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Introduction

Functional diversity of the soil microbial
community is commonly used in the assessment
of soil health as it relates to the activity of sail
microflora involved in carbon cycling. Soil
microbes in different microenvironments will
have varying responses to different substrates,
thus catabolic fingerprint information, via
substrate induced respiration, of each location-
specific community can be obtained. These
profiles are commonly used to assess the fertility
potential and soil health under variable
management or soil degradation scenarios.

Arid land soils are exposed to extreme and
highly variable abiotic stresses uncommon to
most soils where on which Community Level
Physiological Profiling (CLPP) by substrate
induced vebpiration (SIR) methods are usually
employed~ This led to extremely specialized
microbialngonsortia and associated metabolic
activities &i)th the heterotrophic activities in the
surface cryptobiotic crust often dominating the
system. #&Qy activity that disturbs this crust is
expected ¢y have severe impacts on soil activity
potential.U

Objed}ives

The purp@se of this study was to 1) evaluate
total-soil@nzymatic activity profiles and 2) their
relationship to taxonomic changes in soll
microbial"tonsortia across three disturbance

regimes (d an arid desert grassland in the
Southwextern United States.

Genefal Methodology
Samplingesites:

Sampling @as carried out in the northern Chihuahuan
desert, New- Mexico, USA. The site has an average
elevation @¥1557m, and receives an average annual

precipitatid@®of 25cm.

Samples:E

Undisturbggkarid land grassland, grazed areas and oll
well pad turbed soils were sampled (sandy and
sandy loag-poils):

- Undistur, grassland biological crust samples and
surficial scﬁamples without the crust

- Adjacent_grazed lands surficial soil and subsail
samples. O

During thg:breparation of an oil extraction pad the
surface soll was scraped and pushed into a pile with

an averag@ height of about 2m. The soil pile thus is a
mix of pla aterial, soil crust and subsurface CaCO,
fragmentsAt the time of sampling the soil had been
stored in h a pile for 13 years (since 1997). Both

topsoil stotgge pile and the scraped well pad surface
were sam(lad.

Five (5) E_ndom repeats were collected for each
sample type.

Soil catab%tic activity by MicroResp™ (CLPP-SIR)

Microbial eaivity of each sample was measured using
the Microlﬂésp“‘" system, which quantifies the CO,

respired microbes within whole soil samples
supplemented with various carbon sources) using
water as a control (REF). Respiration assays were
carried out after the soil water content was corrected
to the calculated equivalent of the soil's field water
potential. Results were corrected for abiotic CO,

release. The hourly rates of CO, production per gram
soil were used in these analyses (ug CO, g h').

Bacterial abundance by Pyrosequencing
(bTEFAP)

16S rDNA based bacterial tag-encoded amplicon
Pyrosequencing (b TEFAP) using titanium plates were
used to generate an average of 5000 reads per
sample of over 300bp each (average read length
>400bp).

Data analysis:

Metagenomic analyses, included sequence quality
control, clustering and Blastn sequence identification.
All were carried out using the pipeline available at
(www.camera.calit2.net) and MEGAN (MEtaGenome
ANalyzer, http://ab.inf.uni-
tuebingen.de/software/megan/).

Similarity analyses for metagenomic data were
carried out in SplitsTree 4 (www.splitstree.org).

All other statistics and visualization was carried on
Genstat™11 and Minitab®.

NOTE:

Pyrosequencing reads obtained were assigned to the
closest most similar taxonomic level. Thus OTU’s
have been assigned at all levels from species to
Kingdom.

b. SIR profiles and Cyanobacteria abundance

PC2 (14.1%)

PC2 (18%)

Fig. 1. Discrimination of sampling sites by CLPP (PCA score and factor loading plots)
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Fig 2. Rarefaction curves (all assigned bacterial taxa)
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Fig 3a. 16S rDNA similarity

normalized Goodall distance, NJ, consensus tree

Fig 3b. CLPP-SIR similarity
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Fig 4. Sampling locations as described by bacterial diversity, and catabolic diversity
a. CLPP taxa covering 90% cumulative abundance
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c. SIR profiles and dominant taxa
(taxa with individual abundance of >1%)
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Results

Community level physiological profiling
The first obvious observation is that the CLPP-
SIR tests produced least respiration in the

undisturbed soil samples including the crust
and the subsoil samples.

All substrates induced more respiration in the
disturbed systems (grazed and well pad soils).

Amino acid substrates especially lysine and
cysteine) utilization was more variable in the
well pad soils.

Grazed soils exhibited significant variability in
the catabolic profiles most obvious for the
organic acids and sugar utilization.

Metagenomics

The metagenomic survey also indicated that
the undisturbed surface crust had the least
diversity with Cyanobacteria as the dominant
group. Several acidobacteria (Candidatus
Koribacter versatili and Candidatus Solibacter
usitatus) were exclusively identified in the
undisturbed cryptobiotic crust. Cyanobacteria
dominance

Dominant taxa diversity (taxa with individual
abundance of more than 1% of the total
abundance) was rather low with Actinobacteria
and Proteobacteria associated sequences

dominating the disturbed systems and
Cyanobacteria, Nostocaceae and
Actinobacteria dominating the undisturbed
crusts.

Conclusions

Biological crusts and non-crust surface

undisturbed soils have a low catabolic
activity potential. Carbohydrates increased
the respiration of soil crust while organic
acids did induce some activity in the non-
crust undisturbed surficial soils. The stored
topsoil has shown the most complete
catabolic profile potential. The catabolic
potential for the grazed or oil well pad soils
was very similar and for both greater than
that of undisturbed soils. These observations
suggest that decoupling the C cycle from the
C-fixing cyanobacteria may induce more
diverse C uptake pathways associated with a
more diverse microbial population. The
stored topsoil has shown the greatest
catabolic activity and diversity profile
suggesting an enhanced C utilization
metabolic profile. Taxonomic richness was
directly correlated with utilization of amino
acids. Greater taxonomic richness in grazed
and well pad soils correlated with greater
variability in the SIR results (i.e. patchy
catabolic activity).

Similarities in taxonomic diversity and C
substrate utilization patterns show that, for
arid lands, any degradation-enhanced
heterogeneity in soil's biotic and abiotic
parameters may drive changes in soils
towards higher functional diversity to adapt to
the disturbance.

Re-spreading the soil, in an attempt to
remediate degraded lands will possibly retain
their diversity but will allow only for slow
natural slow crust recovery.
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