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A significant challenge in ecological studies has been defining scales of observation that correspond to the
relevant ecological scales for organisms or processes of interest. Remote sensing has become commonplace
in ecological studies and management, but the default resolution of imagery often used in studies is an
arbitrary scale of observation. Segmentation of images into objects has been proposed as an alternative
method for scaling remotely-sensed data into units having ecological meaning. However, to date, the
selection of image object sets to represent landscape patterns has been largely subjective. Changes in
observation scale affect the variance and spatial dependence of measured variables, and may be useful in
determining which levels of image segmentation are most appropriate for a given purpose. We used
observations of percent bare-ground cover from 346 field sites in a semi-arid shrub-steppe ecosystem of
southern Idaho to look at the changes in spatial dependence of regression predictions and residuals for 10
different levels of image segmentation. We found that the segmentation level whose regression predictions
had spatial dependence that most closely matched the spatial dependence of the field samples also had the
strongest predicted-to-observed correlations. This suggested that for percent bare-ground cover in our study
area an appropriate scale could be defined. With the incorporation of a geostatistical interpolator to predict
the value of regression residuals at unsampled locations, however, we achieved consistently strong
correlations across many segmentation levels. This suggests that if spatial dependence in percent bare
ground is accounted for, a range of appropriate scales could be defined. Because the best analysis scale may
vary for different ecosystem attributes and many inquiries consider more than one attribute, methods that
can perform well across a range of scales and perhaps not at a single, ideal scale are important. More work is
needed to develop methods that consider a wider range of ways to segment images into different scales and
select sets of scales that perform best for answering specific management questions. The robustness of
ecological landscape analyses will increase as methods are devised that remove the subjectivity with which
observational scales are defined and selected.
ental Range, P.O. Box 80003,
88003, USA. Tel.: +1 575 646

B.V.
Published by Elsevier B.V.
1. Introduction

Scale is widely recognized as a critical attribute of ecological
inquiries that not only defines what patterns and processes can be
measured, but also influences observable relationships and governs
the inferences that can be made from a set of data (Allen and Starr,
1982; O'Neill et al., 1986b, 1989; Wiens, 1989). In order for data to be
useful for management decision-making, it must be collected and
analyzed at spatial and temporal scales relevant to processes of
interest to managers (O'Neill et al., 1986a) because different patterns
can emerge at different scales for almost any ecosystem (Wiens,
1989).

Scale is a characteristic of a set of observations, and the choice of
scale constrains the patterns and processes that are observable
(Burnett and Blaschke, 2003). In general terms, scale refers to the
grain and extent of observations made in a study area where grain
refers to the finest level of spatial and temporal detail observable and
extent refers to the maximum area under consideration (Turner et al.,
1989). Grain and extent define the upper and lower limits of inference
because elements of patterns below the grain cannot be detected and
inferences beyond the extent cannot be made without assuming
scale-independent uniformity of patterns and processes (Wiens,
1989). Information at scales finer than the observation grain is
filtered out and treated as noise, and information at scales larger than
the observation extent is also filtered out and becomes context for
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the information retained (Wu, 1999; Burnett and Blaschke, 2003).
Thus, observations made with a set grain and extent (i.e., at a specific
scale) have the effect of smoothing the dataset to give an interpretable
message or signal (Allen and Starr, 1982; Burnett and Blaschke, 2003).

The concept of scale also has ecological interpretations where
grain and extent can be defined in terms of how organisms or
ecological processes respond to their environment. In this context,
grain is the smallest area to which an organism responds to
heterogeneity in its environment (Addicott et al., 1987; Kotlair and
Wiens, 1990) while extent refers to the coarsest set of environmental
patterns to which organisms or ecological processes react (Farina,
1998). From an ecological perspective, scale is relative to an organism
or process and is not an inherent property of the environment (Wiens
and Milne, 1989). Because natural landscapes are a complex product
of many different processes and environmental factors (Peters et al.,
2006) that are difficult to characterize when viewed from arbitrarily-
selected spatial and temporal scales (Levin, 1992; Burnett and
Blaschke, 2003), a significant challenge in ecological studies has
been defining scales of observation that match the ecological scales
affecting the organisms or processes of interest.

The use of remotely-sensed data from satellite imagery or aerial
photography has become commonplace in ecological studies and
management. Most studies employing remotely-sensed data have used
the de facto scale determined by the image's pixel ground dimensions
(i.e., resolution). In the context of the ecological definition of scale
discussed above, the default resolution of imagery is an arbitrary scale of
observation that may, or may not, correspond to the scale of ecological
patterns andprocesses. Three potential problemsmay arisewhen, rather
than basing scale selection on ecological processes or organisms of
interest, scales are selected in an arbitrary manner or for convenience
(Addicott et al., 1987): 1) it becomes difficult to compare results among
studies because they each utilize units representing different scales, 2) a
given observational unit may not correspond to an ecological patch
appropriate for the variable of interest which could lead tomisinterpret-
ing relationships between events (see alsoWiens, 1989), and 3) because
different processes in the same system may occur at different scales, it
can be difficult to know the ones to which observed patterns are related.

Scales different from the image resolution can be selected, either
from convenience or through an analysis of scaling relationships, by
identification of and estimation of sub-pixel features (Fisher, 1997;
Foody, 2004) or more commonly by aggregating pixels into regularly
shaped units (i.e., grids of square cells). Karl andMaurer (2010) found
that correlations between images aggregated by regular, square grid
cells and field measurements of semi-arid shrub-steppe ecosystems
were unpredictable as the size of the cells increased. Also, as pixels
(i.e., grain) become large relative to the extent, analysis results can be
influenced by small shifts in the reference grid that defines the pixel
boundaries (Jelinski and Wu, 1996).

Segmentation of images into polygons has been proposed as an
alternative to pixel-based methods for scaling remotely-sensed data
(Burnett and Blaschke, 2003; Wu et al., 2006). Image segmentation
works by grouping similar, neighbouring pixels into discrete regions
called objects in such amanner that the pixelswithin anobject aremore
alike than they are to other pixels around the object (Burnett and
Blaschke, 2003). Thus, segmentation is a rescaling of the original image
datawith the intent to produce a set of objects thatmatch conditions on
the ground (Woodcock and Harward, 1992). Taken together, a set of
image objects that completely tessellate an area into discrete units
constitutes one possible observational scale. There are many different
methods for aggregating pixels into image objects (see Neubert et al.,
2006), and within eachmethod are parameters for controlling the scale
that will result. Most significantly, parameters affecting the degree to
which information that is filtered from the image—which in turn affects
characteristics such as the average size of output objects—have
significant effects on how the image information relates to ground
observations andwhat the resulting objects can be used for. Up to some
segmentation level, the information that is lost is expected to be noise
that is irrelevant to the analysis objectives. Past some threshold,
important information is lost and the accuracy of analysis results may
decline (Addink et al., 2007).

The choice of parameters used to aggregate pixels into objects,
however, is subjective (Wang et al., 2004) and usually involves a trial
and error process for deciding which set of objects best represents
what the person doing the analysis interprets as meaningful patches
on the ground (Burnett and Blaschke, 2003; Feitosa et al., 2006;
Navulur, 2007). However, ecologists may be more likely to select
intuitive, anthropocentric scales for studying systems rather than the
ecological scales at which processes are actually happening (Wiens,
1989).

The optimal scale of segmentation is defined as the set of objects
that results in the lowest prediction error of modelled parameters.
Feitosa et al. (2006) used a genetic algorithm to iteratively find the
combination of segmentation parameters yielding image objects that
most closely matched pre-defined patches. Wang et al. (2004) used a
multivariate distancemeasure, Battacharya distance, to determine the
segmentation level that gave a mangrove forest classification that
most closely matched training data. Addink et al. (2007), using a
regression technique, found optimal levels of segmentation for
estimating leaf-area index and biomass, and showed that segmenta-
tion levels that produced the best results were not the same for each
variable.

Changes in scale can also affect the degree of spatial autocorre-
lation between observations (Cullinan et al., 1997; Fortin and Dale,
2005; Garrigues et al., 2006), but little research has been done on how
spatial dependence (i.e., how autocorrelation changes as a function of
distance between observations) changes with increasing levels of
image segmentation. Geostatistical techniques like semivariance
analysis may be useful for understanding how segmentation changes
spatial dependence of remotely-sensed data and identifying optimal
scales of image segmentation for a given task.

The objective of this studywas to determine if, as observational scale
increased through successively coarser image segmentation, changes in
spatial dependence could be used to identify segmentation levels that
most closely match field measurements and could be considered
relevant scales formapping ecosystem features. As an example, we used
observations and predictions of percent bare-ground cover, an
important attribute for assessing the condition of rangelands (National
Research Council, 1994; Pyke et al., 2003), in a semi-arid shrub-steppe
ecosystem of southern Idaho. Through comparison of linear regression
models and residuals to semivariance calculated from field samples at
successively coarser levels of image segmentation, we determined
which sets of image objects best represent observed patterns of bare-
ground cover.Wediscuss the benefits and limitations of our approach to
defining scales through image segmentation and the implications of
scale selection for providing data for land-management planning.

2. Study area

For this study we considered the Bureau of Land Management's
(BLM) 97,308-ha Wildhorse grazing allotment in southern Idaho (Fig. 1,
43.028°N, 113.864°W). The majority of the study area is in public
ownershipwith the Bureau of LandManagement (BLM) being the largest
single land steward—managing approximately 93,317 ha (95.8%) of the
study area. Approximately 1305 ha (1.3%) of the study area is in private
ownership, and 2843 ha (2.9%) managed by the state of Idaho. The
dominant land use in the study area is cattle and sheep grazing.

The defining features of the Wildhorse landscape are expanses of
unvegetated black rock created from a series of volcanic eruptions
that blanketed this area with basaltic lava flows 15,000 to 2000 years
ago (Owen, 2008). Soils in the study area are mostly aridisols with
low organic matter and subsurface accumulations of either calcium
carbonate or clay (Soil Survey Staff, 2006a,b). The terrain in the



Fig. 1. Location and ownership of the Bureau of Land Management's Wildhorse allotment in southern Idaho.
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Wildhorse allotment is flat to gently rolling with elevations ranging
from 1272 m to 1557 m. Average annual precipitation ranges from
24.9 cm to 32.6 cm based on the PRISM map of average annual
precipitation from 1971 to 2000 (PRISM Group, Oregon State
University, http://www.prismclimate.org, created June 16, 2006).

Vegetation communities consist of a mosaic of mountain big sage-
brush (Artemisia tridentataNutt. ssp. vaseyana (Rydb.) Beetle), three-tip
sage (Artemisia tripartita Rydb.), and Basin big sagebrush (Artemisia
tridentata Nutt. ssp. tridentata) types. Native understory composition is
principally bunchgrasses: bluebunch wheatgrass (Pseudoroegneria
spicata (Pursh) A. Löve), Idaho fescue (Festuca idahoensis Elmer), and
bottlebrush squirreltail (Elymus elymoides (Raf.) Swezey). Cheatgrass
(Bromus tectorum L.) abundance is variable within the study area,
reaching high densities in areas that have frequently burned and sites
disturbed by intensive livestockuse (e.g., nearwatering troughs, corrals,
and loading areas).

This study area has seen an active fire history with 18 wildfires
within the last 20 years, and eight of those being greater than 200 ha.
Over the last 20 years, 80% of theWildhorse allotment has burned. The
frequent, large fires in this area have contributed to the spread of
cheatgrass and other invasive species in the allotment.

3. Methods

3.1. Field data collection

We used data collected by the Shoshone District BLM (G. Mann and
J. Russel, unpublisheddata) from468field observations of percent cover
acquired between June 21, 2006 and August 6, 2008. Percent cover of
vegetation and soil surfaces was estimated for each site from a single
15.15 m transect using the line-point intercept method of Keane et al.
(2005). The starting location of each transect was recorded with a GPS
and differentially corrected.

We excluded 122 of thefield observations due tomissing data orfires
that occurred between when the field measurements were taken and
satellite imagerywasacquired. Percentbare-groundcoverwas calculated
on the remaining346 sites. For thepurposesof rangelandassessment and
monitoring, bare ground is considered land surface not covered by
vegetation, rock, or litter (Bedell, 1998; Pellant et al., 2005). Percent bare-
ground cover was calculated as the proportion of the transect points
wherenoplant canopywas intercepted and the soil surfacewas recorded
as exposed soil (Herrick et al., 2005). Because regression analyses and
krigingmethods are sensitive todatanormality (Cressie, 1993;Bailey and
Gatrell, 1995), we used a square-root transformation to achieve
normality of the percent bare-ground measurements.

3.2. Image acquisition and pre-processing

We acquired a Landsat Thematic Mapper (TM) 5 scene from July
11, 2008. We ortho-rectified and geo-registered it to have a nominal
ground resolution of 30 m using publically-available 1/3 arc-second
digital elevation models and 1-m resolution color aerial photography.
We atmospherically corrected the image using Chavez's (1996) dark-
object-subtraction method and converted the 8-bit image values to
estimated at-sensor reflectance. Because image segmentation is
sensitive to correlations between bands (Navulur, 2007), we used
Crists and Kauth's (1986) tasseled-cap transformation to convert the
original six TM bands into four nearly orthogonal bands.

http://www.prismclimate.org
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We additionally calculated a modified soil-adjusted vegetation
index (MSAVI)—an index of vegetation greenness that is designed to
be sensitive to changes in vegetation cover in areas with high amounts
of exposed soil or rock (Qi et al., 1994; Gilabert et al., 2002). The
MSAVI was not used in the segmentation process because it correlates
strongly with several of the tasseled-cap bands, but was used in
subsequent regression analyses because previous research has shown
that vegetation indices correlate well with percent cover of vegetation
and bare ground.

3.3. Image segmentation

All image segmentation was done with Definiens Developer 7.0
(http://www.definiens.com) using the multi-resolution segmentation
algorithm described by Baatz and Schäpe (2000) and Burnett and
Blaschke (2003). Multi-resolution segmentation works by merging
adjacent pixels in the first iteration and objects in later iterations and
evaluating the increase in local heterogeneity. If after merging the local
heterogeneity is below a set threshold, the merged objects are retained,
otherwise themerge is not kept and a different combination of objects is
tried. This process continues until all possible merges below the
threshold aremade. Themulti-resolution segmentationmethod requires
the user to set the threshold value through a unitless scale parameter
(ps). By increasing ps, the acceptable level of pixel heterogeneity within
objects is increased and, on average, segmentation produces larger
objects. It is important to note that multi-resolution segmentation does
not specify a minimum object size and groups of pixels that are very
distinct will be maintained as separate objects while the surrounding
objects increase in size. For our analyses, we varied only ps in multi-
resolution segmentation anduseddefault values for all other parameters.

We segmented the tasseled-cap-transformed image for the Wild-
horse allotment multiple times to create a set of image segmentations
that became progressively coarser in scale. For each successive
segmentation run, we incremented ps by a small amount (Table 1).
The image objects for each segmentation level were attributed with the
mean and standard deviation of the pixels within the object for all the
tasseled-cap bands and the MSAVI and then exported for statistical
analysis. For each segmentation level, the output variables were ass-
essed for normality and transformed as necessary using either square-
root or log transformations.

3.4. Statistical analysis

All statistical analyses were performed in R version 2.4.2 using the
nmle (Pinheiro and Bates, 2000) and gstat (Pebesma, 2004) packages.

To assess the spatial dependence of the field measurements of
percent bare-ground cover, we constructed a semivariogram between
Table 1
Summary information for the ten successively coarser segmentation levels used in this
study.

Segmentation
scale
parameter
(ps)

Number
of
image
objects

Median
area
(ha)

Minimum
area (ha)

Maximum
area (ha)

Variance
of object
means
(between-
object
variance)

Mean
within
object
variance

5 10,452 5.77 0.09 491 0.0159 0.004583
10 2660 21.53 0.63 1401 0.018545 0.005676
15 1185 46.7 0.72 1618 0.021825 0.006299
20 694 74.09 2.07 2344 0.026782 0.006743
25 491 117.24 2.97 2129 0.028742 0.007078
30 351 170.29 3.69 2204 0.032919 0.007329
35 267 228.62 7.20 2219 0.035934 0.007505
40 226 282.25 10.44 7640 0.038275 0.00772
45 186 324.92 10.44 3976 0.039849 0.0079
50 162 393.66 10.44 6230 0.04 0.007997
all pairs of observations following Fortin and Dale (2005). We fit an
omni-directional, spherical semivariogrammodel to the percent bare-
ground variogram using the ordinary least-squares (OLS) regression
method in R's gstat package (Pebesma, 2004). The semivariogram
model was characterized by its nugget (i.e., variability at distances
smaller than the shortest distance between sample points including
measurement error), sill (i.e., total observed variation of the variable),
and the range (i.e., distance at which two observations could be
considered independent) (Fig. 2). The nugget-to-sill ratio (NSR) of a
variogram is a commonly used measure of the proportion of the total
observed variation that cannot be explained by observed spatial
dependence of the variable (Kravchenko, 2003).

We then used a combination of generalized least-squares regression
(GLS; Pinheiro and Bates, 2000) and regression kriging (RK; Hengl et al.,
2004) to predict percent bare-ground cover from the tasseled-cap band
and MSAVI values summarized in the image object polygons at the
different segmentation levels.

The first step for each segmentation level was to select the image
objects that contained one or more field sample locations and extract
them to a new dataset. Coordinate values were also included for
the geometric center of each polygon. When more than one sample
location fell within an image object polygon, the field-measured
percent bare ground for each selected image object was determined
by averaging the measurements of all sites within the polygon. We
used this method to avoid artificially inflating sample sizes of objects
as segmentation levels increased and because it was akin to taking
multiple samples within an object.

The second step at each segmentation level was to use GLS
regression to establish the relationship between thefieldmeasurements
of percent bare ground and the image object values and predict percent
bare-ground cover.We included all 10 image-bandmeasures (i.e., mean
and standard deviation of pixels per object for the four tasseled-cap
bands and MSAVI), and the coordinate values in an initial regression
model. The only interaction termwe consideredwas between the X and
Y coordinate values. Models were created separately for each segmen-
tation level, and we used a backward stepwise procedure to select the
most parsimonious model at each level. We used GLS in order to
incorporate the spatial covariance between samples (Bailey and Gatrell,
1995). Spatial covariance is incorporated into GLS in an iterative fashion
via a semivariogram model found from the residuals of an initial OLS
regressionmodel (Hengl et al., 2004). The regression is then rerunwith
GLS using the semivariogram model to specify covariance of the
samples.

The predictions of the GLS regression model at each segmentation
level were assessed using leave-one-out cross-validation. In this
process, one observation, selected at random, was withheld from the
regression and the predicted value for that location compared to the
observed value. The omitted point was then replaced and another
observation randomly selected. This procedure was repeated 100
times and the results were used to estimate a correlation between
predicted and observed measures of percent cover. We employed this
Fig. 2. Example of a sample (empirical) semivariogram (black points) and the
variogram model (heavy solid line).

http://www.definiens.com


Fig. 3. Empirical semivariogram (dots) and variogram model (line) for percent bare-
ground cover in the Wildhorse allotment from field observations. The nugget-to-sill
ratio for percent bare ground was 0.2474.
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method to have a measure for GLS regression that was comparable to
what was available for RK (below).

We hypothesized that segmentation levels yielding the best GLS
regression results did so because the image objects minimized spatial
dependence between objects. If this were the case, then the
predictions of the GLS model for the sample locations would have a
similar spatial dependence to the fieldmeasurements of percent bare-
ground cover and the residuals of the GLS model would show little
spatial dependence. To test this, we constructed variograms for the
predicted percent bare ground and the residuals of the bare-ground
prediction at each segmentation level and compared them to the
variogram of the field sample locations by way of their NSR and range.

If substantial spatial dependence exists in regression model
residuals, then geostatistical techniques can be employed to improve
the predictions of the model. The RK method was developed as a way
to exploit spatial autocorrelation in datasets to increase the accuracy
of predictions (Odeh and McBratney, 1994; Odeh et al., 1995; Hengl
et al., 2004; Karl and Maurer, 2010). Regression kriging uses GLS
regression to predict a response variable and then uses the
geostatistical technique of simple kriging (Krige, 1966; Goovaerts,
1997; Hengl et al., 2004) to predict the value of the GLS residuals at
unsampled locations. The RK predictor for a variable at an unmea-
sured location, z ̂(s0), is the sum of the GLS regression prediction and
the predicted residual:

ẑðs0Þ = ∑
p

k=0
β̂k⋅qkðs0Þ + ∑

n

i=1
λi⋅eðsiÞ ð1Þ

where the β̂k and qk(s0) are the regression coefficient and the value of
the kth predictor variable at the unknown location, respectively, the λi

are the krigingweights determined from the i known locations using a
variogram model of the GLS-model residuals, and e(si) is the GLS-
model residual value at point i (Hengl et al., 2007). All RK predictions
and cross-validation were accomplished with the gstat package in R
(Pebesma, 2004).

The objective of implementing RK in addition to the GLS modeling
was to determine if added predictive capability could be gained
through explicitly incorporating spatial dependence into the pre-
dictors. At each segmentation level, we used the GLS model and the
residuals variogram model developed above to create RK predictions
of percent bare-ground cover. We assessed the RK predictions using
the same cross-validation procedure described above to derive a
correlation between predicted and observed percent bare-ground
cover. For each segmentation level, we compared the predicted-vs-
observed correlations for the GLS and RK predictions.

4. Results

The empirical variogram constructed for percent bare-ground
showed that much of the observed variability in the field measure-
ments could be explained by distance between observations (Fig. 3).
The variogram model we fit had spatial dependence of bare-ground
cover extending to a range of 14,719 m. The nugget and sill of the
variogram model were 0.0036 and 0.0147, respectively, with the NSR
being 0.2474—meaning that about one-fourth of the observed
variation in percent bare-ground cover could be considered short-
range or within plot variability that could not be explained by the
model of spatial dependence.

Segmentation of the TM image into successively coarser scales
resulted in an exponentially-decreasing number of image objects with
scale (Table 1). As ps increased, the size of the objects also increased.
Within any segmentation level, the distribution of object sizes was not
normal, and the typical area was best characterized by the median
object size (smed). Median object size increased roughly with the
square of ps (smed=0.305⁎ps1.85, R2=0.999). Minimum object area
(smin) also increased with the square of ps (smin=0.0034⁎ps2.11,
R2=0.979) and ranged from a single Landsat pixel at the smallest ps
up to 116 pixels at ps=50. Maximum area increased with scale
parameter until ps=20 where it remained relatively constant. At
ps=40, maximum object area jumped abruptly.

Cross-validated correlations between the GLS regression predic-
tions and the field measurements at different scales ranged from
R=0.5553 to R=0.6677 (Table 2). For the RK predictions, correla-
tions were larger at each segmentation level except ps=50 and
ranged from 0.5792 to 0.7223. There was some evidence that GLS
predictions increased slightly in correlation with field measurements
as segmentation level increased (Fig. 4, slope=0.0013, R2=0.3145,
p-value=0.0917 for test of zero slope). The RK predictions, however,
showed no increasing trend with segmentation level increases
(slope=0.0001, R2=0.0109, p-value=0.7744 for test of zero
slope). Correlations reached local maximums at ps=20 and 35 for
GLS and ps=20, 35, and 45 for RK predictions.

Nugget-to-sill ratios for GLS predictions ranged from 0.1000 to
0.5435 (Table 2). This meant that depending on the segmentation
level, anywhere between 10% and approximately half of the variation
in predicted percent bare-ground cover could not be attributed to
spatial dependence. For the GLS residuals, NSR ranged from 0.000 to
0.5451, and, in general, as NSR for the residuals decreased the GLS-
model correlations increased (R2=0.6927). Ranges of the variogram
models at different segmentation levels were from 15,189 m to
22,041 m for the predicted values and 3035 m to 12,507 m for the
prediction residuals (Table 2). Ranges for the residual variogram
models were always shorter than those of the predicted values and
tended to decrease with increasing segmentation level as more of the
spatial dependence in bare-ground cover was accounted for by
coarser image segmentation. Segmentation levels whose residual
variograms had the longest ranges also tended to have the largest
differences between the GLS regression and RK predictions of bare-
ground cover (R2=0.5502).

At fine levels of segmentation (e.g., ps=5), the form of spatial
dependence for the GLS residuals more closely matched the field
empirical variogram than did the spatial dependence from the GLS
predictions (Fig. 5). As segmentation level increased to ps=20, the
variograms for the predicted values became more similar in form to



Table 2
Variogram characteristics of the predicted and residual values and cross-validation results for the regression analysis at each segmentation level. The empirical variogram for percent
bare ground from the field observations had the following properties: nugget=0.0036, sill=0.0147, nugget-to-sill ratio (NSR)=0.2474, range=14,719 m.

Segmentation
scale parameter
(ps)

Predicted Residual Cross-validated
correlation

Nugget Sill NSR Range (m) Nugget Sill NSR Range (m) GLS RK

5 0.0005 0.0033 0.1551 21,436 0.0049 0.0101 0.4783 12,507 0.5829 0.6779
10 0.0006 0.0028 0.2186 22,041 0.0052 0.0096 0.5451 10,297 0.5553 0.6459
15 0.0007 0.0057 0.1182 16,221 0.0047 0.0087 0.5436 4556 0.6073 0.6450
20 0.0006 0.0042 0.1394 15,189 0.0011 0.0067 0.1666 3213 0.6229 0.6911
25 0.0018 0.0046 0.4003 21,594 0.0023 0.0063 0.3667 5277 0.6200 0.6801
30 0.0012 0.0053 0.2249 18,422 0.0013 0.0053 0.2379 3954 0.6287 0.6568
35 0.0016 0.0061 0.2634 15,985 0.0000 0.0048 0.0000 3035 0.6677 0.6859
40 0.0023 0.0059 0.3850 19,833 0.0008 0.0051 0.1544 4178 0.6650 0.6799
45 0.0050 0.0092 0.5435 18,500 0.0000 0.0041 0.0000 5247 0.6461 0.7223
50 0.0005 0.0050 0.1000 18,500 0.0013 0.0044 0.2938 3461 0.5874 0.5792
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the field-derived variogram, and the spatial dependence of the
regression residuals decreased (i.e., range decreased, Fig. 5). Beyond
ps=20, the variogram range of GLS predictions values increased again
until ps=35 where the predicted-values variogram again closely
matched the field-derived variogram. When measured by the
predicted-values variogram range and NSR, the segmentation levels
that most closely matched the field-derived bare-ground cover
variogram (i.e., ps=20 and 35) corresponded to the locally maximum
correlations for the GLS-only predictions (Fig. 6). This also held for the
RK results with the exception of ps=45 which had the strongest
predicted-to-observed value correlation but whose spatial depen-
dence of prediction values was very different from the field-derived
variogram (Fig. 6).

When the correlation between predicted and observed bare-ground
cover was plotted against the difference in range between the predicted-
values variogram and the field-derived variogram for the GLS regression
predictions there was some evidence for a general decrease in the
strength of the correlation as the difference in ranges increased (Fig. 7,
R2=0.2188, p-value=0.1728 for test of zero slope). For RK, however,
there was no trend in correlation with changes in difference between
the variogram ranges (R2=0.0050, p-value=0.8463 for test of zero
slope). These results are consistent with results above that segmentation
levels producing predictions with spatial dependence matching that
observed in the field yielded the best predictions when geospatial
statistical techniques were not employed. The use of geostatistical
techniques, however, could achieve similar results regardless of scale
because they accounted for spatial dependence not captured by the
regression prediction.
Fig. 4. Changes in correlation with segmentation scale between predictions of percent
bare ground from generalized least-squares (GLS) regression and regression kriging
(RK). The R2 values reported on the graph are for the fit of the points to the trend line.
5. Discussion

When considering only GLS regression, the scales where spatial
dependence of prediction most closely matched that of the field
measurements in terms of NSR and range performed the best. The likely
reason for this lies in the fact that image segmentation is a non-arbitrary
aggregation of pixels into units that have implicitmeaningwith reference
to the landscape being studied (Hay and Marceau, 2004). By grouping
together similar adjacent pixels into objects in a manner that minimizes
variance within each object (Baatz and Schäpe, 2000; Burnett and
Blaschke, 2003), image segmentation preserves the variance between the
objects.When the variance between objects ismaximized, the objects are
better able to model the large-scale variation in the observations. Hence
there is less unexplained variation in the residuals. Scales that match the
field variogram perform better because the objects at that scale are
defined in such a way that the variance between the objects is similar to
the variance of the fieldmeasurements not only inmagnitude, but also in
covariance between samples. By contrast, aggregation of pixels by regular
grids of arbitrary shapes tends to decrease variance as scale coarsens
(Wiens, 1989). This not only obscures the spatial dependence of a variable
but also decreases the chance of defining a set of arbitrary units with
similar variance as the field measurements.

Aggregating spatial data intonon-overlapping areal units can change
the patterns present in the original set of observations—a phenomenon
known as the modifiable areal unit problem (MAUP, Openshaw and
Taylor, 1981; Oppenshaw, 1984; Dark and Bram, 2007). Both the
number of units used to tessellate a landscape and the configuration of
those units have been demonstrated to affect the magnitude and the
variance spatial information (Dark and Bram, 2007, see also Svancara
et al., 2002).Our results suggest that another possible effect of theMAUP
is changes in spatial dependence of landscape patterns. Burnett and
Blaschke (2003) suggested that while image segmentation does not
solve the MAUP, it can minimize its effects because data are aggregated
with respect to patterns present in the original image. Our results
support this claim, and offer an additional technique for evaluating (and
potentially minimizing) MAUP effects for a specific objective, namely
the comparison of the spatial dependence of segmentation-based
predictions to that of the original field measurements.

The results from our GLS regressions support Addink et al.'s (2007)
observation that a specific, most appropriate scale can be defined with
regard to a particular ecosystem attribute. Addink et al. also demon-
strated that the most appropriate scale may not be the same for all
variables. However,many inquiries involvemore than a single attribute,
and using regression-based techniques alone, it would be important to
discover for each variable being considered the scale thatwould provide
the most accurate results. But our results also demonstrated that good
predictions were possible across a range of scales when the spatial
autocorrelation between objects was accounted for (i.e., in the case of
bare-ground cover, RK produced strong correlations over most scales



Fig. 5. Empirical semivariograms for percent bare-ground predictions and residuals from the generalized least-squares (GLS) regression models at four different levels of image
segmentation. Semivariograms for predicted values became more similar to the field-derived spatial dependence up to segmentation level (ps) of 20.
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considered). This finding is important because it allows a single scale to
be used to effectively consider the distribution of multiple attributes.
Our results supportWiens (1989); see alsoWuand Li. (2006) concept of
scaling domains (i.e., ranges of scales within which the relationship
between variance and scale is consistent due to a similar set of un-
derlying processes that control landscape patterns). Karl and Maurer
(2010) found that scaling through image segmentation was a better
method than square pixel-aggregation techniques for characterizing
scaling domains and thresholds from remotely-sensed data and field
observations.

For making RK predictions, the scales whose GLS-residual semivar-
iograms had low NSR and long ranges showed the largest gain in
correlation to field observations over GLS. This suggested that the
potential to improve overall predictions by predicting residual values at
unsampled locations could be assessed by considering the NSR and
range of a regression-residuals variogram. Low NSR and long ranges
usually indicate that higher accuracies can be achieved in making
Fig. 6. Plot of variogram range versus nugget-to-sill ratio for the field measurements of
bare-ground cover and generalized least-squares regression predictions for the ten
segmentation levels considered. Segmentation levels closest to the field-observation
variogram parameters had the strongest correlation between predicted and observed
values for percent bare ground.
predictions to unsampled locations (Kravchenko, 2003). Using kriging
and inverse-distance weighting (another spatial interpolator) on soil
properties, Kravchenko (2003) found that variables with strong spatial
structure could be mapped more accurately than those that had weak
spatial structure regardless of the variance of the soil property.

The strong correlation between the RK prediction and field-
measured bare-ground cover at ps=45 did not follow the patterns
observed for RK at other scales. The likely reason for this result has to
do with how the Landsat image was segmented. First, we used the
original Landsat pixels to create image objects at each scale rather
than deriving coarser scales through merging of objects in the next
finest scale. This was because merging objects at one scale to produce
a coarser scale enforces a patch hierarchy on the study area that may
not be appropriate, and segmentation that does not enforce strict
hierarchies can show ephemeral objects that appear at one scale
and are later replaced by different sets of objects (Hay et al., 2003).
Segmentation up to ps=40 grouped pixels similarly at each scale,
steadily produced a set of image objects that gradually grew larger by,
Fig. 7. Correlation between predicted and observed percent bare-ground cover for 10
segmentation levels plotted against the difference between the range of the variogram
model of the predictions and the range of the variogram model derived from the field
observations. The R2 values reported on the graph are forfit of the points to the trend lines.
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in effect, dissolving boundaries between adjacent objects. At ps=45,
while most of the small objects had the same boundaries as at finer
scales, the largest image objects had different boundaries and
configurations (i.e., the largest objects at ps=45 were smaller and
simpler than at ps=40). This was evident in Table 1 where the
maximum object size for ps=45 wasmuch smaller than for ps=35 or
40. Because this event happened at one of our coarsest scales, and
because the number of image objects at scales coarser than ps=50
gave too few objects for reliable regression or variogram estimates,
we could not tell if the strong correlation at ps=45 was a unique
event or signified a scaling transition. Owing to the fact that the jump
in correlation appeared to have come from a reconfiguration of the
object boundaries, the strong correlation at ps=45 suggests that
other ways of combining pixels into meaningful objects (i.e., by
exploring other parameter options in addition to ps) may provide
better results than what we reported here. Feitosa et al. (2006) used a
genetic algorithm to vary three multi-resolution segmentation
parameters to find the combination that best matched pre-defined
patches—a similar approach could be adapted to identifying scales
that maximize regression-based prediction accuracy.

The success of the technique we have outlined in this paper for
identifying appropriate levels of image segmentation for making
predictions of ecosystem attributes depends on two factors. First,
there must be enough spatial dependence in the attribute of interest
to detect and use in conjunction with available remote-sensing data.
Percent bare-ground cover had a well-defined spatial dependence in
the Wildhorse allotment, making it a good candidate for this study.
Precision of the field measurements is an important consideration
when assessing spatial dependence because imprecise measurements
can inflate the variogram nugget (Webster and Oliver, 2007) and
decrease the observed spatial dependence. Second, enough field
samples must be collected to accurately characterize the spatial
dependence that is present, and the samples must be collected in the
right manner. Webster and Oliver (1991) found through simulations
that variograms created using fewer than 50 samples did a poor job of
estimating actual spatial dependence. They recommended at least 100
samples to construct a reliable variogram. In addition, the distribution
of the sample locations is important. If samples are taken on a regular
grid, the shortest lag distance possible will be the grid spacing and it
will be impossible to evaluate short-range spatial dependence if
samples are spaced far apart. One strategy when selecting sample
locations for use in geostatistics is the use of multi-level or nested
sampling (Webster and Oliver, 2007) to achieve a variety of distances
between samples.

6. Conclusion

The fact that the ability to predict ecosystem attributes from
remotely-sensed data is closely tied to the scale of analysis is not new.
It is a product of the well-known relationship betweenmeasurements
of an attribute's variance and the scale of observation that occurs
because the attribute is non-randomly distributed across a landscape
(Wiens, 1989; Horne and Schneider, 1995; Fuhlendorf and Smeins,
1999; Wu et al., 2006). The contribution of our results is that the
spatial dependence of predictions also changes with scale and this
information can be used to select specific scales that maximize
predictive ability. However, our results also support the idea that
methodswhich consider the spatial variance of an ecosystem variable,
make accurate predictions possible over a range of appropriate scales
and make the need to identify a single, best scale less critical.

The process of collapsing information on landscape patterns into
discrete units is an attempt to reduce the complexity of ecological
systems so that the relationships between patterns and processes can
be understood (Burnett and Blaschke, 2003). Scaling theory holds that
there may be many appropriate ways for aggregating landscape data
depending on the objective, and in our results we found evidence of
this. Image segmentation shows much promise for scaling image data
for ecological analyses, but more work is needed to develop methods
that consider a wide range of different ways to segment images into
coarser scales and select sets of scales that perform best for answering
specific management questions. The robustness of ecological analysis
of landscapes will increase as methods are developed to remove the
subjectivity with which these discrete units are drawn.
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