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Ultra-high-resolution digital aerial imagery has great potential to complement or replace
ground measurements of vegetation cover for rangeland monitoring and assessment. This
research investigated object-based image analysis (OBIA) techniques for classifying
vegetation in southwestern USA arid rangelands with 4 cm resolution digital aerial
imagery. We obtained high r-square values for the regressions relating ground- to image-
based measures of percent cover (r-square values: 0.82–0.92). OBIA enabled us to
automate the classification process and demonstrated potential for quantifying fine-scale
land cover attributes with ultra-high-resolution imagery. This approach exhibits promise
for nationwide application for monitoring grazing lands.
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1. Introduction

In the United States, land management
agencies such as the Bureau of Land
Management (BLM) and the Natural Re-
sources Conservation Service (NRCS) are
required to monitor and assess vegetation
conditions across millions of acres of grass-
lands and savannas (i.e. rangelands). Field-
based assessments are costly and inefficient
over large areas; remote sensing offers the
potential to increase the number of mon-
itoring locations, automate the image clas-
sification process, and reduce costs of the
monitoring. Remote sensing approaches
have been tested and implemented for
rangeland applications at various spatial
resolutions (Weber 2006; Ludwig et al.
2007; Laliberte et al. 2007; Booth & Cox
2008; Sankey et al. 2008). However, the

challenge that remains is developing a
remote sensing-based approach that is
repeatable, potentially applicable to various
vegetation communities, and adapted to
imagery of sufficiently high resolution to
yield high correlations with ground-based
measurements commonly used in national
monitoring efforts.

This study is part of a larger research
effort focused on developing and testing
remote sensing acquisition and analysis
techniques for potential integration into
the National Resources Inventory (NRI)
of grazing lands to enhance assessment
of conservation effects. The NRI is a
statistical survey of land use and natural
resource conditions and trends on U.S.
non-federal lands conducted by the Natio-
nal Resources Conservation Service

*Corresponding author. Email: alaliber@nmsu.edu

Journal of Spatial Science

Vol. 55, No. 1, June 2010, 101–115

ISSN 1449-8596 print/ISSN 1836-5655 online

� 2010 Surveying and Spatial Sciences Institute and Mapping Sciences Institute, Australia

DOI: 10.1080/14498596.2010.487853

http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
L
a
l
i
b
e
r
t
e
,
 
A
n
d
r
e
a
]
 
A
t
:
 
1
8
:
4
4
 
9
 
J
u
l
y
 
2
0
1
0



(NRCS) (Nusser & Goebel 1997). The NRI
provides one part of the scientific frame-
work for the Conservation Effects Assess-
ment Project (CEAP), an inter-agency effort
to quantify natural resource benefits deliv-
ered through conservation actions on pri-
vate land (Duriancik et al. 2008).

As part of NRI, NRCS acquires over
70,000 aerial photos over the USA annually
and is in the process of changing from film
to digital aerial image acquisition. Cur-
rently, only broad land use/land cover
classes are determined through photo inter-
pretation. In some cases, such as the
2003 study initiated in southwestern range-
lands (Godinez-Alvarez et al. 2009), more
detailed information is collected through
field measurements and observations. How-
ever, ground- and image-based measures
currently have not been related. There is
a keen interest to integrate remote sen-
sing techniques to a greater extent and
better correlate ground- and image-derived
measurements.

Digital aerial mapping cameras, such
as the large format UltraCam, DMC and
ADS40 are used to a greater extent than
film cameras for aerial photo acquisitions
today (Neumann 2008). Compared to film-
based products, images acquired with digi-
tal mapping cameras have greater radio-
metric resolution, lower noise levels and are
better suited for quantitative remote sensing
(Honkavaara & Markelin 2008). The tech-
nology has seen increasing use in the last
five years, and there is a growing literature
of remote sensing applications with digital
aerial imagery (Green & Lopez 2007;
Coulter & Stow 2008; Rosso et al. 2008).

Compared to pixel-based approaches,
object-based image analysis (OBIA) with
high- or very-high-resolution (51 m) aerial
photography has been shown to yield
lower errors and better regression models
for urban impervious mapping (Hodgson
et al. 2003), and higher classification ac-
curacies for detailed vegetation mapping at

the alliance level in California (Yu et al.
2006). The ability to segment an image at
multiple scales allows for retaining fine-
scale vegetation patches within a coarser
landscape element (Laliberte et al. 2004),
and aids in determining appropriate scales
for analysis (Laliberte & Rango 2009).
Because individual pixels are grouped into
homogenous objects, the classification
does not suffer from the salt and pepper
effect of pixel-based classification, and the
image objects are ecologically meaningful,
whereas individual pixels may not be. The
ability to incorporate spatial and contextual
features combined with expert knowledge at
the object-level allows for greater flexibility
in the analysis and improves the classifica-
tion output (Platt & Rapoza 2008).

In this study, we investigated the use of
sub-decimetre resolution (4 cm ground re-
solved distance) digital aerial imagery for
estimating percent cover for vegetation and
bare ground using OBIA. The objectives
were (1) to compare image-based and
ground-based estimates of cover, and (2)
to assess the viability and efficiency of
applying the image-based method to a
broad range of vegetation communities
in the region. Future studies will extend
these techniques to additional vegetation
communities.

2. Methods

Study area

Our research was conducted at the Jornada
Experimental Range (JER) and the Chi-
huahuan Desert Rangeland Research Cen-
ter (CDRRC) in the Jornada Basin of
southwestern New Mexico in the northern
Chihuahuan Desert (latitude 328340110 N,
longitude 1068490440 W) (Figure 1). The
area is situated at about 1200 m elevation
between the Rio Grande Valley to the west
and the San Andres Mountains to the east.

Average monthly maximum tempera-
tures for the JER range from 138C in
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January to 368C in June, and mean annual
precipitation is 241 mm, of which more
than 50 percent occurs in July, August and
September (Wainwright 2006). Rainfall
amount and distribution is highly variable.
Historically, a large part of the study area
was semidesert grassland, but shrub en-
croachment has led to the conversion to
shrubland over the last century (Gibbens
et al. 2005). Common species include honey
mesquite (Prosopis glandulosa Torr.), creo-
sotebush (Larrea tridentata (Sess. & Moc.
ex DC) Cov.), tarbush (Flourensia cernua
DC.), four-wing saltbush (Atriplex canes-
cens (Pursh) Nutt.), soap-tree yucca (Yucca
elata Engleman.), mormon tea (Ephedra
torreyana Wats.), broom snakeweed (Gu-
tierrezia sarothrae (Pursh) Britt. & Rusby),
black grama (Bouteloua eriopoda Torrey),
tobosa (Pleuraphis mutica Buckley), drop-
seed (Sporobolus spp.), threeawn (Aristida
spp.), and burrograss (Scleropogon brevifo-
lius Phil.). Tobosa grasses are more likely to
occur in pure stands, while black grama,
dropseed and threeawn tend to grow in
mixed stands.

The fifteen plots (70 m 6 70 m) used in
this study were established as long-term
research plots as part of the Jornada Basin
long-term ecological research (LTER) pro-
gram. The plots were located in five different
vegetation communities (mesquite, tarbush,
creosote, grassland, playa) to capture a wide
variety of vegetation cover, density, and
pattern (Figure 2). The mesquite, tarbush
and creosote sites represent shrub-domi-
nated communities, while the grassland
and playa sites are grass-dominated.

Digital imagery

Aerial imagery was acquired over the study
plots (one image per plot) on 19 and 21
June 2007 with a large-format digital
mapping camera, the Intergraph Z/I Ima-
ging1 Digital Mapping Camera (DMC).
The dynamic range of the DMC imagery is
12 bits, and the image size is 13,824 6 7680
pixels. The multi-head sensor acquires
imagery in the red (590–675 nm), green
(500–650 nm), blue (400–580 nm) and near
infrared (675–950 nm) bands at a coarser

Figure 1. Map of study area in southwestern New Mexico at the Jornada Experimental Range (JER)
and the Chihuahuan Desert Rangeland Research Center (CDRRC), showing the locations of the 15
sites (black dots), over which the digital aerial imagery was acquired.
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resolution, and panchromatic data (400–
950 nm) at finer resolution, with a ground
sampling distance reduction factor of 4.8.
The individual bands are then merged into a
pan-sharpened multispectral image (Hinz
et al. 2000) using a proprietary method. The
imagery for this project was acquired at a

flying height of approximately 300 m above
ground, which resulted in a ground resolved
distance of 4 cm. Imagery was delivered as
a three-band colour infrared image (near
infrared (NIR), red (R), green (G)).

A subset of each image that encom-
passed a 90 m 6 90 m area centred on the
70 m 6 70 m plot was georectified to an
orthorectified QuickBird image (60 cm re-
solution). For ground control points, differ-
entially corrected GPS coordinates of the
corner fence posts surrounding each
plot were used as well as other visible
objects, such as large rocks and prominent
shrubs. The root mean square error for
the polynomial model fit to the GCPs
used to calibrate the transformation was
52 cm.

Field measurements

Within three weeks of image acquisition,
line-point intercept (LPI) data were col-
lected following a standard rangeland mon-
itoring protocol (Herrick et al. 2005). LPI
data collection was chosen because it is an
integral part of the NRI assessment. In each
plot, LPI data were collected along four
parallel 70 m transects for a total of 280
points/plot (Godinez-Alvarez et al. 2009).
For each point at a specified distance
(i.e., 1 m) along the line transect, a pin is
dropped to the ground, and all plant species
intercepted by the pin are recorded. In
addition, soil surface conditions (e.g., bare,
litter, rock) are recorded. Field-based LPI
surveys are based on multiple hits per point,
but in order to compare results with
remotely sensed data, only the top or first
intercept of vegetation or soil were used for
the analysis. Percent cover by species was
derived by dividing the number of hits
for each species by the total number of
points/plot. Vegetation cover at the species
level was aggregated into structure groups
(shrubs, grasses, forbs), and then further
aggregated into vegetation/non-vegetation

Figure 2. Photographs (left column) and digital
aerial imagery (right column) of the five
vegetation communities assessed in this study.
The digital aerial imagery is clipped to the
70 m 6 70 m plots.
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for regression analysis. Species-specific data
were used to assess detection limits.

Digital image analysis

The object-based image analysis program
Definiens Developer 7.0.9 (Definiens 2007)
was used for image classification. In a first
step, an image is segmented into homo-
geneous areas, and the second step consists
of classification of these segments to derive
image objects. The segmentation is a
bottom-up region merging approach,
whereby smaller image objects are merged
into larger ones depending on heterogeneity
between adjacent image objects. Unit-less
parameters (scale, colour and shape) con-
trol the segmentation. Colour and shape are
weighted from 0 to 1, and within the shape
parameter, smoothness and compactness
are also weighted from 0 to 1. The scale
parameter controls the relative size of the
image segments (Baatz & Schaepe 2000;
Benz et al. 2004).

The images were segmented at 2 levels:
(1) a finer multiresolution segmentation
(level 1) with scale parameter 50, colour/
shape of 0.9/0.1, and smoothness/compact-
ness of 0.5/0.5, and (2) a coarser spectral
difference segmentation (level 2) using a
maximum spectral difference of 150. The
spectral difference segmentation aggregates
adjacent image objects with similar spectral
responses up to the maximum spectral
difference. This allows for combining ad-
jacent image objects with similar spectral
properties into larger objects (such as large
bare areas) while maintaining small spec-
trally distinct objects (such as small patches
of vegetation) within the bare areas. We
used expert judgment and visual interpreta-
tion to determine the segmentation para-
meters. The classifications were performed
on the coarser level 2 segmentation.

The objective of this research was to
develop a classification approach suitable
for multiple images and different vegetation

communities, therefore classes at the top of
the hierarchy (left in Figure 3) were com-
mon to many sites and generally easier to
define, and classes at the bottom of the
hierarchy (right in Figure 3) were specific to
each site (species-level) and generally more
difficult to define. The scheme combined
rule-based classification at the top of the
hierarchy, and nearest-neighbour classifica-
tion techniques at the bottom. Shadow/
non-shadow, vegetation/non-vegetation,
and structure group classes (shrubs, grasses,
forbs) were defined with rules and user-
defined thresholds.

The suitability of the threshold values
that separate two classes in question was
assessed with visual interpretation. The
feature view tool was used, which allowed
for visualizing object values for a given
feature as a grey-scale image. Classification
of litter, bare ground, rocks, grass and shrub
species was performed using image-derived
samples and nearest-neighbour classifica-
tion. In sites where litter and/or rocks were

Figure 3. The hierarchical classification
approach used in the study. Boxes with light
background show classes (i.e., land cover types) in
bold that were defined using rules with thresholds.
Features used for the rules are shown in boxes
with dashed outlines (Brightness and Normalized
Difference Vegetation Index [NDVI]). Boxes with
grey background show classes in bold that were
defined using samples and a nearest neighbour
classification approach. Please see Table 1 for
further description of features.
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absent or could not be detected, the non-
vegetation class represented bare ground.
Likewise, grasses and forbs were grouped if
they could not be distinguished separately.
The brightness of digital numbers (DNs)
and the normalized difference vegetation
index (NDVI) (Rouse et al. 1974) were used
as rule-based features. For the nearest-
neighbour classification, the means and
ratios of the three bands and NDVI were
used. The spectral features were used,
because they showed the most discrimina-
tion for the vegetation of interest. The
feature roundness was included for sites
where broom snakeweed was detected be-
cause of the distinctly round growth form of
this sub-shrub. The features used in the
analysis are described further in Table 1.

In Definiens Developer, the structure
and flow control of the entire image analysis
procedure (i.e., segmentation, rule-base
development, features and samples used,
classification) is defined in a process tree.
The process tree can be saved and applied
to another image, and parameters can be
modified easily. This allows for consistency
in the analysis and rapid application to
multiple images, while still allowing
for customization to specific sites. We
developed an initial process tree on the first
image of a vegetation community and
applied it to the next two images in the
same vegetation community. The same
initial process tree was then applied to the

next vegetation community and so on. This
was done to save time and take advantage
of similarities in vegetation within a com-
munity as well as across different commu-
nities, although the process tree required
more changes across different vegetation
communities compared to within the same
community. For each image, the following
parameters could be changed, although the
same threshold values were used for differ-
ent images if the results were deemed
suitable:

. threshold value for brightness to
differentiate shadow and non-shadow

. threshold value for NDVI to differ-
entiate vegetation and non-vegetation

. threshold value for NDVI to differ-
entiate shrubs, grasses, and forbs

. selection of samples for shrub species,
grass species, litter, bare ground, and
rocks which were unique to each
image.

Statistical analysis

Ground-based LPI measurements and im-
age-derived measurements were expressed
as percent cover. For the image analysis
product, we summed the pixels for each
land cover class and expressed the pro-
portion of each class as percent cover.
Regression analysis was used to quantify
the relationship between image- and

Table 1. Object-based features derived from Definiens Developer and used in the analysis. The
column ‘Use’ describes use of the feature in rule-based (RB) or nearest neighbor classification (NN).
Features were calculated for each image object at the level 2 segmentation and are based on digital
number (DN) values.

Feature Use Description

Mean NN Mean of pixels in image object. Computed for NIR, R, and G bands
Ratio NN Band mean value of image object divided by sum of all band mean values.

Computed for NIR, R, and G bands
Brightness RB Sum of mean values of NIR, R, G divided by 3
NDVI RB/NN (Mean NIR – mean R)/(mean NIR þ mean R)
Roundness NN Radius of largest enclosing ellipse minus radius of smallest enclosing ellipse
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ground-based measurements of percent
cover at the structure group level. In
addition, paired t-tests (n ¼ 15 plots) were
performed to evaluate whether there were
statistically distinguishable differences be-
tween estimates of land cover from LPI
(field) and classified imagery. Species level
data were summarized in tabular format.

3. Results

Segmentation results

Mean object sizes and standard deviations
were relatively consistent for the level 1
segmentation (Table 2). The level 2 or spec-
tral difference segmentation showed a great-
er range in mean object size as well as
standard deviation due to the nature of the
spectral difference segmentation. Vegeta-
tion heterogeneity across sites resulted in
retention of smaller, spectrally distinct
objects, such as small shrubs, while aggre-
gating larger bare areas.

The classification approach

Using the same process tree on multiple
images proved to be an efficient approach
for classifying vegetation with high-resolu-
tion digital aerial imagery. Approximately 8
hours was spent developing the initial
process tree. This task involved testing
segmentation parameters and determining
suitable features for the analysis. On sub-
sequent images, we executed the seg-
mentation and initial classification to the
structure group level by using the same
thresholds used on the previous image. This
initial run was completed in a few seconds.
Upon visual inspection, the threshold levels
for shadow/non-shadow, vegetation/non-
vegetation, and shrubs/grasses/forbs were
adjusted. On average, adjusting threshold
levels took approximately 20 minutes per
image. Further classification to the species
level involved selection of samples for each
species. Species-specific sample selection

Table 2. Number of objects, mean object sizes (in m2) and standard deviations (SD) (in m2) derived
from segmentations at two scales for fifteen images of 70 m 6 70 m plots. The first letter of each plot
denotes the vegetation community (mesquite [M], tarbush [T], creosote [C], grassland [G], playa [P]).
The segmentations included a multiresolution segmentation (level 1) with scale parameter 50, colour/
shape of 0.9/0.1, and smoothness/compactness of 0.5/0.5, and a spectral difference segmentation (level
2) using a maximum spectral difference of 150.

Plot

Level 1 Level 2

No. of objects
Mean object

size Object SD No. of objects
Mean object

size Object SD

MNORT 79823 0.07 0.07 59842 0.09 0.77
MRABB 97841 0.08 0.09 84412 0.12 0.90
MWELL 72584 0.05 0.07 48106 0.14 1.05
TTAYL 50849 0.08 0.08 24325 0.13 1.11
TEAST 49010 0.07 0.07 33886 0.12 0.95
TWEST 50236 0.06 0.07 32599 0.11 0.88
CCALI 24222 0.08 0.09 20924 0.13 0.78
CGRAV 44543 0.07 0.08 35967 0.12 1.13
CSAND 28117 0.08 0.09 23451 0.12 0.86
PCOLL 78520 0.05 0.07 58456 0.13 0.99
PSMAL 72598 0.05 0.06 53258 0.11 1.04
PTOBO 65230 0.06 0.07 42051 0.13 0.79
GSUMM 33369 0.07 0.07 21436 0.11 0.60
GIBPE 67812 0.08 0.08 44490 0.12 1.30
GBASN 85581 0.07 0.07 66129 0.09 0.39
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was most time-consuming, taking from half
an hour to an hour depending on vegetation
complexity and diversity. The forb class was
merged with the grass class, because forbs
and grasses were often intermixed and most
forbs were too small to be consistently
detected in the imagery.

In order to assess the consistency in
threshold values from image to image, the
range of values (in DN) of a feature (e.g.,
brightness, NDVI) were plotted and the
threshold values (chosen by visual inter-
pretation) used to separate shadow from
non-shadow (Figure 4A) and vegetation
from non-vegetation (Figure 4B). While the
plot-based sample size was small (three
plots per vegetation community), it was
observed that the threshold values were
consistent for each vegetation community.
For example, the same brightness threshold
value was used to separate shadow from
non-shadow for all plots in the creosote-
dominated communities (CCALI, CGRAV,
CSAND). In addition, communities with
no shrubs (all playa sites) had a consider-
ably higher brightness threshold than the
shrub-dominated communities.

Classification to structure group level

The r-square values for image- and ground-
based measures of percent cover were
relatively high, ranging from 0.823 to
0.924 for the shrub, non-vegetation, total
vegetation and grass/forb classes (Figure 5).
Paired t-tests indicated statistical differences
between the two methods in which the
image classification resulted in higher cover
estimates for grass/forb (4.5%, p ¼ 0.012)
and shrubs (2.9%, p ¼ 0.038). However,
cover estimates for non-vegetation and
total vegetation cover were statistically
comparable (p ¼ 0.302 and p ¼ 0.618, re-
spectively). Coefficients of variation were
comparable, indicating a similar variability
for image- and ground based estimates of
cover (Table 3).

Classification to species level

Classification to the species level yielded
mixed results. We were able to classify
dominant shrubs to the species level in
every plot where they occurred, but only
two prominent grass species, black grama

Figure 4. Choice of thresholds (black and white
dots) in relation to range of DN values (vertical
lines) for rule-based classification for the 15
plots. (A) shows the feature brightness used to
separate shadow from non-shadow (Shadow/
non-shadow). (B) shows the feature NDVI used
to separate vegetation from non-vegetation
(Vegetation/non-vegetation). All thresholds
were chosen by visual interpretation. The three
plots in each of the five vegetation communities
(identified below the plot names) are grouped
together (alternating groups of three black and
three white dots). Brightness and NDVI values
are derived from digital numbers (DN).
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Table 3. Results for paired t-tests of differences in percent cover estimates derived from line
point intercept (LPI) and image analysis (DEF) methods for 70 m 6 70 m plots (n¼12 for shrubs,
n¼15 for all others [three plots had no shrubs]). The mean differences, 95 percent confidence
intervals (CI), the means for LPI and DEF, and the coefficients of variation (CV) are shown in
percent.

Mean CV

t-statistic p-value Mean diff. 95% CI DEF LPI DEF LPI

Non-vegetation 71.07 0.302 72.0 75.7–1.7 43.2 45.2 42.0 39.3
Total vegetation 0.51 0.618 0.9 72.7–4.5 55.7 54.8 32.8 32.4
Grass/forb 2.89 0.012 4.5 1.4–7.5 28.3 23.8 73.1 75.5
Shrubs 2.36 0.038 2.9 0.5–5.2 17.1 14.2 57.9 56.2

Figure 5. Scatter plots for estimates of percent cover obtained with the ground-based line point
intercept method (LPI), and from object-based image analysis (DEF) for fifteen 70 m 6 70 m plots.
Non-vegetation consists of bare ground, rocks and litter. Total vegetation includes litter that is
intermixed with vegetation and cannot be detected.
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and tobosa, were adequately represented in
the imagery. Estimates of percent cover
from LPI and image analysis for shrub and
shrub-like species are compared in Table 4.
While there was some variability in the
results, the following general observations
can be made: (1) shrubs had higher
estimates with image analysis, especially
large shrubs such as mesquite. With LPI,
every gap in the shrub canopy is recorded,
while with image analysis, the entire canopy
is generally classified as shrub; (2) small

shrubs, such as snakeweed and some salt-
bush had lower estimates, probably because
some of them were missed due to their size
(shrubs 512 cm 6 12 cm); (3) shrub spe-
cies with percent cover of 1–2 percent based
on LPI were generally not detected with
image analysis, although there were some
exceptions in the grass sites (denoted
with G as first letter of the plot name in
Table 4). The classification of the grassland
plot GIBPE is shown in Figure 6. The
legend shows the hierarchical classification

Table 4. Cover estimates from line point intercept (LPI) and image analysis (DEF) and differences in
percent cover between the methods (Diff. ¼ DEF-LPI) for shrubs and shrub-like species for 12 plots (in
capital letters). The first letter of each plot denotes the vegetation community (mesquite [M], tarbush
[T], creosote [C], grassland [G]).

LPI DEF Diff. LPI DEF Diff.

MNORT TTAYL
Shrubs total 23.20 31.41 þ8.21 Shrubs total 14.64 19.89 þ5.25
Mesquite 18.57 26.60 þ8.03 Tarbush 14.28 19.89 þ5.61
Saltbush 4.27 3.97 70.30 Wolfberry 0.36
Snakeweed 0.36 0.85 þ0.49
MWELL TEAST
Shrubs total 21.43 23.82 þ2.39 Shrubs total 10.71 13.94 þ3.23
Mesquite 15.00 21.65 þ6.65 Tarbush 9.28 13.94 þ4.66
Snakeweed 5.71 0.85 74.86 Wolfberry 1.07
Saltbush 0.36 1.32 þ0.96 Mesquite 0.36
Ephedra 0.36

MRABB TWEST
Shrubs total 20.36 27.23 þ6.87 Shrubs total 12.86 9.34 73.52
Mesquite 11.79 22.96 þ11.17 Tarbush 12.50 9.34 73.16
Saltbush 5.00 2.51 72.49 Wolfberry 0.36
Snakeweed 3.57 1.76 71.81

CSAND GBASN
Shrubs total 23.93 24.29 þ0.36 Shrubs total 3.21 2.58 70.63
Creosote 21.43 24.29 þ2.86 Mesquite 1.07 1.27 þ0.20
Mesquite 2.14 Snakeweed 1.07 0.94 70.13
Ephedra 0.36 Yucca 1.07 0.37 70.70

CGRAV GIBPE
Shrubs total 19.64 19.75 þ0.11 Shrubs total 9.29 8.29 71.00
Creosote 16.07 17.87 þ1.80 Mesquite 3.57 4.94 þ1.37
Mesquite 1.79 1.88 þ0.09 Snakeweed 4.29 2.59 71.70
Sumac 1.07 Yucca 0.36 0.76 þ0.40
Tarbush 0.71 Ephedra 1.07

CCALI GSUMM
Shrubs total 21.43 20.11 71.32 Shrubs total 2.14 2.82 þ0.68
Creosote 21.43 20.11 71.32 Creosote 1.42 2.16 þ0.74

Yucca 0.36 0.66 þ0.30
Ephedra 0.36
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approach, which allows for collapsing the
classes to the structure group level or to the
bare/vegetation level.

4. Discussion and conclusions

In this study, we compared image and
ground-based measures of percent cover
and assessed the viability and efficiency of
applying the image-based method to sites
with a wide range in vegetation composition
and structure. The OBIA approach per-
formed well using sub-decimetre resolution
imagery. Generalizing groups of pixels into
segments is nearly essential for meaningful
classification of this imagery due to the high
degree of spectral variability within a single
shrub canopy or patch of vegetation. High
correlations were obtained with ground-
based measurements for total vegetation,
shrubs, grasses and non-vegetated surfaces.
At the species level, grasses were difficult to
delineate and large shrub species exhibited
the greatest disparity between estimated
cover for field- and image-based methods.
Image estimates were consistently higher
than LPI field estimates presumably due to
differences in field perception of gap frac-
tion and nadir depictions of vegetation on
which the image analysis was based.

While the radiometric and spatial reso-
lution of the DMC digital imagery was
high, difficulties were still encountered in
mapping certain species. Grasses were
especially difficult to separate by species
for several reasons. First, grass species such
as dropseed and threeawn are bunchgrasses
and individual plants or patches are difficult
to identify due to their small size. Second,
many grass species grow in mixed stands
which are not spectrally distinct. Third, in
this semi-arid environment, many patches
contain both senescent and photosynthetic
(i.e., green) components of the same species.
Because we did not have spatially explicit
training sites to delineate patches by spe-
cies, we had to rely on information that
could be extracted visually from the ima-
gery; only black grama and tobosa grasses
exhibited unique spectral and textural
properties that permitted identification by
species.

Due to the relatively recent introduction
of digital aerial mapping cameras, very few
studies are available for comparison, and
those available tend to employ coarser
resolution imagery. Rosso et al. (2008)
compared four digital airborne sensors for
land surface mapping with imagery ranging
from 10 to 40 cm spatial resolution, but

Figure 6. DMC colour-infrared image (left) and classification (right) of the grassland plot GIBPE.
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their objective was to evaluate and compare
the performance of the sensors for land
cover mapping, not to evaluate transfer-
ability of non-traditional image classifica-
tion algorithms. Stow et al. (2008)
quantified change in a 1 km2 shrubland
habitat preserve in southern California
over 8 years using 1 m resolution digital
aerial imagery. Our objective was to develop
and evaluate a semi-automated image clas-
sification protocol with sub-decimetre reso-
lution digital imagery to permit analysis of
multiple sites across a range of land cover
conditions.

This research determined that the appli-
cation of a well-developed process tree
iteratively to subsequent images had several
advantages. Those included faster proces-
sing of multiple images, ease of comparison
of results from different sites, and the ability
to expand or collapse the hierarchical
classification scheme for management deci-
sions at different levels of detail (i.e.
vegetation/non-vegetation, structure group
or species level). For example, an estimate
of the amount of non-vegetation at the plot
level is related to bare ground, which is an
important indicator of rangeland health
because of the potential for wind and water
erosion in areas of exposed soil (Pellant
et al. 2005).

A potential disadvantage of transferring
an image analysis approach to multiple
images is that the procedure may not
perform consistently across all vegetation
communities. For example, the separation
of vegetation and non-vegetation using
NDVI may not be suitable if the proportion
of senescent vegetation is high. A different
segmentation scale may also be necessary
for certain sites. Because all vegetation
communities in this study were located in
the Chihuahuan desert consisting of differ-
ent arrangements of similar species with
comparable spectral properties, the segmen-
tation and workflow parameters were broad
enough to apply to all images. With this

high-resolution imagery, the appropriate
segmentation scale was relatively easy to
identify visually. If this technique was
applied to sites in other eco-regions, we
anticipate that different process trees for
each of these sites would probably have to
be implemented.

A prime motivation for this study was
to develop an approach for the NRI for
image-based assessments of plots over
spatially extensive and often remote areas
that may not be visited in the field. There-
fore, we had to rely on visual interpretation
of structure groups/species in the plot.
While the species list from LPI was avail-
able to us for image analysis, LPI data are
not designed for validating remotely sensed
imagery but represent a repeatable method
to quantify changes in land cover condi-
tions. Derivation of image sample objects
for object-based classification is not possi-
ble using LPI data that correspond to a
different scale of observation. LPI data
represent very fine-scale measurements;
LPI measurements are derived by dropping
a pin at specified intervals along a line
transect to record multiple levels of vegeta-
tion and surface components that the pin
hits. If the pin hits a single blade of grass
over a bare patch, it is recorded as grass. In
OBIA, the same location would in all
likelihood be classified as a bare patch.
This discrepancy highlights existing chal-
lenges relating LPI information to remotely
sensed imagery.

We believe additional ground measure-
ments are needed and suggest the collec-
tion of spatially explicit training samples,
consisting of polygons depicting specific
species or vegetation patches. These poly-
gons are more suitable to OBIA than
point-level field measurements (Laliberte
et al. 2007). The issue of identifying
appropriate image samples is confounded
by the challenge of co-registering spatially
explicit field data to sub-decimetre imagery
with sufficient location accuracy. Even
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differentially corrected GPS data have sub-
metre levels of error, which is relatively
large when those data are overlaid on 4 cm
resolution imagery. However, given the
assumed errors, it is easier to determine
whether a polygon is off with regard to the
image than determining the location of a
point. It is planned to incorporate GPS-
based training samples in on-going and
future mapping studies.

This investigation of threshold cutoff
values across images and vegetation com-
munities proved informative for this study
and will be tested further with nationwide
imagery. Because these images were rather
small in spatial extent (70 m 6 70 m), it
was relatively easy to assess the suitability
of a threshold value by roaming over the
entire image of the plot. For an image with
a larger extent this task would be more
difficult. Therefore, we believe that the
broad guidelines for threshold cutoff
values for certain vegetation communities
(Figure 4) could be applied to larger images.
The high radiometric resolution of digital
aerial imagery makes such guidelines useful,
because there is greater difficulty in deter-
mining a threshold value with 12- or 16-bit
digital imagery than with 8-bit film-based
digital aerial photography.

It has been demostrated that this OBIA
technique represents a viable approach for
quantifying vegetation cover in different
vegetation communities in the Northern
Chihuahuan desert. While the level of detail
is less than that of ground-based measure-
ments, an image analysis approach results
in complete classification of the plot,
providing baseline information for subse-
quent studies of land cover change. Due to
the transferability of the process tree to
additional images or sites, the image analy-
sis approach is more efficient than ground-
based measures, especially at the structure
group level. While initial algorithm devel-
opment requires time, subsequent applica-
tions of the process tree are relatively fast.

In a previous study, we determined that the
breakeven point in time allocated to obtain-
ing ground-based versus image-based mea-
sures was eight plots (Laliberte et al., in
press). Proximity of plots and time spent on
orthorectification of imagery was similar in
this study, therefore the time estimates are
comparable. The cost of imagery should not
be included in a comparison, because
imagery is being acquired already for NRI
applications.

The ability to classify multiple images
efficiently offers the potential to increase the
precision of national level inventories by
increasing sample locations and to reduce
costs by requiring fewer personnel to obtain
ground measurements. We are currently
implementing the same OBIA approach for
a nationwide study in an even broader
range of vegetation communities in grazing
lands, and are developing additional tools
and techniques for potential integration of
these techniques into the NIR CEAP
Grazing Lands.
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