS, remote sensing,
natural sciences, or the plant communities in the study

areas. We conducted an introductory session with all
the observers to provide background information on
the project, initial training on how to use IIT, and
general guidelines for image interpretation. For
each study area, we provided the observers with
background material on the vegetation community
including Major Land Resource Area descriptions
(USDA-NRCS 2006) and oblique ground photos
with important vegetation and ground cover features
labeled (photos were from the field plots, but plot
identification information was not provided to the
observers). Each of the seven observers collected
image-interpretation measurements of cover on all
54 data plots.

This original round of IIT data collection was
designed to test the repeatability of this approach
given the best possible circumstances (one calibration
plot for each data plot, hereafter referred to as One-to-
One). To test if one calibration plot could serve more
than one data plot, we repeated the study with four
observers (two new observers and two observers from
the One-to-One approach) with the same calibration
procedure as above except we used one of the data
plots in each segment as a calibration plot for the
other two data plots in the segment (hereafter referred
to as Many-to-One). For each segment, we selected
one of the plots for calibration that was the most
representative of the other two plots in the segment.
To generate calibration data, we simply used the
majority decision from the first round of IIT data.
Observers then completed the calibration procedure
prior to collecting data on the remaining two data
plots in the segment.

To account for the possibility that the observers’
ability to accurately collect IIT data might improve
with experience, the order that each observer
collected data on study areas was randomized.
Similarly, it was expected that within a study area
and even within a segment, observers’ ability to
correctly classify points would increase as they
became more familiar with the vegetation commu-
nities. Therefore, the order of segments within
study areas and plots within segments was random-
ized for each observer. Additionally, image quality
can vary depending on the quality of the computer
monitor as well as the computer’s graphics card. To
control for this additional source of error, each
observer was required to use the same computer for
the entire project.
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Statistical analysis

Because our primary interest was in the observers’
ability to differentiate among general cover types, we
aggregated the fine cover type data collected by the
observers into three general cover types (Non-Canopy,
Woody, and Herbaceous; Table 1). Analyses of the fine
classes were conducted primarily to help explain the
trends observed in the general cover types.

To meet our objective of assessing the ability of
calibrated observers to collect IIT data in a repeatable
fashion using the One-to-One approach, we con-
ducted tests evaluating observer bias and variability
between observers. For both of these tests, cover class
frequencies in each plot as classified by each observer
was calculated. Data was arcsine square-root-
transformed to meet normality assumptions. First,
we tested for observer bias using a mixed-effects
analysis of variance with plots as a random effect and
observer as fixed effect testing the null hypothesis that
there was no effect of observer for general and fine
cover categories (PROC MIXED, SAS 2001). To
evaluate how variability between observers changed
with plant community composition, we compared the
standard deviation and coefficient of variation be-
tween observers in each plot to the field cover values
for each general category. Additionally, we conducted
two statistical tests to compare the level of agreement
and the cover class frequency of data collected with
paired calibration plots (One-to-One) and with non-
paired calibration plots (Many-to-One). First, we
compared the level of agreement on each point
between the four observers in the Many-to-One to
that of four randomly selected observers from the
One-to-One approach using a nonparametric random-
ized block analysis of variance (ANOVA, Friedman’s
test blocking on plot, PROC FREQ, SAS 2001). To
test the null hypothesis that the cover class frequency
of the coarse categories did not differ between the two
approaches, we used a paired t test analysis to
compare the two approaches (One-to-One and
Many-to-One) and treated the observers as subsam-
ples (PROC TTEST, SAS 2001). Again, cover class
frequency data was arcsine square-root-transformed to
meet normality assumptions.

To evaluate the relationship between data collected
using IIT with the One-to-One approach and field data
collected using LPI, we used two strategies. For both
strategies, analyses were done at the plot-level (not

point-by-point) by averaging the 300 point classifica-
tions to estimate percent cover in the 50×50-m plot
for each cover type of interest for each method. IIT
observers were treated as subsamples, and the LPI
data was assumed to have no measurement error.
Although we acknowledge that there is measurement
error associated with LPI cover estimates, evaluation
of the field method was not an objective of this study.
First, we used simple regressions with LPI as the
independent variable and IIT as dependent variable
(PROC REG, SAS 2001) for each coarse and selected
fine cover types. Then, to evaluate if the regression
model differed among study areas for the cover
classes, we used a mixed model with IIT as our
response variable, LPI as a continuous effect, study
area as fixed effect (testing for differing intercepts),
and a study area by LPI interaction effect (testing for
different slopes; PROC MIXED, SAS 2001).

Results

Repeatability

Analyses of IIT data indicate the calibration protocol
we developed can produce repeatable cover mea-
surements among observers. There was no detect-
able bias between the seven observers for any of
the three general cover types (Table 2). For the nine
fine cover types, there was only a detectable
observer effect (p<0.05) for the Forb cover type.
Furthermore, the range in average cover over all 54
plots as measured by each observer was less than ∼3%
for all categories.

Evaluation of plot-level standard deviations in
cover among observers for each general category as
a function of field-measured cover indicate that
agreement among observers was highest (i.e., low
standard deviation) in plots with either high or low
cover class frequency values and lowest in plots with
intermediate levels of cover for a given type (Fig. 3a).
Examination of points with low among-observer
agreement (i.e., those where four or fewer of the
seven observers agreed, ∼8% of the points in the
study) indicate that the fine cover types causing the
most confusion were Litter, Forb, Sub-shrubs, and
Succulents (Table 2). When expressed as a coefficient
of variance (CV), variability among observers was
highest for low cover values and generally decreased
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with increasing cover for all three general cover
types (Fig 3b). CV is directly related to the power to
detect change (Conquest 1983), and in this context, a
CV of 1.0 means that the standard deviation of
measurements among observers was equal to the
mean over all observers. Among-observer variability
in CV was highest in plots with cover values of less
than 20% for at least one cover type (Woody,
Herbaceous, or No-Canopy). Of plots with field-
measured cover less than 20%, No-Canopy IIT
measurements tended to have higher CV than the
Woody and Herbaceous cover types.

Comparison of repeatability of IIT data collected
using paired calibration plots (One-To-One) to data
collected using non-paired calibration plots (Many-
To-One) showed no detectable difference in the level
of point-by-point observer agreement between the two
methods (p=0.62). The level of agreement was
similarly high with all four observers agreeing on
77% and 80% of the points in the Many-To-One and
One-To-One, respectively. Average plot cover class
frequencies generated using the two methods did not
differ for Herbaceous and No-Canopy but was
different for Woody (p<0.05; Fig. 4), though the
average difference in Woody cover between the two
methods was very small (<1%).

Relationship of image interpretation to field data

For the general cover types, plot-level comparisons of
LPI-estimated (field-based) cover to the average IIT-
estimated (image-based) cover indicates that there
was a strong relationship among all the general cover
types with R2>=0.94 and root mean square error
(RMSE) <10.0% (Fig. 5). The mixed-effects model
results showed a significant linear relationship between
cover estimated with IIT and LPI (LPI effect; Table 3).
In the Herbaceous and No-Canopy classes, the
estimated slope (as indicated by the LPI by Study
Area interaction) and intercept (as indicated by the
Study Area effect) differed for at least one study area
(Table 3). Examination of individual study area slope
and intercept estimates indicate that the significant
effect of Study Area (intercept) and Study Area by IIT
(slope) were primarily due to differing regression
models for ID and PA (data not shown; Fig. 5).

For the fine cover types analyzed, comparison of
LPI-estimated to the average IIT-estimated cover
indicate a strong relationship for shrubs and trees
(R2>=0.90, RMSE<=3%), but a weaker relationship
for the Grass and Bare Ground classes (R2=0.73 and
RMSE=19.6% for Grass, R2=0.72 and RMSE=
13.8% for Bare Ground; Fig. 6).

Table 2 Observer bias analysis of variance, descriptive statistics, and relative frequency of occurrence of fine cover types in IIT points
with low agreement

Category Numerator
DF

Denominator
DF

F value p Value Averagea Rangeb Freq. at low
agree. pointsc

No-canopy 6 314.00 0.71 0.644 24.4 1.9 –

Litter 6 314.05 0.81 0.562 1.2 0.4 2.0

Rock 6 314.00 0.47 0.830 6.3 0.4 0.2

Soil 6 314.00 1.58 0.152 17.0 1.7 0.4

Herbaceous 6 314.00 1.05 0.396 54.2 3.0 –

Forb 6 314.02 3.50 0.002 1.9 0.9 1.5

Grass 6 314.00 1.62 0.141 52.3 3.3 0.2

Woody 6 314.00 1.57 0.156 21.4 1.7 –

Shrub 6 314.00 1.22 0.297 16.9 1.1 0.5

Sub-shrub 6 314.92 2.01 0.063 0.1 0.1 3.0

Succulent 6 314.19 0.75 0.608 0.0 0.0 2.4

Tree 6 314.01 0.50 0.806 4.4 0.9 0.5

a Average IIT percent cover across all plots and observers
b Range between the seven observers in average IIT percent cover across plots
c Values greater than 1 indicate cover class was selected at the low agreement points (four or fewer observers agreed, 1,396 points) by
at least one observer more frequently than expected based on the overall average IIT cover for that type
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Discussion

Our results suggest the image-interpretation approach
tested is sufficiently repeatable for use in measuring
cover of general cover types for broad-scale surveys.
This is evidenced by low among-observer variability
(Fig. 3) and almost no detectable observer bias
(Table 2). We believe this approach is generally
feasible for two reasons. (1) The high-resolution
imagery (∼3 cm GSD) used was collected with a
standard digital mapping camera available from many
aerial imagery contractors, and (2) image interpreta-
tion does not require expertise in image analysis and

can be done with basic GIS software available to
many land management and monitoring agencies. The
developed calibration technique allowed collection of
data by observers with no prior experience. Thus, the
approach has the potential for applicability at national
scales by land management (e.g., BLM) and monitor-
ing agencies (e.g., NRCS) whose staff commonly
have access to and familiarity with basic GIS software
(e.g., ArcMap) but most of whom lack expertise in
and access to image analysis software. The close
relationship of image interpretation to field estimates
of plot cover (Fig. 5) indicate both that the IIT
estimates are valid and that IIT-LPI regression
equations can be used to adjust IIT data to be
comparable to LPI data. This adjustment can serve
two important purposes. First, it will allow IIT data
and LPI data to be analyzed together (e.g., in
evaluating trends). Second, by using LPI data as a
reference, we can account for changes in IIT due to
changes in the method or image resolution.

Ability of observers to resolve cover types

Both the repeatability and the relationship between IIT
and LPI data were affected by the experts’ and observers’
ability to resolve different cover types. Low resolvability

Fig. 4 Comparison of the difference between One-To-One and
Many-To-One method plot cover estimates (Y-axis; values used
are the average from four observers for each method) as a
function of average plot cover (X-axis). P values are from
paired t tests

Fig. 3 a Standard deviation and b coefficient of variation in
IIT percent cover among observers within a plot as a function
of field cover data for the three general cover types
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Fig. 5 Results of regressions of field cover data (line-point-intercept) and data collected using image interpretation (average of all
seven observers) for the general cover types (CA, California; FL, Florida; ID, Idaho; NM, New Mexico; NV, Nevada; PA, Pennsylvania)

Type Effect Numerator DF Denominator DF F value p Value

No-canopy LPI 1 42 24.6 <0.001

Study area 5 42 8.8 <0.001

LPI by study area 5 42 5.7 <0.001

Herbaceous LPI 1 42 69.6 <0.001

Study area 5 42 3.5 0.010

LPI by study area 5 42 7.9 <0.001

Woodya LPI 1 35 417.7 <0.001

Study area 4 35 2.4 0.071

LPI by study area 4 35 0.9 0.499

Table 3 Mixed-model
results in general cover
types

a No Woody species were
recorded in PA
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is due to two or more types having similar colors,
textures, or shapes. An example of this is the distinction
between litter and plant canopy. In the field, the
distinction is based on whether the plant part intercepted
is rooted (Herrick et al. 2005), a distinction not always
possible viewing an image and which likely contributed
to the low resolvability in litter (Table 2). This difficulty
added to the confusion in ID plots where there was a
high cover of annual grasses (primarily Bromus tecto-
rum). Experts and observers likely misclassified litter
from annual grasses as grass, resulting in an overesti-
mation of Herbaceous and Grass and underestimation of
No-Canopy (Figs. 5 and 6). Accurate expert classifica-
tion of the calibration plots is critical because the

expert’s classification and general interpretation of the
image are subsequently used to develop the material
used to orient and train the observer in the study area.
Thus, if an expert misclassifies a cover type or is not
consistent in their definition of cover types, then this
error or uncertainty can be passed on to the observers
and impair the ability to derive good cover estimates
from image interpretation. Also, classes that are rare or
typically occur in small patches can also be difficult to
resolve (Forbs, Sub-Shrubs, and Succulents; Fig. 6;
Table 2). Forbs and Grasses were indistinguishable in
CA and PA imagery, so all points with non-woody
canopy were classified as Grass, resulting in an
overestimation of grass cover (Fig. 6).

Fig. 6 Results of regressions of field cover data (line-point-intercept) and data collected using image interpretation (average of seven
observers) for select fine cover categories (CA, California; FL, Florida; ID, Idaho; NM, New Mexico; NV, Nevada; PA, Pennsylvania)
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Low resolvability may also explain cases where
there was higher-than-average plot variability among
observers, especially at low cover values. There were
three plots with higher-than-average among-observer
variability that account for the six points that are
relative outliers in Fig. 3a. One plot in NM had very
high standard deviations in Herbaceous (σ=10.8%)
and Woody (σ=7.8%) covers. Herbaceous cover at
this plot was a mix of both green and senescent
vegetation. Senescent herbaceous plants near the
margin of a woody patch appeared similar to the
stem material of a woody species (in both color-
infrared and true color), thus making it difficult to
correctly classify. Two plots in CA also had high
among-observer standard deviations for the No-
Canopy class (σ=6.3 and 9.5%) at low cover levels
(2% and 4%, respectively). For both of these plots,
there was also a high variability in Herbaceous (σ=
7.1 and 9.5%, respectively) indicating that observers
were having difficulty distinguishing between the
two categories. In CA, this was likely due to the
spatial distribution of Herbaceous and No-Canopy.
In these annual grasslands, non-canopy patches
were very small (most <20 cm in diameter), and
litter was present in with both Herbaceous and Non-
Canopy patches, making consistent classification
difficult.

There also is inherent scale mismatch between
LPI, which is measured using a ∼1 mm diameter
point and has a very high resolvability, and the IIT-
based method of measuring cover using images
with a pixel resolution of ∼3 cm. Although IIT
experts and observers were tasked with classifying
points, in reality, classifications were not done on
individual pixels but rather likely an area at least
three pixels (6–9 cm) in diameter based on the
fixed zoom level (map scale 1:40). This scale
difference makes it very difficult to classify objects
smaller than ∼10 cm in a similar manner to what is
done with LPI such as rocks (which can be as small
as 5 mm in the LPI protocol), sparse or small
vegetation patches, and disperse litter. Presence of
small or diffuse objects likely contributed to the
three plots in NV and ID that had much higher Bare
Ground cover as estimated with IIT (40–85%) than
measured with LPI (10–30%; Fig. 6). In both NV
and ID, the problem plots were in the same segment
and had a high LPI cover of rocks, diffusely
arranged litter, or both.

Application considerations

The approach outlined here was designed to facilitate
repeatable collection of monitoring data with remote-
ly sensed imagery in a way that was compatible with
data collected in the field using standard methods.
This protocol allows remote sensing to supplement
field data such that the total number of plots sampled
can be increased without increasing field data
collection time and/or the number of plots visited by
field crews can be reduced. To apply this approach,
however, there are several factors that need to be
considered to appropriately balance cost of data
collection with data precision and accuracy.

A primary consideration for minimizing costs for
our approach is determining how many field-
measured plots are required for validation of the
estimates. Because IIT-derived cover estimates tend to
either over- or under-value field-estimated cover
(Figs. 5 and 6), field data are necessary to develop
regression models to adjust IIT cover estimates to be
compatible with LPI data. Questions related to this
issue include how many field plots are needed, how to
spatially allocate those plots, and what types of plant
communities can be grouped together in the regression
models. Increasing the number of plots where LPI data
are collected will increase the accuracy of the regression
parameter estimates only to a point, and then additional
field measurements will not significantly improve the
model. Also, results from this study indicate that, for
some indicators (e.g., general cover types), regression
parameters are similar among many vegetation types
(Fig. 5), while others that are more difficult to resolve
might require more community-specific regressions
(Fig. 6). Another consideration, though not one
addressed in this study, is whether data collected across
years can be combined to develop regression models.

Another important consideration in implementing
image interpretation for collecting monitoring or
assessment data is the selection of sample locations
and their spatial distribution within the study area.
Because of the current high costs of acquiring and
assembling continuous high-resolution imagery for
large landscapes, it is most likely to be used in a
sampling manner (i.e., locations selected for measure-
ment from some larger area or population). If inferences
are to be drawn directly from IIT-derived estimates, then
such sampling locations should be selected following
some statistically valid (i.e., probability-based or sys-
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tematic) procedure (see Thompson 1992). Clustering of
sample locations may help reduce image acquisition
costs for large landscapes, and survey designs such as
two-stage sampling may be useful and still provide
unbiased indicator estimates (Elzinga et al. 1998). If IIT
data are intended to construct a statistical model of an
indicator, then probability-based selection of sampling
locations is not as critical as capturing the full range of
indicator variability within the study area in an unbiased
manner (Brus and de Gruijter 1997; Stevens 2006).

Another way to minimize costs is to reduce the
number of IIT calibration plots that are needed.
Development of IIT calibration data sets was very
time-consuming (taking on average 2–3 h per seg-
ment for two people). This work needs to be done by
experts capable of identifying plants in the study area
and familiar with interpreting aerial imagery. There-
fore, it would be desirable to minimize the number of
IIT calibration plots needed by using only one or two
IIT calibration plots for many similar IIT data
collection plots. Our results suggest that calibration
plots can be applied to data plots that were basically
similar in types of vegetation but are fairly different in
total cover without sacrificing repeatability or accu-
racy (Fig. 4). Further work is needed to determine
how different the calibration plots can be in terms of
plant community composition and if calibration data
acquired from a different season, year, or imaging
sensor can be used. Another very important aspect of
the approach that was not addressed is the need for a
method to check the consistency and accuracy of the
experts’ classification of the calibration plots. The
focus of this work was on training the observers to
collect IIT data. This additional quality control step of
the experts’ classifications needs to be developed
before the approach discussed here can be imple-
mented with confidence.

In contrast to developing the expert data sets, the
collection of IIT data by the observers was typically
very fast (median, 20 min; range, 10 to 50 min to
train, test, and collect data on one plot) and, as shown
by the results of this study, can be collected by
persons with little previous experience. Increasing the
number of individuals who collect IIT observations on
a plot can increase the precision of the plot’s cover
estimate. The relationship between plot cover and
repeatability, however, indicate that the level of
repeatability (as estimated by the standard deviation
among observers; Fig. 3) varies with community

composition. This relationship could guide decisions
for when multiple observations on an individual plot
are necessary and, if so, how many observations are
needed for a given level of precision. For example, in
plots that are >80% cover in one class, such as those
in PA (>80% Herbaceous) and several in NV (>80%
No-Canopy), one observer might suffice. In plots that
are more diverse, with cover more evenly distributed
among cover classes of interest, several observations
on each plot could be appropriate. More work is
needed, however, to evaluate how broadly this
diversity-repeatability relationship can be applied.

A final consideration, though not one directly
addressed by this study, is the scale of imagery
required. We sought to obtain the highest-resolution
imagery that was commonly attainable from commer-
cial aerial imagery providers using standard digital
mapping cameras. Other work has found significant
differences between cover measurements obtained
with very-high-resolution imagery (1 and 2 mm
GSD) and imagery comparable to that used in this
study (13 and 21 mm; Booth and Cox 2009). While
our results demonstrated good resolvability for some
cover types, poor relationships between field and IIT
for grass and bare ground cover types (Fig. 6) support
Booth and Cox’s (2009) conclusion that very-high-
resolution imagery is preferred for measuring vegeta-
tive cover. Taken together, our results and these
previous studies suggest: (1) Reliable estimates of
cover can be derived from interpretation of imagery
with ∼3 cm resolution for general cover types in most
situations; (2) the precision of cover estimates can
improve as pixel size becomes smaller, and (3) very-
high-resolution imagery may be necessary for precise
estimates of cover for fine cover types. Two practical
implications of these conclusions are that the highest-
resolution imagery attainable should be used to
measure canopy cover via image interpretation, and
that the resolution used should be included in
accompanying metadata. Because image-interpreter
cover measurements can be sensitive to image
resolution (Booth and Cox 2009), it is important to
have a standard against which to validate or adjust
image-interpretation cover measurements used in
monitoring programs. The results from this study
suggest continued collection of field data at select
plots and development of image-field regression
equations could be used to account for effects of
changing image resolution.
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Conclusion

The intent of this study was to develop and test an
approach for measuring plant community composition
and ground cover with image interpretation that is
applicable to national-scale surveys of grazing lands.
To meet this objective, we developed an approach
within GIS that uses expert point classifications to
calibrate observers, including point-by-point training
and quantitative quality control limits and then related
image-derived cover estimates to field-based estimates
using regression-based adjustments. We demonstrated
that, through this approach, novice observers can derive
repeatable estimates of some important ecosystem
indicators that have a predictable relationship with
field-based estimates in many ecosystems. Such a
system extends the utility of expensive-to-collect field
data by allowing them to serve as a validation data
source for image interpretation. A training and calibra-
tion system like the one we described above is critical if
high-resolution, remotely sensed data are to be used in
national-level surveys that collect fine-scale data on
plant community composition and ground cover. While
our research demonstrates that image interpretation
using multiple observers can be a viable technique for
estimating ecosystem properties, more research is
needed on factors affecting accuracy of cover measure-
ments from aerial imagery, techniques for minimizing
among-observer variability and bias, and efficient
training, calibration, and data collection protocols.

High-resolution earth imagery is becoming increas-
ingly available due to new digital airborne sensors,
both piloted and unmanned, increased access to
satellite imagery, and scanning of historical photos.
Additionally, such imagery sources are becoming
more easily accessible through Web services such as
Google Earth. We have likely reached a point where
the amount of accessible imagery exceeds the
availability of experts to turn those images into
indicators of ecosystem processes, either through
image interpretation or image analysis. Novel proce-
dures are needed that collect reliable data with a
minimal time requirement by experts. Results pre-
sented here indicate the image-interpretation system
developed could help fill that resource gap by
transferring expert knowledge of plant communities
to non-experts such that data on key indicators can be
collected on a large number of images in a smooth
and efficient manner.
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