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ABSTRACT

Methods to detect and quantify shifts in the state of

ecosystems are increasingly important as global

change drivers push more systems toward thresh-

olds of change. Temporal relationships between

precipitation and aboveground net primary pro-

duction (ANPP) have been studied extensively in

arid and semiarid ecosystems, but rarely has spatial

variation in these relationships been investigated at

a landscape scale, and rarely has such information

been viewed as a resource for mapping the distri-

bution of different ecological states. We examined

the broad-scale effects of a shift from grassland to

shrubland states on spatiotemporal patterns of

remotely sensed ANPP proxies in the northern

Chihuahuan Desert. We found that the normalized

difference vegetation index (NDVI), when averaged

across an eight-year period, did not vary signifi-

cantly between these states, despite changes in

ecosystem attributes likely to influence water avail-

ability to plants. In contrast, temporal relationships

between precipitation and time-integrated NDVI

(NDVI-I) modeled on a per-pixel basis were sensi-

tive to spatial variation in shrub canopy cover, a

key attribute differentiating ecological states in the

region. The slope of the relationship between

annual NDVI-I and 2-year cumulative precipitation

was negatively related to, and accounted for 71%

of variation in, shrub canopy cover estimated at

validation sites using high spatial resolution

satellite imagery. These results suggest that remote

sensing studies of temporal precipitation–NDVI

relationships may be useful for deriving shrub

canopy cover estimates in the region, as well as for

mapping other ecological state changes character-

ized by shifts in long-term ANPP, plant functional

type dominance, or both.

Key words: aboveground net primary production;

normalized difference vegetation index; precipita-

tion; remote sensing; Chihuahuan Desert; state

change; shrub encroachment; grassland; shrubland.

INTRODUCTION

Ecological state change driven by human activities

is commonly reported in terrestrial ecosystems

(Archer and others 1995; Ares and others 2003; Firn

and others 2010; Kéfi and others 2007). Applied

to rangelands, the ecological state concept is meant

to differentiate areas having similar ecological

potential based on climate, soils, topography, and

Received 25 February 2011; accepted 28 August 2011;

published online 12 October 2011

Author Contributions: Jeb C. Williamson: study design, data collec-

tion, preparation, analysis, and interpretation, and principal author;

Brandon T. Bestelmeyer: study conception and design, data interpreta-

tion, and contributing author; Debra P. C. Peters: data preparation,

interpretation, and contributing author.

*Corresponding author; e-mail: jcwill@nmsu.edu

Ecosystems (2012) 15: 34–47
DOI: 10.1007/s10021-011-9490-2

� 2011 Springer Science+Business Media, LLC (outside the USA)

34

Author's personal copy



proximity but different vegetation dynamics or long-

term productivity due to persistent (and often

human-induced) changes in certain biophysical

attributes (Bestelmeyer and others 2009). Examples

of such biophysical changes include truncation

of surface soil horizons (Schlesinger and others

1990), development of recruitment limitations for

desirable plant species (Standish and others 2007),

and changes in wildfire susceptibility and frequency

(Knapp 1996). Information about the geographic

distribution of ecological states can help guide land

management and policy, yet spatially explicit data

are often lacking or incomplete.

Remote sensing has long been used to supple-

ment and scale field observations and other local-

ized data. Correlations between aboveground net

primary production (ANPP) and remotely sensed

vegetation indices such as the normalized differ-

ence vegetation index (NDVI) have enabled

anthropogenic impacts on ANPP to be studied at

broad spatial scales (Box and others 1989; Paruelo

and others 1997, 2000; Prince 1991). In arid and

semiarid ecosystems, where precipitation variabil-

ity is often high and ANPP and precipitation are

often coupled, many remote sensing studies have

utilized precipitation use efficiency, or ANPP per

unit precipitation, as a means of monitoring direc-

tional changes in ANPP not associated with climate

(Holm and others 2003; Nicholson and others 1998;

Prince and others 1998). Given the same amount of

precipitation, sites with diminished soil quality and

resource retention are expected to be less produc-

tive than non-degraded sites with similar climatic,

topographic, and soil characteristics. Although this

approach may be useful for mapping and moni-

toring human-induced landscape transformations

characterized by declining productivity, it may fail

to distinguish among ecological states exhibiting

little difference in long-term ANPP.

The replacement of perennial grasslands with

shrublands in the northern Chihuahuan Desert is

an example of an ecological state change having

considerable impact on ecosystem services but

potentially negligible effects on landscape scale

ANPP (Gibbens and others 2005). A combination of

factors, including livestock grazing and severe

drought, likely initiated localized shifts from

grass to shrub dominance during the past century

(Havstad and Schlesinger 2006). Subsequent

changes in soil nutrient distribution, erosion rates,

microclimate, and faunal populations have resulted

in feedback loops that have accelerated and

maintained the transition to a shrubland state

(d’Odorico and others 2010; Eldridge and others

2009; Schlesinger and others 1990). Because of

declining soil quality and increased runoff at

patch to landscape scales, it is often assumed that

sites dominated by shrubs are less efficient than

grasslands at converting precipitation into ANPP

(Huenneke and Schlesinger 2006). Long-term ANPP

of grass and shrub-dominated communities mea-

sured on similar soils is not, however, remarkably

different (Huenneke and others 2002; Muldavin

and others 2008; Peters and others 2011). Thus,

although shrub expansion in the northern Chi-

huahuan Desert may be undesirable for various

reasons (Krogh and others 2002; Li and others

2007), it appears to have little consequence for

ecosystem ANPP.

The growing inventory of high temporal resolu-

tion satellite imagery continues to open new pos-

sibilities for extracting ecological information from

remotely sensed time series. One remote sensing

approach with the potential to detect geographic

variation in both long-term ANPP and plant func-

tional type dominance in water limited systems is

the study of temporal ANPP responses to inter-an-

nual precipitation fluctuations (Verón and others

2006). Combining satellite imagery with spatially

continuous precipitation estimates allows temporal

relationships between precipitation and remotely

sensed ANPP proxies to be statistically modeled on

a pixel-by-pixel basis. The marginal mean of these

regressions provides a measure of temporally

averaged ANPP that should be largely independent

of spatial rainfall variability. In addition, such

relationships may prove useful for studying vege-

tation composition, due to plant morphological and

physiological trade-offs that influence regression

parameters such as slope, intercept, and coefficient

of determination (Omuto and others 2010; Verón

and Paruelo 2010).

Plant traits facilitating rapid biomass production

during favorable conditions, for example, are often

associated with relatively low drought tolerance

and short life spans (Chapin 1993; Grime 1977).

Such traits are common among grass and forb

species of the northern Chihuahuan Desert. In

contrast, long-lived species such as shrubs allocate

resources to structural tissue and defenses, often at

the expense of low relative growth rates. Between

these contrasting groups, ANPP of shorter lived

functional types is expected to more closely track

inter-annual precipitation and display a higher rate

of change (Peters and others 2011). Thus, even if

remotely sensed ANPP proxies are similar between

sites dominated by different functional types over

the long term, the relationship of these proxies

to inter-annual rainfall fluctuations presents a

potentially useful trait for mapping plant functional
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type dominance across broad scales (Bradley and

Mustard 2005; Verón and Paruelo 2010).

Addressing the need for remote sensing methods

applicable to a variety of terrestrial state changes,

we examined the impact of state change on spa-

tiotemporal patterns of ANPP in the northern

Chihuahuan Desert of New Mexico, USA using

remotely sensed data. We assembled a time series of

satellite imagery and interpolated precipitation

estimates for a landscape where variations in land-

use history have led to strong gradients in shrub and

perennial grass dominance on similar soils (Gibbens

and others 2005). Our first objective was to assess if

remotely sensed proxies of ANPP, when averaged

over time, vary consistently across these vegetation

gradients. Although localized monitoring in the

region suggests little difference in long-term ANPP

between grassland and shrubland sites occurring on

similar soils (Peters and others 2011), we sought to

test if such patterns hold true at a landscape scale

when examined using satellite data. A second

objective was to examine if grass and shrub-domi-

nated sites differ in their NDVI response to inter-

annual precipitation variation. Such differences are

plausible considering the contrasting functional

traits of herbaceous and woody species, yet they

have not been well documented at a broad scale.

The analyses presented here aim to improve

understanding of vegetation dynamics in the

region. They also aim to improve the mapping and

monitoring of ecological states at spatial scales rel-

evant to land management and policy. If ecological

states consistently differ in either long-term ANPP

or temporal ANPP variability, as measured using

remotely sensed data, then such differences should

enable better estimates of the geographic distribu-

tion of these states. Here, we apply this approach to

a state change involving replacement of perennial

grasses with shrubs.

METHODS

General Approach

To study variation in (1) long-term average NDVI

and (2) precipitation–NDVI relationships across

gradients of woody and herbaceous plant cover, we

paired an eight-year (2002–2009) time series of

MODIS NDVI with gauge-based precipitation esti-

mates. Temporal relationships between time-inte-

grated NDVI (NDVI-I) and select precipitation

metrics were modeled on a per-pixel basis using

simple linear regression (Wessels and others 2007).

The slope (hereafter referred to as Precipitation

Marginal Response, or PMR, following Verón and

others 2005), coefficient of determination, and

marginal mean of these regressions were then ana-

lyzed against herbaceous foliar cover estimated in

the field and shrub canopy cover extracted from high

spatial resolution satellite imagery. The analysis

followed four steps. We (1) studied the effectiveness

of various precipitation metrics at explaining year-

to-year variation in annual and seasonal NDVI-I for

the study landscape as a whole, (2) examined the

sensitivity of these relationships and mean annual

NDVI-I to spatial variation in woody and herbaceous

cover, (3) assessed the strength of ANPP-NDVI-I

correlations at long-term monitoring sites embedded

within the study landscape, and (4) investigated the

utility of temporal precipitation–NDVI-I regressions

for mapping ecological states dominated by different

plant functional types.

Study Area

The study landscape included adjacent portions of

the USDA Jornada Experimental Range and the

Chihuahuan Desert Rangeland Research Center.

These research facilities lie at the southern end of

the Jornada Basin of southern New Mexico, USA

(latitude 32�37¢15¢¢, longitude -106�44¢14¢¢) and

encompass the Jornada Basin Long Term Ecologi-

cal Research site (http://jornada-www.nmsu.edu).

Climate is arid to semiarid, with long-term (90 years)

mean annual temperature of 15�C and mean annual

precipitation of 250 mm, nearly all of which occurs

as rain. On average around 54% of annual precipi-

tation occurs during the summer (July–September),

about 21% in the fall (October–December), and the

remaining approximately 25% in the winter and

spring (January–June). This study spanned a period

of unusually variable precipitation (Figure 1). An-

nual rainfall in 2003 was about half the long-term

average, whereas 2006 rainfall was near record

highs. Precipitation is also spatially variable in the

region due to summer convective storms that pro-

duce intense localized rainfall. To account for this

variability, the study landscape was limited to an

area bounded by the extent of low elevation rain

gauges plus a buffer of about 2 km. Coverage of

available high resolution satellite imagery further

constrained the area to approximately 525 km2.

Slopes are mostly less than 3 percent grade, and

livestock grazing occurs at low intensities.

Precipitation Interpolation

In assessing temporal relationships between NDVI-I

and precipitation, several different dependent and

independent variable combinations were considered

(Table 1). Annual and seasonal scales were both
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included in the analysis, and 2-year cumulative

precipitation was used as an explanatory variable to

address lagged precipitation effects on NDVI-I

(Oesterheld and others 2001). We focused on

straightforward precipitation metrics and did not

attempt to examine all possible variable combina-

tions. Gridded precipitation surfaces were created

using monthly data from 52 standard collecting rain

gauges summed to seasonal or annual totals (11

gauges lay outside the study area boundary). Trends

at monthly intervals were not studied because of

differences in gauge visitation dates and because

dominant shrub species exhibit seasonal phenology

largely unrelated to precipitation amount and timing

(Reynolds and others 1999). Precipitation surfaces

were produced using natural neighbor interpolation

(Esri 2010). Interpolation artifacts arising near the

edges of the surfaces were avoided by arranging

dummy points along the periphery of the gauge

network and assigning these points precipitation

estimates derived from Nexrad radar. More complex

interpolation methods (for example, kriging) were

not warranted given the area’s simple topography

and low relief.

Image Processing

We acquired, merged, and subset MODIS 250 m

resolution vegetation indices datasets for the area

and time frame of interest. These datasets were

obtained from the USGS Land Processes Distributed

Active Archive Center as a 16-day composite

product (MOD13Q1). The compositing procedure

essentially creates a mosaic image of the ‘‘best’’

NDVI measurements collected during each 16-day

period, thereby reducing NDVI anomalies associ-

ated with cloud cover and low sensor view angles

(Huete and others 2002). We screened the data

further by replacing NDVI values associated with a

rank of 2 (snow/ice) or 3 (cloudy) in the MOD13Q1

pixel reliability layer with a moving average cal-

culated from the two preceding and two sub-

sequent periods in the time series. Values more

than 100% above or 40% below both the average

of the two preceding periods and the average of the

two subsequent periods were replaced in the same

fashion. Less than 0.001% of pixels in our study

area required replacement.

We followed a common practice of using time-

integrated NDVI (NDVI-I) as a proxy for ANPP (Box

Figure 1. Annual NDVI and precipitation profiles for the

study area. NDVI mean and range were calculated for

each 16-day compositing period using average study area

NDVI from 2002 to 2009. Monthly precipitation statistics

were calculated using the average of 41 rain gauges from

2001 to 2009. Round symbols indicate the average

monthly coefficient of variation (CV) among rain gauges

during this period.

Table 1. Temporal Precipitation–NDVI-I Regression Models Examined in the Study

Dependent NDVI-I

variable

Explanatory precipitation

variable

Study area summary statistics

Mean r2 Proportion P < 0.05

Annual Current year 0.15 0.01

Annual Previous year 0.45 0.42

Annual 2 year 0.65 0.80

Early season Fall-winter 0.46 0.39

Early season Previous summer 0.58 0.71

Early season Summer-fall-winter 0.82 0.99

Late season Summer 0.56 0.63

Summary statistics are based on the population of pixels within the study area.
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and others 1989; Holm and others 2003; Paruelo

and others 1997; Wessels and others 2007). A

consistent NDVI minimum was observed near the

beginning of each calendar year, at a time when

foliar biomass of herbaceous and woody deciduous

species has typically become senescent (Figure 1).

This winter minimum indicated a natural break in

plant photosynthetic activity and led us to select

annual NDVI-I, calculated on a per-pixel basis by

summing the 23 composite values for a single cal-

endar year, as a dependent variable in precipita-

tion–NDVI-I regressions (Table 1). The NDVI sum

from day-of-year (DOY) 177 through day 3 or 4

of the following year (late season NDVI-I) was

independently considered as a dependent variable

because C4 grass production is highest during the

summer and fall (Huenneke and others 2002;

Muldavin and others 2008). Spring production by

annuals and C3 shrubs was addressed using total

NDVI from DOY 1 through DOY 176 (early season

NDVI-I). Each sum was divided by 23 to report

NDVI-I values on the more familiar -1 to 1 NDVI

scale.

Field Validation

Three basic outputs of the pixel-based regressions

[the coefficient of determination (r2), slope (PMR),

and P value of the slope] were mapped back to the

MODIS grid for visual interpretation. Regression

marginal means were also derived on a per-pixel

basis by first determining the mean value of each

precipitation metric for the study area and time

period and then inserting these values into the

associated regression equations. Visual assessment

of the resulting maps was supplemented with field

data collected at the approximate centroid of 59

MODIS grid cells randomly selected from the pop-

ulation of cells not intersected by well traveled

roads. Within a 20 9 20 m plot, visual estimates of

foliar cover were recorded for all perennial plant

species contributing more than 1% cover. To

address soil differences among sites, soils were

sampled to a depth of 100 cm (or depth to a

restrictive horizon) using a 6 cm diameter auger.

Each plot was subsequently assigned to a US Nat-

ural Resources Conservation Service ecological site

class, which stratify the landscape based on differ-

ences in soil profile characteristics and topographic

position that affect primary productivity and

potential plant species composition (Bestelmeyer

and others 2009). Plots fell predominantly on sandy

(26 plots) and shallow sandy (15 plots) ecological

sites, with five other ecological site classes also

represented (Figure 2).

Because of the areal discrepancy between field

plots (20 m) and MODIS grid cells (�230 m), shrub

canopy cover was estimated for entire cells using

60 cm resolution panchromatic QuickBird imagery

(DigitalGlobe 2006). In locations with low peren-

nial grass cover, high contrast between shrub

crowns and the surrounding soil, litter, and vege-

tation allowed large shrubs (>�1 m) to be effi-

ciently classified using brightness value thresholds.

Performance of the method was enhanced by first

calculating the difference between each pixel value

and the mean of a surrounding 17 or 33-cell

diameter circular neighborhood. This operation

accentuated small, dark shrub canopies while sub-

duing large, dark perennial grass patches, thereby

improving shrub classification in areas with dense

perennial grass cover. Threshold values were

Figure 2. A Mean annual NDVI-I and B marginal mean

annual NDVI-I at 59 randomly located validation sites

from 2002 to 2009. Marginal mean annual NDVI-I was

calculated on a per-pixel basis by inserting average

2-year cumulative rainfall for the study area and time

period (514 mm) into the regression equations predicting

annual NDVI-I from 2-year cumulative precipitation.

N = 4, 3, 1, 3, 7, 26, and 15 for clayey, deep sand,

gravelly, gravelly loam, loamy, sandy, and shallow sandy

ecological sites, respectively.
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iteratively applied to the resulting index until a

balance between errors of omission and commis-

sion, as visually apparent from the original imag-

ery, was achieved. This process was applied to

image subsets covering each randomly selected grid

cell. Average shrub cover was subsequently com-

puted within an area covered by each grid cell plus

a 58 m (�1/4 grid cell width) buffer. Imagery

acquired by QuickBird in May 2003 was used to

estimate shrub canopy cover at all but seven vali-

dation sites, with imagery from September 2003 or

May 2006 substituted in areas of insufficient cov-

erage. Simple linear regression was used to analyze

trends between vegetation cover estimates and

precipitation–NDVI-I regression parameters.

We also compared repeated measures of NDVI-I

and ANPP at long-term sites within the study area

monitored since 1990. This monitoring network

consists of fifteen sites representing five dominant

vegetation types in the Chihuahuan Desert: grass-

land, mesquite shrubland, creosotebush shrubland,

playa, and tarbush. All sites consist of 48 or 49 1-m2

sample quadrats spaced at 10 m intervals within an

area excluded from livestock. Average ANPP at

each site was estimated for three seasons (spring,

summer-fall and winter) using a non-destructive

volumetric approach described by Huenneke and

others (2001) and revised by Peters and others

(2011). For all vegetation types except playa and

mesquite shrubland, we selected two sites that

appeared most suitable for comparison with coarse

resolution satellite imagery. A 2 9 2 pixel footprint

was chosen that intersected or was less than one

pixel from each plot and was most representative of

conditions found within that site. Playa sites were

not included in the analysis because the 2 9 2 pixel

footprint was too large in most cases. Mesquite

shrubland sites were excluded because allometric

equations requiring adjustment following recent

reference harvests were unavailable. The selected

footprints inevitably included landscape features

not present within ANPP plots, including dirt roads.

For 2002 through 2009, temporal relationships

between field-estimated ANPP and average NDVI-I

of the four corresponding MODIS cells were

assessed using linear mixed models (PROC MIXED,

SAS Institute 2008). Separate models were con-

structed to predict annual, early season, and late

season NDVI-I using annual, spring, and summer-

fall ANPP, respectively. One set of models was

designed to account for potential differences in

NDVI-I among sites, because soils and other geo-

morphic characteristics are known to influence the

NDVI and may vary even among sites having sim-

ilar vegetation. ANPP, site, and their interaction

constituted the explanatory terms of these models.

Another set was constructed to assess NDVI-I dif-

ferences among vegetation types, and these in-

cluded ANPP, vegetation type, and their interaction

as fixed effects. Site and its interaction with ANPP

were included as random effects in the latter set to

account for additional correlation among model

residuals of repeated observations. All statistical

tests used a significance level of 5%.

RESULTS

Precipitation–NDVI-I Relationships

Annual and seasonal NDVI-I were both related to

inter-annual precipitation variation during the

time frame of the study. Not surprisingly, the

average coefficient of determination of pixel-based

regressions, when computed for the study area as a

whole, depended on the NDVI-I and precipitation

metrics used (Table 1). Two-year cumulative pre-

cipitation emerged as the metric explaining the

greatest amount of temporal variation in annual

NDVI-I (r2 = 0.65). Considerably poorer perfor-

mance was exhibited, on average, by pixel-based

regressions using annual NDVI-I as the dependent

variable and only current year (r2 = 0.15) or pre-

vious year precipitation (r2 = 0.45) as the explan-

atory variable. On average, summer rainfall

(July–September) explained 56% of the variation

in late season NDVI-I measured the same year and

58% of the variation in early season NDVI-I the

following year. Fall-winter precipitation (October–

March) explained 46% of variation in early season

NDVI-I on average. Adding previous summer pre-

cipitation to fall and winter totals improved the fit

with early season NDVI-I (r2 = 0.82).

Mean and Marginal Mean NDVI

Shrub canopy cover at validation sites ranged from

1 to 34%, and these estimates were unrelated to

eight-year (2002–2009) mean annual NDVI-I of the

corresponding MODIS pixels (Figure 2). An anal-

ysis of regression marginal means yielded similar

results. Only when summer precipitation was used

to predict late season NDVI-I did the marginal

mean show a significant negative relationship to

shrub canopy cover (r2 = 0.10; Table 2). The mar-

ginal mean of models used to predict early season

NDVI-I exhibited a significant negative relationship

to herbaceous foliar cover in all cases, but the

marginal mean of models used to predict annual or

late season NDVI-I was unrelated to this vegetation

attribute.

State Change and Patterns of Production 39

Author's personal copy



Sensitivity of Precipitation–NDVI-I
Regressions to Vegetation Composition

In contrast to mean and marginal mean NDVI,

temporal NDVI-I responses to precipitation fluctu-

ations were clearly sensitive to spatial variation in

shrub canopy cover (Table 2). This sensitivity sur-

faced in the coefficient of determination and slope

of individual pixel-based regressions. Shrub canopy

cover estimated from high spatial resolution

satellite imagery was used to assess the response of

regression parameters to variable shrub dominance

at validation sites. These data indicated that r2

values tended to decline with increasing shrub

cover when current year precipitation was used as

the explanatory variable and increase when pre-

vious year precipitation was used. For the majority

of pixels, however, the slopes of these precipita-

tion–NDVI-I regressions were not significantly dif-

ferent from zero (Table 1). A considerably larger

proportion of pixels had statistically significant

slopes when either 2-year cumulative precipitation

(0.80) or summer rainfall (0.63) was used as the

explanatory variable. In these cases, r2 values

generally declined as a function of increasing shrub

canopy cover (Table 2). No significant relationships

were observed between shrub canopy cover and r2

values of the precipitation–NDVI-I models used to

predict early season NDVI-I.

Regression slope, or PMR, was in general more

strongly related to shrub canopy cover than was

the coefficient of determination (Table 2). This was

particularly true when either 2-year cumulative

precipitation (r2 = 0.71) or summer rainfall (r2 =

0.72) was used as the explanatory variable in pre-

cipitation–NDVI-I regressions (Figure 3). PMR

declined with increasing shrub canopy cover no

matter which variable combinations were used.

The contrasting sensitivities of PMR and marginal

mean NDVI-I to shrub cover variation reflect the

fact that sites with high PMR also tended to have

low regression y-intercepts, and vice versa. Thus,

for the ecosystem attributes studied here, the slope

and y-intercept of precipitation–NDVI-I regressions

generally provided similar information.

Visual estimates of species foliar cover at field sites

were used to assess the sensitivity of precipitation–

NDVI-I regression parameters to spatial variation in

perennial herbaceous cover. For five of the precip-

itation and NDVI-I variable combinations exam-

ined, total herbaceous foliar cover on 20 9 20 m

plots exhibited a weak but significant positive

relationship to PMR (Table 2). Nevertheless, mul-

tivariate regressions using both field estimates of

herbaceous foliar cover and remotely sensed esti-

mates of shrub canopy cover as explanatory vari-

ables were able to account for only slightly more

variance in PMR compared to when shrub canopy

cover was used alone (data not shown). Plotting

herbaceous foliar cover as a function of shrub can-

opy cover suggested an upper limit to herbaceous

cover in this ecosystem as shrub cover increases

(Figure 4). It is unlikely that variation in PMR can

be attributed to differences in total plant cover,

because total foliar cover (herbaceous, sub-shrub,

Table 2. Relationship of Precipitation–NDVI-I Regression Parameters to Shrub and Herbaceous Cover

Dependent NDVI-I

variable

Explanatory

precipitation

variable

Relationship of precipitation–

NDVI-I regression parameters

to shrub canopy cover

Relationship of precipitation–

NDVI-I regression parameters

to herbaceous foliar cover

R2 PMR Marginal

mean

R2 PMR Marginal

mean

R2 Sign R2 Sign R2 Sign R2 Sign R2 Sign R2 Sign

Annual Current year 0.56 - 0.66 - 0.02 NS 0.29 + 0.30 + 0.02 NS

Annual Previous year 0.25 + 0.12 - 0.01 NS 0.32 - 0.01 NS 0.03 NS

Annual 2 year 0.51 - 0.71 - 0.00 NS 0.26 + 0.30 + 0.05 NS

Early season Fall-winter 0.00 NS 0.33 - 0.04 NS 0.05 NS 0.01 NS 0.27 -

Early season Previous summer 0.00 NS 0.42 - 0.06 NS 0.00 NS 0.09 + 0.30 -

Early season Summer-fall-winter 0.00 NS 0.58 - 0.07 NS 0.00 NS 0.09 + 0.30 -

Late season Summer 0.59 - 0.72 - 0.10 - 0.34 + 0.33 + 0.02 NS

Simple regression was used to evaluate relationships between precipitation–NDVI-I regression parameters and either shrub canopy cover estimated from high resolution satellite
imagery or herbaceous foliar cover visually estimated at 20 9 20 m field plots. NS indicates a slope not significantly different from zero at the 5% level.
Summer = July–September, fall = October–December, and winter = January–March.
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and shrub) estimated at field plots was not signifi-

cantly related to either PMR or shrub canopy cover

(data not shown).

Correlations Between NDVI-I and ANPP

Long-term ANPP monitoring data verified that NDVI-

I provides a reasonable proxy for ANPP at individual

Chihuahuan Desert sites through time. A total of 84%

of the variation in annual NDVI-I repeatedly mea-

sured at monitoring sites was explained by a linear

model whose main effects were annual ANPP, site,

and their interaction (Figure 5). Of these three

effects, only annual ANPP was statistically significant

(P < 0.001). Spring and summer-fall ANPP were the

only significant effects in equivalent models used to

predict early season and late season NDVI-I, respec-

tively. These models accounted for 50% of early

season and 91% of late season NDVI-I variation.

When included as model variables, neither vegeta-

tion type nor its interaction with ANPP had a signifi-

cant effect on annual, early season, or late season

NDVI-I. Thus, for all of the models considered, ANPP

was the only variable successful at explaining NDVI-I

variation though space and time.

Mapping Plant Life Form Cover

As noted above, the relationship between annual

NDVI-I and 2-year cumulative rainfall was statis-

tically significant at 80% of pixels within the study

area. Shrub canopy cover was also a strong pre-

dictor of the slope of this relationship. Transposing

independent and dependent variables, we found

that PMR based on annual NDVI-I and 2-year

cumulative rainfall accounted for 71% of shrub

canopy cover variation and 30% of herbaceous

foliar cover variation among validation sites

(Table 2), which suggests that shrub cover can be

reasonably estimated from PMR in this region

(Figure 6). Prediction intervals indicated that 95%

of the time the difference between shrub canopy

cover predicted by PMR and values obtained using

high resolution satellite imagery was expected to be

less than about 11% cover (Figure 3). Individual

predictions of herbaceous cover at the pixel scale

were expected to differ from ground truth values

by less than about 27% cover 95% of the time.

DISCUSSION

Precipitation–NDVI-I Relationships

Temporal ANPP variation is related to year-to-year

precipitation fluctuations in many terrestrial sys-

tems (Huxman and others 2004; Smoliak 1986).

Figure 3. Inter-annual NDVI-I response variables useful

for predicting shrub canopy cover. Panels show trends in

shrub canopy cover remotely estimated at validation sites

as a function of A the slope of the temporal relationship

between annual NDVI-I and 2-year cumulative precipi-

tation, B the slope of the temporal relationship between

late season NDVI-I and summer precipitation, and C the

late season NDVI-I coefficient of variation from 2002 to

2009. Symbols indicate the dominant shrub species based

on foliar cover visually estimated in the field. Prosopis

glandulosa and Flourensia cernua are winter deciduous

species, whereas Larrea tridentata is evergreen. The 95%

prediction intervals are shown in medium gray.
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There is little consensus among studies, however,

as to how much ANPP variance at individual sites

can be attributed to temporal changes in annual

precipitation (Le Houérou and others 1988). In the

northern Chihuahuan Desert, Huenneke and

others (2002) reported poor associations between

annual rainfall and annual ANPP from 1990 to

1998. More recent analyses of this expanding

dataset show that predictions can be improved by

distinguishing sequences of dry and wet years

(Peters and others 2011). Analyzing short periods

of time may also improve predictions: a six-year

study in central New Mexico found annual pre-

cipitation to explain 66% of ANPP inter-annual

variation at a grassland site and 56% at a nearby

shrubland site (Muldavin and others 2008).

Across the eight-year period studied here, which

included both extremely dry and wet years, annual

rainfall was on average a poor predictor of annual

NDVI-I through time at individual pixels (Table 1).

Considerably more variation in annual NDVI-I was

explained by precipitation occurring in the current

plus previous year. Similarly, early season NDVI-I

was found to strongly track total precipitation

of the preceding summer, fall, and winter (July–

March). This surrogate for spring ANPP was also

moderately related to both total precipitation of the

past summer (July–September) and total precipi-

tation of the preceding fall and winter (October–

March).

Lag effects of previous year precipitation have

been noted in other studies and may involve more

than just carryover of soil moisture. Oesterheld and

others (2001) reported a correlation between pre-

vious and current year production in a short-grass

steppe ecosystem and speculated on a host of bio-

logical mechanisms. Paulsen and Ares (1962)

observed that fluctuations in grass basal area on the

Jornada LTER site were most tightly coupled to

precipitation of a 15 month period spanning July of

the prior year through September of the current

year, despite grass roots being concentrated near

the surface in soils that dry out during extended

drought (Duniway and others 2010; Gibbens and

Lenz 2001). Annual NDVI-I in several regions of

Northern Patagonia was also found to track pre-

cipitation occurring in portions of the previous

year (Fabricante and others 2009). Together, these

results indicate that annual precipitation may not

always be the best predictor of annual ANPP in

water limited systems. It appears possible for plant

production in some ecosystems to respond to pre-

cipitation occurring in preceding years, to be

influenced by prior droughts (Yahdjian and Sala

2006), and as highlighted in the following sec-

tion, for this response to be vegetation and site

Figure 4. Relationship between visually estimated her-

baceous foliar cover at validation sites and shrub canopy

cover estimated from 60 cm resolution satellite imagery.

The 85th quantile logistic curve was derived using

quantile regression.

Figure 5. Relationships between ANPP and NDVI-I at six long-term monitoring sites from 2002 to 2009. Three common

vegetation types in the region, creosotebush shrubland, grassland, and tarbush, were each represented by two sites. Linear

models were used to predict annual, early season, and late season NDVI-I from annual, spring, and summer-fall ANPP,

respectively, and included site and its interaction with ANPP as additional terms. ANPP was the only significant model

effect in each case. Lines indicate predicted NDVI-I at each site.
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dependent. For mapping and monitoring applica-

tions, then, decisions about which precipitation

and NDVI metrics to analyze may often depend on

the ecosystem, species, and objectives under con-

sideration.

Sensitivity of Precipitation–NDVI-I
Regressions to Vegetation Composition

Woody plant encroachment is a phenomenon

affecting large portions of the southwestern US and

other arid and semiarid grasslands of the world

(Archer and others 1995; Van Auken 2000). Simi-

lar to observations made at ANPP monitoring sites

in the study area (Peters and others 2011), no

statistical difference in mean annual NDVI-I of

grassland and shrubland states was apparent across

an eight-year period (Figure 2), consistent with the

zero-sum model of House and others (2003). Dif-

ferences did emerge, however, in the temporal

NDVI-I response of individual pixels to inter-an-

nual precipitation fluctuations. The slope of pre-

cipitation–NDVI-I regressions was negatively

related to shrub canopy cover estimated from high

resolution satellite imagery, regardless of the NDVI-

I and precipitation variables used (Table 2).

These landscape scale trends are largely consis-

tent with physiological and morphological trade-

offs associated with woody and herbaceous plant

life forms. In regions where they coexist, C3 shrubs

and C4 grasses are often thought to exhibit con-

trasting strategies with regard to seasonal water use

and biomass production (Muldavin and others

2008; Neilson 1986; Schwinning and Ehleringer

2001). C4 grass species are generally dependent on

summer rainfall given their shallow root systems

and physiological adaptation to growth under

warm conditions (Gibbens and Lenz 2001). In

contrast, deeply rooted C3 shrubs may be more

dependent than grasses on precipitation occurring

in the fall and winter months, when reductions in

evapotranspiration can allow deep soil moisture

recharge (Ehleringer and others 1991). Relative

growth rates may also differ between the two life

forms, with perennial grasses typically expected to

translate available water more rapidly into herba-

ceous biomass (Chapin 1993). Moreover, at least

one dominant deciduous shrub species in our study

area, Prosopis glandulosa (honey mesquite), reliably

produces spring foliage regardless of prior precipi-

tation amounts (Reynolds and others 1999).

Given the differences noted above, it is not sur-

prising that relationships between summer rainfall

and late season NDVI-I weakened with increasing

shrub canopy cover. A differential capacity of shrub

and perennial grass species to capitalize on above

average rainfall may also help explain why PMR

generally declined as shrub canopy cover increased.

Data collected at validation sites indicated a limiting

relationship between shrub and herbaceous cover,

suggesting that as sites become increasingly domi-

nated by shrubs, they become less able to sustain

high cover of other perennial life forms (Figure 4).

Similarly, certain traits common to dominant

shrubs in the region, such as extensive root systems

and the ability to access more varied and potentially

more reliable sources of soil moisture (Gibbens and

Lenz 2001; Gile and others 1997), might be invoked

to explain why PMR generally declined with

increasing shrub cover while mean and marginal

mean annual NDVI-I did not. In other words, cer-

tain traits may allow shrub-dominated sites to

maintain higher NDVI-I during low rainfall periods

than do grass-dominated sites. The variety of veg-

etation and soil types sampled suggests that the

vegetation and/or site characteristics responsible for

observed trends in NDVI-based PMR are not asso-

ciated with any one dominant shrub species

(Figures 2, 3). Although we focused here on vege-

tation, it is conceivable that abiotic changes associ-

ated with shrub encroachment, such as truncation

Figure 6. Spatial patterns in the slope of pixel-based

regressions between annual NDVI-I and 2-year cumula-

tive precipitation. Shrub canopy cover was estimated

using the empirical relationship shown in Figure 3.
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of surface soil horizons and modification of over-

land water flow, might also influence PMR at the

site level. Runoff, in particular, is known to increase

in the northern Chihuahuan Desert with increasing

shrub dominance (Neave and Abrahams 2002;

Turnbull and others 2010).

Correlations Between NDVI-I and ANPP

Implicit in these ecological interpretations is the

idea that NDVI-I provides a reasonable surrogate

for ANPP at individual sites through time. We also

assumed that the temporal relationship between

NDVI-I and ANPP is consistent among vegetation

types. The theoretical basis for estimating ANPP

from the NDVI lies in the more fundamental link

between the NDVI and the fraction of photosyn-

thetically active radiation absorbed by plants

(Sellers and others 1992). Monteith’s (1972) for-

mulations equate NPP to the product of photo-

synthetically active radiation absorbed over a

specific period and an energy conversion efficiency

coefficient, �. Because � may vary among species

and seasonally within a single vegetation type

(Pineiro and others 2006; Running and others

2004), the slope of temporal ANPP–NDVI-I rela-

tionships may not be constant through space and

time. To what extent variation in � might compli-

cate interpretations of PMR is unclear. Also not

clear is the extent to which soil color and vegeta-

tion structure might influence PMR, even though

the NDVI’s sensitivity to these two attributes is

known to limit the index’s usefulness for making

spatial comparisons of ANPP and other vegetation

characteristics (Holm and others 2003; Huete and

Jackson 1987; Huete and others 1985).

Linear models were used to assess the strength

of relationships between ANPP and NDVI-I at six

long-term monitoring sites in our study area

through time (Figure 5). ANPP emerged as the

lone significant effect in all cases, indicating that

between-site differences in vegetation and other

characteristics did little to obfuscate the response

of NDVI-I to inter-annual ANPP fluctuations.

These results also confirmed that, at both annual

and seasonal scales, the slope of ANPP–NDVI-I

relationships did not differ significantly among the

monitoring sites and vegetation types studied. In

summary, the NDVI-I metrics considered here

appear to strongly predict annual and summer-fall

ANPP, and modestly predict spring ANPP, at

individual Chihuahuan Desert sites through time.

Although these results support the use of NDVI-I

to study temporal ANPP dynamics in our region,

sites dominated by honey mesquite were absent

from our analyses, and we can not rule out the

possibility that spatial patterns in PMR may also

arise from factors not related to actual ANPP

dynamics (for example, through differences in the

optical properties of grass and shrub-dominated

areas).

Mapping Plant Life Form Cover

Regardless of the mechanisms, the slope of the

relationship between annual NDVI-I and 2-year

cumulative precipitation was found to be an

effective predictor of shrub canopy cover. NDVI-

based PMR thus shows promise as an attribute for

mapping ecological states in the region. One

benefit of this approach is, presumably, the low

sensitivity of temporal precipitation–NDVI-I rela-

tionships to spatial precipitation variability. We

compared the performance of PMR to that of more

straightforward measures of temporal NDVI vari-

ation such as range and coefficient of variation

(CV). Our results indicate that the CV of late

season NDVI-I from 2002 to 2009 was as good

a predictor of shrub canopy cover (r2 = 0.71)

as was the slope of the relationship between

annual NDVI-I and 2-year cumulative precipita-

tion (Figure 3).

Thus, mapping efforts may not necessarily ben-

efit from explicitly defining relationships between

precipitation and NDVI-I. Indeed, most studies that

have successfully used inter-annual NDVI response

to map vegetation attributes of interest have not

included precipitation measurements in their

analyses. Rather, such investigations have focused

on NDVI differences between high and low pre-

cipitation periods. For example, the heightened

NDVI response of the exotic annual grass Bromus

tectorum relative to that of native vegetation was

successfully used to map B. tectorum occurrence

across the US Great Basin (Bradley and Mustard

2005). Similarly, the range of NDVI values between

years of contrasting rainfall proved useful for

mapping areas with high cover of annual plants in

the Mojave Desert (Wallace and Thomas 2008). For

areas larger than the one studied here, explicit

relationships between NDVI-I and precipitation

might indeed generate superior results. Neverthe-

less, the comparable performance of a simple NDVI

statistic in our study can be viewed as an encour-

aging outcome considering that dense rain gauge

networks are absent across much of the globe and

the spatial resolution of most satellite-based pre-

cipitation estimates is currently much coarser than

that of MODIS imagery.
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CONCLUSIONS

In managing the long-term value of a landscape, it

is useful to distinguish ephemeral vegetation

dynamics from transformations that might be

impossible or impractical to reverse. Transforma-

tions belonging to the latter category are often

instigated by changes in the dominant plant func-

tional type, with subsequent effects on physical and

biological processes. In this study, we have high-

lighted one aspect of ecological functioning

potentially affected by landscape scale state change:

the response of ANPP to inter-annual rainfall

fluctuations. Using time-integrated NDVI as a

measure of ANPP, we observed clear trends in PMR

along a gradient of shrub encroachment in the

northern Chihuahuan Desert. Differences between

grass and shrub-dominated sites were largely con-

sistent with physiological and morphological trade-

offs associated with woody and herbaceous plant

life forms, although factors unrelated to ANPP

cannot be discounted. In addition to sharpening the

view of ecological dynamics in the region, these

results illustrate the potential for using inter-

annual NDVI variability to help map and monitor

ecological states that are heterogeneously distrib-

uted at broad spatial scales, even when long-term

average NDVI of these states is similar. Longer

satellite time series and increased availability of

high resolution precipitation estimates will pro-

mote the utility of this approach for detecting

ecological state changes involving shifts in plant

functional type dominance.
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