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ABSTRACT: 

 

A challenge in ecological studies is defining scales of observation that correspond to relevant ecological scales for organisms or 

processes. Image segmentation has been proposed as an alternative to pixel-based methods for scaling remotely-sensed data into 

ecologically-meaningful units. However, to date, selection of image object sets has been largely subjective. Changing scale of image 

segmentation affects the variance and spatial dependence (amount and range of spatial autocorrelation) of measured variables, and 

this information can be used to determine appropriate levels of image segmentation. Our objective was to examine how scaling via 

image segmentation changes spatial dependence of regression-based predictions of landscape features and to determine if these 

changes could identify appropriate segmentation levels for a given objective. We segmented an Ikonos image for southern Idaho 

(USA) into successively coarser scales and evaluated goodness-of-fit and spatial dependence of regression predictions of invasive 

western juniper (Juniperus occidentalis) density. Correlations between juniper density estimates and imagery increased with scale 

initially, but then decreased as scale became coarser. Scales with highest correlations generally exhibited the most spatial dependence 

in the regression predictions and residuals. Aggregating original juniper density estimates by image objects changed their spatial 

dependence, and the point at which spatial dependence began to diverge from the original observations coincided with the highest 

correlations. Looking at scale effects on spatial dependence of observations may be a simple method for selecting appropriate 

segmentation levels. The robustness of ecological analyses will increase as methods are devised that remove the subjectivity of 

selecting scales. 
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1, INTRODUCTION 

A significant challenge in ecological studies has been defining 

scales of observation that correspond to relevant ecological 

scales for organisms or processes. Scale is a characteristic of a 

set of observations that controls what patterns can be detected 

from the observations (Wiens, 1989; Burnett and Blaschke, 

2003). Operationally, scale is defined by the smallest 

observable unit (i.e., grain) and the maximum areal coverage 

(i.e., extent) of a set of observations (Turner et al., 1989). 

Because objects smaller than the grain size generally cannot be 

resolved, and patterns larger than the extent cannot be 

completely defined, selection of an appropriate scale is 

important to detecting and describing patterns that result from 

ecological processes. 

 

Traditionally, scaling of datasets has been accomplished 

through aggregating observations into successively coarser 

units of the same size (Wu and Li, 2006). Scaling effects of 

such methods that use a consistently-shaped support (i.e., 

analysis unit) include changes in mean and variance (Wu, 2004; 

Chen and Henebry, 2009) and the existence of scaling domains 

(Wiens, 1989). However, scaling via consistently-shaped 

supports can obscure boundaries and can magnify the effects of 

the modifiable areal unit problem (Dark and Bram, 2007).  

 

Image segmentation has been shown to be an effective method 

for scaling information such that relevant patterns are preserved 

and extraneous information (i.e., noise) is removed (Wu, 1999; 

Burnett and Blaschke, 2003; Hay and Marceau, 2004). This is 

because image segmentation is a "data-driven" approach to 

scaling where adjacent observations are merged based on 

similarity rules. The result of segmentation is a complete 

tessellation of an area into relatively homogeneous objects of 

differing shapes and sizes. By varying the degree of similarity 

needed to merge observations, finer or coarser scale 

segmentations can be achieved. Karl and Maurer (2010a) 

reported that higher and more consistent correlations between 

field and image data were achieved when scaling by image 

segmentation than by aggregating square pixels. 

 

However, to date, the selection of image object sets to represent 

landscape patterns has been largely subjective (Wang et al., 

2004; Addink et al., 2007) and usually involves trial-and-error 

for selecting appropriate scales for analysis (Burnett and 

Blaschke, 2003; Feitosa et al., 2006; Navulur, 2007). However, 

the accuracy of image-derived products changes with 

segmentation level (Feitosa et al., 2006; Addink et al., 2007; 

Karl and Maurer, 2010a), and an optimal scale can be defined 

as the scale producing the most accurate results for a given 

objective. 

 

Changes in scale can also affect the magnitude and range of 

spatial autocorrelation (i.e., spatial dependence) between 

observations (Fortin and Dale, 2005), but this phenomenon has 
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not been studied extensively in object-based scaling. Karl and 

Maurer (2010b) showed that optimal object-based scales for 

predicting attributes of a semi-desert landscape minimized 

spatial autocorrelation of regression residuals. However, they 

also demonstrated that geostatistical techniques that could 

account for this residual spatial autocorrelation could yield 

predictions from scales finer than optimal that were about as 

accurate as predictions from the optimal scale. This suggests 

that spatial dependence of image objects relative to that of field 

observations may be an important trait in selecting object-

segmentation scales for analyses. 

 

Our objective was to examine how scaling via image 

segmentation changes the spatial dependence of regression-

based predictions of landscape features. Specifically we were 

interested in whether or not changes in observed spatial 

dependence of original measurements or regression predictions 

and residuals could be used to identify optimal (or near-

optimal) scales of segmentation.  

 

2. STUDY AREA 

This study was conducted in the 47,700-ha Castle Creek area in 

southwestern Idaho, USA (116.5ºW, 42.7ºN, Figure 1). The 

Castle Creek landscape, a semi-arid shrub-steppe environment 

receiving on average between 26.7mm and 57.0mm of 

precipitation annually, is typified by rolling hills and low 

plateaus. Vegetation in the area is a mosaic of mountain 

mahogany (Cercocarpus ledifolius) western juniper (Juniperus 

occidentalis) and different sagebrush (Artemisia tridentata ssp. 

tridentata, Artemisia tridentata ssp. vaseyana, Artemisia 

arbuscula) communities with native bunchgrass in the 

understory.  

 

 
Figure 1. Estimated distribution and density of juniper in the 

Castle Creek study area in southern Idaho, USA. 

 

A century of fire suppression in the western United States has 

led to many ecological changes by disrupting the frequency of a 

coarse-scale natural process. In southern Idaho, one effect of 

fire suppression has been the expansion of western juniper 

beyond its historic range into previously unoccupied habitats. 

Juniper is a long-lived species and thick layers of litter 

accumulate under larger trees that suppress the growth of other  

plants. This expansion of juniper has led to a decrease in the 

value of rangelands for livestock or as habitat for wildlife 

species like sage grouse (Centrocercus urophasianus) as the 

native shrubs, grasses, and forbs are lost. The U.S. Bureau of 

Land Management (BLM), the majority land manager in the 

Castle Creek area has identified the Castle Creek area as a 

priority landscape for addressing the expansion of juniper and 

restoring native sagebrush-steppe communities.  

 

In the Castle Creek area, juniper was historically restricted to 

places that typically did not burn like rocky outcrops, cooler 

ridges and mountain tops, and isolated plateaus. Over time, 

however, the distribution of juniper in Castle Creek area has 

expanded from its limited distribution in the western portion of 

the study area to cover much of the western half of the study 

area. 

 

3. METHODS 

We followed a similar method to Karl and Maurer (2010b) 

where a satellite image was segmented multiple times to achieve 

realizations of different scales. At each scale, estimates of 

juniper density were correlated via regression with pixel means 

and standard deviations for each image object and the spatial 

dependence of regression predictions and residuals was  

compared. 

 

3.1 Imagery Acquisition and Processing 

We acquired a multispectral Ikonos image for the Castle Creek 

area on July 31, 2008. The image was radiometrically corrected 

and orthorectified by GeoEye (http://www.geoeye.com)  and 

had a ground resolution of 4 m. The image had four spectral 

bands: blue (445 to 516 nm), green (506 to 595 nm), red (632 

to 698 nm) and near-infrared (757 to 853 nm). The image was 

atmospherically corrected using a dark-object subtraction 

method (Chavez, 1996), and the 11-bit digital numbers for each 

pixel were converted to top-of-atmosphere reflectance. 

 

Because image  segmentation is sensitive to correlations 

between image bands (see Navulur, 2007), we applied a 

tasselled-cap transformation to the Ikonos image using the 

coefficients developed by Horne (2003) for the Ikonos sensor. 

The tasselled-cap transformation is a linear combination of the 

original image bands to create a new set of bands with specific 

interpretations. Tasselled-cap band one is interpreted as 

brightness of the image. Band two is interpreted as greenness 

and correlates highly with other vegetation indexes. Band 3 is 

interpreted as "wetness." The fourth tasselled-cap band contains 

much noise and is generally discarded. We used the first three 

tasselled-cap bands from the Ikonos image as inputs for the 

image segmentation and subsequent statistical analyses. 

 

3.2 Image Segmentations 

Segmentation of the tasselled-cap transformed Ikonos image 

into object sets of different scales was accomplished with 

Definiens Developer 7.0 using the multi-scale resolution 

segmentation (MRS) algorithm described by Baatz and Schäpe 

(2000; see also Burnett and Blaschke, 2003). The MRS 

algorithm works by merging adjacent pixels in the first iteration 

and objects in later iterations and evaluating the increase in 

local heterogeneity. If after merging the local heterogeneity is 

below a set threshold, the merged objects are kept, otherwise, 

the merge is abandoned and a different combination of objects 

is tried. This procedure continues until all possible merges 

below the threshold are made. The heterogeneity threshold is 

set via a user-specified scale parameter (ps). By increasing ps, 
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greater heterogeneity is allowed within image objects and, in 

general, the size of the objects increases. Objects that are very 

distinct from their surroundings, however, will tend to be 

maintained as independent image objects while the objects 

around them increase in size until a point is reached where they 

are dissolved into the adjacent objects (Karl and Maurer, 

2010a). 

 

We segmented the tasselled-cap transformed Ikonos image for 

the Castle Creek area 14 times to create a set of image 

segmentations that became increasingly coarser in scale. For 

each successive segmentation, we increased ps by a set amount 

(Table 1). The image objects for each segmentation level were 

attributed with the mean and standard deviation of the pixels 

within each image object for all the tasselled-cap bands and 

then exported for statistical analysis. 

 

Scale 

Para. (ps) 

Number 

of Objects 

Median 

Area (ha) 

Minimum 

Area (ha) 

Maximum 

Area (ha) 

20 115792 0.434 0.002 14.691 

30 51,352 0.990 0.006 15.941 

40 29,392 1.712 0.010 29.475 

50 19,193 2.618 0.027 43.760 

60 13,506 3.722 0.027 63.138 

70 9,988 5.000 0.037 91.333 

80 7,686 6.461 0.077 171.789 

90 6,064 8.010 0.077 171.789 

100 4,880 9.890 0.077 214.902 

110 4,031 11.799 0.112 246.192 

120 3,374 14.139 0.126 246.192 

130 2,890 16.750 0.205 246.192 

140 2,501 18.995 0.226 314.798 

150 2,184 21.518 0.226 314.798 

 

Table 1. Statistics for the successively coarser segmentations 

 

3.3 Estimating Juniper Density 

The density of juniper in the Castle Creek area was estimated 

from 1m-resolution aerial photographs. We used aerial 

photographs collected by the U.S. Department of Agriculture's 

National Aerial Imagery Program (NAIP) on September 14, 

2009. Because juniper is a slow-growing, long lived species and 

no wildfires or juniper management actions occurred between 

the dates of the Ikonos and NAIP image acquisition, we 

concluded that any difference between image dates would not 

significantly affect our results.  

 

Sample locations were generated for 221 points within the 

study area using two different sampling schemes. A previous 

field project had sampled 126 randomly-selected points within 

the area. We supplemented these locations with an additional 

95 points placed on a regular grid with 2km spacing between 

points. This dual sampling scheme was used to improve the 

ability to measure and model spatial dependence in the juniper 

density estimates. 

 

A circle of 55m radius was placed around each sample point. 

This size of circle was selected because it corresponds to a 

standard plot size for shrubland sampling. Within each circle, 

the number of juniper visible at a scale of 1:2000 was counted. 

The number of juniper was divided by the plot area (0.95 ha) to 

get the density of juniper per hectare. 

 

3.4 Associating Juniper Density with Image Objects 

Statistical analyses followed the methods described in Karl and 

Maurer (2010b) and were performed in R version 2.10.1 using 

the nlme (Pinheiro and Bates, 2000) and gstat (Pebesma, 2004) 

packages for generalized least-squares (GLS) regression and 

variogram estimation and modelling, respectively. All variables 

were transformed using log or square-root transformations as 

necessary to meet normality assumptions of linear regression.  

 

The presence of a geographic trend in data obscures the ability 

to detect spatial autocorrelation between observations. In the 

Castle Creek area, however, there is a strong moisture gradient 

from east to west that influences spectral reflectance as well as 

the distribution and density of juniper (Figure 1). This trend 

was removed by regressing the image object information at each 

scale and the juniper density estimates by their X and Y 

coordinate values (and including an X/Y interaction). The 

residuals from these regressions represent geographically de-

trended data which were used throughout the rest of the study. 

 

To assess the spatial dependence of the juniper density 

estimates, we constructed a semi-variogram between all pairs of 

observations following Fortin and Dale (2005). We fit an omni-

directional, spherical variogram model to the empirical 

variogram. The variogram was characterized by its nugget (i.e., 

variance that cannot be explained by distance between 

observations - including measurement error), sill (i.e., total 

observed semivariance), and range (i.e., distance at which two 

observations can be considered independent)(see Fortin and 

Dale, 2005). The nugget-to-sill ratio (NSR) was used as a 

measure of the proportion of total observed variation that could 

not be explained by the observed spatial dependence of the 

variable. 

 
Figure 2. Empirical variogram (dots) and variogram model 

(line) of the de-trended juniper density estimates in the Castle 

Creek area. The juniper-density nugget-to-sill ratio was 0.1457. 

 

To test how scale affected the relationship between the juniper 

density estimates and the image object information, we used 

generalized least-squares (GLS) regression and analyzed the 

spatial dependence of the GLS model predictions and residuals 

via variogram modelling. The first step at each segmentation 

level was to select the image objects that contained one or more 

juniper density estimates. Coordinate values were determined  
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ps R GLS Regression Prediction GLS Regression Residual 

  Nugget Sill NSR Range Nugget Sill NSR Range 

20 0.6786 0.4722 0.6501 0.7263 1,320 0.6299 1.1230 0.5609 1,320 

30 0.7092 0.2601 0.7633 0.3407 1,903 0.2348 1.0080 0.2329 2,661 

40 0.7123 0.1093 0.8115 0.1347 1,458 0.3084 1.0036 0.3073 2,558 

50 0.7280 0.1814 0.8731 0.2077 1,998 0.1964 0.9592 0.2048 2,714 

60 0.7293 0.1074 0.8391 0.1280 1,621 0.3133 0.9672 0.3240 3,104 

70 0.7182 0.2191 0.8436 0.2597 1,902 0.3173 1.0385 0.3055 3,324 

80 0.6952 0.1231 0.8028 0.1533 1,833 0.4745 1.1198 0.4238 4,741 

90 0.7006 0.1809 0.8394 0.2155 1,883 0.3367 1.0575 0.3184 2,999 

100 0.6816 0.1109 0.7885 0.1406 1,958 0.4792 1.1431 0.4192 5,532 

110 0.6833 0.3774 0.7919 0.4766 2,197 0.4590 1.1199 0.4099 4,864 

120 0.6675 0.4433 0.7323 0.6054 1,890 0.5087 1.1747 0.4331 5,392 

130 0.6714 0.7145 0.7376 0.9687 2,162 0.6114 1.1543 0.5297 6,146 

140 0.6492 0.5862 0.6748 0.8687 2,023 0.6379 1.2161 0.5245 6,523 

150 0.6294 0.5753 0.6294 0.9139 2,516 0.4474 1.2772 0.3503 4,646 

 

Table 2. Correlation (R) between juniper density estimates and GLS-regression predictions of juniper density and variogram 

characteristics of GLS-model predictions and residuals at each segmentation level (ps). 

 

 

for the geometric center of each image object. When more than 

one juniper density estimate fell within an image object, the 

estimates were averaged to provide a single juniper density 

estimate per image object. We used this method to avoid 

artificially inflating sample sizes for coarser scales and because 

it was akin to taking multiple samples within an object. 

 

The next step was, for each ps, to use GLS regression to 

establish the relationship between the juniper density estimates 

and the image object values. We used GLS to incorporate 

spatial covariance between samples (Bailey and Gatrell, 1995). 

We included all 6 image-band measures (i.e., mean and 

standard deviation of pixels per object for the three tasselled-

cap bands) in an initial regression model. A backward variable-

selection technique was used to select the most parsimonious 

model by comparing Akaike's information criterion (AIC values 

(Burnham and Anderson, 2002). For each ps we recorded the 

correlation between the final model and the original estimates 

as a measure of the association between the juniper density 

estimates and the image objects at that scale. Finally, we 

constructed variograms and variogram models for the GLS 

regression predictions and residuals for each ps. 

 

Ideally, a method could be defined to identify optimal scales 

without the need to conduct regressions on many different 

segmentation levels. In light of this, and because of the 

relationship between the regression NSR and overall correlation 

between juniper density and image objects, we further explored 

the effects of aggregating the original juniper density estimate 

points by image objects at different ps. Variograms and 

variogram models were constructed from the aggregated juniper 

density points at each ps. 

 

4. RESULTS 

The de-trended juniper density estimates showed strong spatial 

autocorrelation (Figure 2). The variogram of the juniper density 

estimates had a range of 4,968m, and a nugget and sill of 

0.2968 and 2.0365, respectively. The NSR for juniper density 

estimates was 0.1457 - indicating strong spatial dependence. 

 

Correlation between juniper density and the image objects 

increased with segmentation level until ps = 60, whereafter it 

steadily decreased (Table 2, Figure 3). Generally, the scales 

with the highest juniper-estimate to image correlations also had 

the lowest NSR for both the GLS predictions and residuals 

(Figure 4). Regression between correlation coefficients at each 

ps and the variogram NSR for that scale gave an R2 of 0.6748 

(p=0.0003) and 0.4053 (p=0.0144) for the GLS predictions and 

residuals, respectively. For variogram range, similarly-derived 

R2 values were 0.2152 (p=0.0539) and 0.3288 (p=0.0188) for 

the GLS predictions and residuals, respectively. 

 

 
Figure 3. Changes in correlation between juniper density 

estimates and predictions of juniper density from the GLS-

regression models. 

 

Aggregation of the original juniper density points by different 

scales of image objects altered their spatial dependence. At fine 

scales (ps <= 60), there was little departure from the spatial 

dependence of the original observations (Figure 5) because 

most objects contained only one point. As more observations 

were averaged into single image objects with increasing ps, the 

range and NSR of the juniper density points began to diverge 

from the original points. The point at which this divergence 

began coincided with the ps that yielded the highest juniper-

density to field correlation (ps=60). 
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5. DISCUSSION 

Our results support previous research that suggests that 

segmentation scales can be defined that maximize the 

correlation between field and image measurements (Feitosa et 

al., 2006; Addink et al., 2007). Furthermore, our results support 

the idea that changes in spatial dependence can be used to 

identify appropriate ranges of scales (Karl and Maurer, 2010b). 

Karl and Maurer (2010b) suggested that segmentation scales 

with a NSR and range that closely matched the field 

observations would be optimal because segmentation can 

preserve variance between objects in such a way that the 

variance structure of the original observations is maintained. 

Our results in Figure 5 support this theory. However our results 

from Figure 4, namely that those scales with the highest spatial 

dependence (i.e., lowest NSR) performed best, do not. This 

disparity may be related to scales of the ecological processes 

affecting the distribution of juniper.  

 

 

 
Figure 4. Correlation between juniper density estimates and 

predictions from GLS-regression models was related to the 

spatial dependence of the predictions (A) and the model 

residuals (B). Low nugget-to-sill ratios in both the model 

predictions and residuals (signifying large spatial dependence) 

yielded the highest correlations. 

 

Factors important to describing the distribution and density of 

juniper in Castle Creek not accounted for by the image 

information may be obscuring the expected pattern. Spatial 

dependence in regression model residuals is the result of 

unexplained variability that is related to distance (Bailey and 

Gatrell, 1995). In the Castle Creek area, juniper density 

exhibited much more, and shorter range spatial dependence 

than did bare ground that Karl and Maurer (2010b) examined. 

Some portion of the juniper spatial dependence may be related 

to factors other than those directly recorded by the Ikonos 

sensor (e.g., aspect, soil type, fire and management history). If 

this is the case, incorporation of these additional factors would 

increase spatial dependence for the model predictions and 

reduce it for model residuals. But the influence of these 

covariates might not be the same at all segmentation scales. For 

instance, a fine-scale variable like aspect is likely to be strongly 

associated with with juniper density at fine segmentation levels 

where each segment is more likely to contain a single aspect 

than at coarse segmentation levels where multiple aspects will 

be combined per image object. This could produce the expected 

pattern of spatial dependence relative to optimal segmentation 

levels. 

 

A more reliable technique for identifying ranges of appropriate 

scales may be to look at changes in spatial dependence of the 

original observations under different segmentation scales. This 

has the advantage that it can be easily done and does not require 

running repeated regressions against multiple scales of image 

objects and examining the correlations. As original observations 

are aggregated into coarser scales, spatial dependence begins to 

shift toward larger NSR (i.e., less spatial dependence) and 

longer ranges (Figure 5). Initially, this change is minor as most 

image objects still contain only one observation point. 

Eventually, however, the scale becomes coarse enough that 

many points are being aggregated, and the measured spatial 

dependence shifts significantly from that of the original 

observations. Because correlation between field and image 

information for image segmentation tends to increase with scale 

(Karl and Maurer, 2010a), the optimal scale for a variable may 

be the point just before deviation from field measurements 

becomes large (e.g., ps=60 for juniper in Castle Creek). While 

image segmentation scales below this level may be sub-optimal, 

they could still be considered appropriate because use of 

geostatistical techniques like regression kriging (see Hengl et 

al., 2004) can yield results nearly as accurate (Karl and Maurer, 

2010b). 

 

 
Figure 5. Plot of variogram range versus nugget-to-sill ratio 

(NSR) for the original juniper density estimate points 

aggregated by different scales of image objects. Segmentation 

levels with range and NSR closest to the original points (gray 

square) had the highest correlations between juniper density 

estimates and GLS-regression predictions. Point labels 

correspond to the segmentation scale parameter (ps). 

 

6. CONCLUSION 

This study supports a growing body of literature on the 

importance of selecting appropriate scales for analysis. The 

contribution of this study is that it 1) reinforces the assertion 

that scaling via image segmentation affects spatial dependence 

of observations and predictions, and 2) describes a simple 
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method for evaluating the appropriateness of different scales by 

looking at the effect of a scale on the spatial dependence of a set 

of observations. 

 

In order to understand the relationships between patterns and 

processes across landscapes, it is necessary to collapse 

information into units of different scale to remove unnecessary 

information and extract patterns of interest (Wu, 1999; Burnett 

and Blaschke, 2003). Image segmentation has shown promise as 

a way to scale information for ecological analyses, but more 

work is needed to understand how different segmentation scales 

affect information content and the quality of predictions, and 

ultimately to develop reliable methods for selecting appropriate 

scales for analysis. The robustness of landscape analyses will 

increase as methods are devised that remove the subjectivity 

with which observational scales are defined and selected. 
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