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In this study we show that multiangle remote sensing is useful for increasing the

accuracy of vegetation community type mapping in desert regions. Using images

from the National Aeronautics and Space Administration (NASA) Multiangle

Imaging Spectroradiometer (MISR), we compared roles played by Bidirectional

Reflectance Distribution Function (BRDF) model parameters with those played

by topographic parameters in improving vegetation community type classifica-

tions for the Jornada Experimental Range and the Sevilleta National Wildlife

Refuge in New Mexico, USA. The BRDF models used were the Rahman–Pinty–

Verstraete (RPV) model and the RossThin-LiSparseReciprocal (RTnLS) model.

MISR nadir multispectral reflectance was considered as baseline because nadir

observation is the most basic remote sensing observation. The BRDF model

parameters and the topographic parameters were considered as additional data.

The BRDF model parameters were obtained by inversion of the RPV model and

the RTnLS model against the MISR multiangle reflectance data. The results of 32

classification experiments show that the BRDF model parameters are useful for

vegetation mapping; they can be used to raise classification accuracies by

providing information that is not available in the spectral-nadir domain, or from

ancillary topographic parameters. This study suggests that the Moderate

Resolution Imaging Spectroradiometer (MODIS) and MISR BRDF model

parameter data products have great potential to be used as additional information

for vegetation mapping.

1. Introduction

Vegetation mapping in a semi-arid region is a classification problem in which the

classes are the recognized plant community types (Kremer and Running 1993). A

plant community type may be defined as an aggregation of plant types that

demonstrate mutual inter-relationships between species and between species and the
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environment. Usually, community type differentiation implies a larger number of

classes that differ more subtly than the broader categories assigned to regional or

global classification schemes (Chopping et al. 2002). Mapping semi-arid vegetation

types at the community level is challenging (Loveland et al. 2000, Langley et al. 2001,

Chopping et al. 2002, Akbari et al. 2006). The ability of the Multiangle Imaging

Spectroradiometer (MISR) to obtain quasi-simultaneous multispectral measure-

ments at nine view angles allowed information to be collected for quantifying canopy

structure and photosynthetic activity, and also for mapping vegetation (Diner et al.

1999, 2005, Gobron et al. 2000, Zhang et al. 2002, Nolin 2004). Multiple view angle

observations have also proved to be useful for improving classification accuracy of

land cover classes (Kimes et al. 1991, Abuelgasim et al. 1996, Sandmeier and Deering

1999, Chopping et al. 2002, Xavier and Galvão 2005, Armston et al. 2007,

Liesenberg et al. 2007, Su et al. 2007a,b).

All surfaces, both natural and man-made, show some degree of spectral reflectance

anisotropy when illuminated by sunlight. The anisotropic behaviour of surface

reflectance is described by the Bidirectional Reflectance Distribution Function

(BRDF). BRDF shapes of vegetated surfaces are largely determined by density,

geometry and the spatial distribution of crowns at the scene level of a sensor’s footprint

(Li and Strahler 1992). Structural characteristics at the canopy level, such as the leaf area

index, leaf angle distribution and foliage clumping, also play a major role (Ross 1981,

Myneni and Asrar 1993, Chen and Cihlar 1995). BRDF models link spectral properties

of components and the structure of canopy–soil complexes in a remote sensing pixel

with sensor-measured radiance. A number of BRDF models have been proposed in the

literature (Asner 2000, Liang and Strahler 2000), ranging from those with only two or

three parameters (e.g. Verstraete et al. 1990, Wanner et al. 1995, Martonchik et al. 2002)

to those with 10 or more parameters (e.g. Li and Strahler 1992, Myneni and Asrar 1993).

The BRDF model parameters retrieved by inversion of the BRDF models against

multiple view angle observations quantify intrinsic surface properties and hence are

suited for applications requiring characterization of the directional anisotropy of the

Earth’s surface reflectance. Simple models containing two or three parameters are the

most appropriate for this research because the information content of the available data

precludes the use of models with large numbers of parameters. The repeat cycle of the

MISR is 16 days. Vegetated surfaces could change significantly during the repeat cycle.

Thus, a single swath of the MISR is the most consistent data source from which to

obtain BRDF model parameters by inverting the BRDF models against moderate

resolution multiangle reflectance data. Each swath of the MISR provides reflectance in

nine directions, assuming no obstructions by clouds or topographic features. Although

the reflectance in the nine directions are not enough to invert a complicated BRDF

model containing 10 or more parameters, they are sufficient to invert a simple BRDF

model that contains two or three parameters. This research used the modified Rahman–

Pinty–Verstraete (RPV) model (Martonchik et al. 2002) and a linear semi-empirical

kernel-driven model (Wanner et al. 1995) known as the RossThin-LiSparseReciprocal

(RTnLS) model. The RPV model is a pure empirical model with three independent

parameters. The RTnLS model characterizes the land surface reflectance as a sum of

three kernels representing basic scattering types: isotropic scattering, radiative transfer-

type volumetric scattering and geometric-optical surface scattering. The semi-empirical

RTnLS model also has independent parameters. Thus, a single swath of the MISR can

acquire sufficient multiple view angle observations to invert the two BRDF models.

This paper uses a modified version of the Algorithm for Moderate Resolution Imaging

3464 L. Su et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
e
x
a
s
 
A
&
M
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
4
:
3
8
 
9
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



Spectroradiometer (MODIS) Bidirectional Reflectance Anisotropies of the Land

Surface (AMBRALS; Lucht et al. 2000), version 2.4, to adjust the RTnLS model against

the MISR multiangle data sets.

As one of the additional features used by the classification algorithms,

topographic parameters are widely used in remote sensing (Strahler et al. 1978,

Jensen 2005, Wilkinson 2005). For example, a dataset might consist of several

multispectral bands and several additional features (e.g. percentage slope and aspect)

derived from a digital elevation model (DEM). The entire dataset is acted on by the

classification algorithms.

A primary objective of this research was to investigate the utility of topographic

parameters and BRDF model parameters for vegetation mapping in desert regions.

The Jornada Experimental Range and the Sevilleta National Wildlife Refuge in New

Mexico were selected as study areas because they have a long history of research and

experimentation, making them unique locations to study the effects of climate

change on the interface between desert grassland and desert shrub ecosystems and to

test different remote sensing techniques and systems for monitoring and detecting

these changes (Havstad et al. 2000). Currently, the RTnLS BRDF model parameters

are routinely provided by the MODIS BRDF/Albedo data product (Schaaf et al.

2002), and the RPV BRDF model parameters are routinely provided by the MISR

Aerosol/Surface data product (Diner et al. 1998). If BRDF model parameters are

able to provide useful information in the same way as topographic parameters, but

are not highly correlated to the topographic information, it should be possible to

realize an increase in classification accuracy.

To gain knowledge of how classification algorithms contribute to increasing

accuracy, two classifiers, the maximum likelihood classification (MLC) and the

support vector machine (SVM), were used in this research. The MLC and SVM use

different mathematical bases, and they have different requirements on training data. As

a standard classification method in remote sensing, the MLC is based on the Gaussian

model for the distribution of pixels from each class. Thus, data samples for the training

MLC should be representative of the classes in order to derive appropriate training

statistics on which to base the classification (Campbell 2003). The SVM (Vapnik 1995)

classifier, however, depends on data samples that decide the hyperplane separating two

classes, called support vectors. Such data samples may poorly describe the typical

spectral responses of the classes, which is the requirement for the MLC. In this regard,

when additional data are added to a prior dataset, if both the MLC and the SVM obtain

increased accuracy, it is a logical outcome that the additional data do contribute to the

increase in accuracy. In this research, nadir multispectral reflectance was considered to

be the fundamental dataset. The BRDF model parameters, topographic parameters

derived from a DEM and their combinations were added incrementally to this

fundamental dataset. MLC and SVM classifications were carried out on every dataset

to determine whether the additional data are capable of increasing accuracy and in what

way the accuracies are raised.

2. Background

2.1 MISR

The MISR provides new and unique opportunities to record the anisotropy of land

surface reflectance. This instrument consists of nine pushbroom cameras. One

camera is directed towards the nadir (designated An), four cameras point in the

BRDF and topographic information for classification 3465
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forward direction (designated Af, Bf, Cf and Df) and another four cameras point in

the aftward direction (designated Aa, Ba, Ca and Da). Images are acquired with

nominal view angles, relative to the surface reference ellipsoid, of 0u, 26.1u, 45.6u,
60.0u and 70.5u for An, Af/Aa, Bf/Ba, Cf/Ca and Df/Da, respectively. Each camera

uses four spectral bands, whose shapes are approximately Gaussian and centred at

446, 558, 672 and 866 nm. In Global Science mode, the MISR nadir camera is the

only one with all four bands at high resolution (275 m). The other eight cameras

produce red band data at 275 m resolution, but the remaining bands are averaged to

1.1 km resolution. From the 705-km descending polar orbit of the EOS-AM

spacecraft, the zonal overlap swath width of the MISR imaging data is 360 km,

which provides global multiangle coverage of the entire Earth in 9 days at the

equator and 2 days at the poles. A separate Space-Oblique Mercator (SOM)

projection is established for each of the paths of the 233 repeat orbits of the EOS 16-

day cycle. The SOM projection minimizes distortion and resampling effects, as its

projection meridian nominally follows the spacecraft ground track and a constant

distance scale is preserved along that track. The horizontal datum for each

projection is the World Geodetic System 1984 (WGS84) ellipsoid. The MISR

georectified product removes the errors of the spacecraft position and provides

knowledge and errors due to topography. A more complete description of the MISR

can be found in Diner et al. (1998).

2.2 RPV model

The RPV model (Rahman et al. 1993, Martonchik et al. 2002) predicts the

bidirectional reflectance factor (BRF) of an arbitrary surface as a function of the

geometry of illumination and observation. Through its mathematical formulation,

the RPV model splits a BRF field into its amplitude component and the associated

angular field describing the anisotropic behaviour of the surfaces under investigation

when illuminated by the Sun, that is:

R hi, hv, wð Þ~r0
cos hk{1

i cos hk{1
v

cos hizcos hvð Þ1{k
exp b p Vð Þ½ � h hi, hv, wð Þ ð1Þ

with three free parameters (r0, k, b). hi is the zenith angle of the direction of

illumination by the Sun, hv is the zenith angle of the direction of viewing by the

sensor, and w is the relative azimuth angle between the direction of illumination and

of viewing. Figure 1 shows the geometry of illumination and observation. The

function h is a factor to account for the hot spot:

h hi, hv, wð Þ~1z
1{r0

1zG hi, hv, wð Þ ð2Þ

G hi, hv, wð Þ~ sin hi

cos hi

� �2

z
sin hv

cos hv

� �2

z2
sin hi

cos hi

sin hv

cos hv

� �
cos w

" #1=2

ð3Þ

The function p in equation (1) is assumed to depend only on the scattering angle V,

the angle between the directions of the incident and reflected radiances. It is defined

as

p Vð Þ~cos Vð Þ~cos hi cos hv{sin hi sin hv cos w ð4Þ
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r0 gives the overall reflectance level, k is representative of the bowl or bell shape of

the surface anisotropy, and b describes the predominance of forward or backward

scattering.

2.3 The semi-empirical kernel-based BRDF model

A kernel-driven semi-empirical BRDF model was first derived from a physically

based BRDF model by Roujean et al. (1992) and then developed further by Wanner

et al. (1995). The semi-empirical models have a simple linear form (equation (5)):

BRDF~fisozfvol kvol hi, hv, wð Þzfgeo kgeo hi, hv, wð Þ ð5Þ

kvol hi, hv, wð Þ~ p=2{jð Þcos jzsin j

cos hizcos hv
{

p

4
ð6Þ

kgeo hi, hv, wð Þ~O hi, hv, wð Þ{sec hi{sec hvz0:5 1zcos jð Þsec hi sec hv ð7Þ

O hi, hv, wð Þ~ 1

p
t{sin t cos tð Þ sec hizsec hvð Þ ð8Þ

cos t~2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2z tan hi tan hv sin wð Þ2

q
sec hizsec hv

ð9Þ

D~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 hiztan2 hv{2 tan hi tan hv cos w

p
ð10Þ

cos j~cos hi cos hvzsin hi sin hv cos w ð11Þ

where kvol, called the RossThick volumetric kernel, is a function of view zenith hv,

illumination zenith hi and relative azimuth w. kvol, derived from a single-scattering

Figure 1. The geometry of illumination and observation.
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approximation of radiative transfer theory by Ross (1981), describes the volume

scattering from the pixel. kgeo, called the LiSparse-Reciprocity geometric kernel, is

also a function of hv, hi and w. kgeo, derived from the geometric optical mutual

shadowing BRDF model by Li and Strahler (1992), describes the surface scattering

from the pixel. fvol and fgeo are the weights for these two kernels, respectively. fiso

represents the isotropic reflectance.

2.4 SVM

An SVM classifier was used in this research to perform the classification experiments

because of its excellent empirical performance (Burges 1998). The foundations of the

SVM approach were developed by Vapnik (1995). The SVM aims to obtain an

optimal separating hyperplane for a training data set in terms of generalization error.

Given a set of examples (xi, yi), i51, …, l, where xi g RN and yi g {21, + 1},

indicating the class to which the point xi belongs, when these points are linear

separable, the objective of the optimization is to give the maximal-margin

hyperplane, which divides the points having yi51 from those having yi521. The

hyperplane can be written as:

wx~b ð12Þ

The vector w is a normal vector; it is perpendicular to the hyperplane. The parameter

b determines the offset of the hyperplane from the origin along the normal vector w.

The optimization problem can be written as:

min
w, b

wj j, subject to yi w xi{bð Þ§1, 1ƒiƒl ð13Þ

For non-linear and non-separable cases, the optimization problem was modified as:

min
w, b, j

1

2
wT wzC

Xl

i~1

ji

 !
, subject to yi wT w xið Þ{b

� �
§1{ji, ji§0, 1ƒiƒl ð14Þ

Here ji are positive slack variables that measure the degree of misclassification of the

datum xi. C.0 is a preset penalty value for misclassification errors. Training vector

xi is mapped into a higher (maybe infinite) dimensional space by the function w. k(xi,

xj)5w(xi)
T w(xj) is the kernel function. The choice of the kernel function k is crucial

for good classification performance. This research uses the radial basis function

(RBF), the most commonly used kernel function:

k xi, xj

� �
~exp {c xi{xj

�� ��2
	 


, cw0 ð15Þ

where c is a kernel parameter. In general, the RBF is a reasonable choice (Chang and

Lin 2001). The RBF kernel non-linearly maps samples into a higher dimensional

space; thus, although the classifier is a hyperplane in the high-dimensional feature

space it may be non-linear in the original input space (Boser et al. 1992). The

LIBSVM software (Chang and Lin 2001) was used in this research.

To apply the SVM, the following three procedures were used in the experiments

(Chang and Lin 2001): first, scaling was conducted on the data. Sarle (1997) explains

why the data are usually scaled before their use to train neural networks; most of

those considerations are also applied to using a SVM. Second, the best parameters C

and c were searched by fivefold cross-validation on the training set. The goal is to

3468 L. Su et al.
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identify the best (C, c) so that the classifier can accurately predict unknown data.

Third, the best parameters C and c were used to test the accuracy and calculate the

kappa index on the test set.

3. Study area

The two study sites in this research are: (1) the Jornada Experimental Range (the

Jornada) in southern New Mexico near Las Cruces, and (2) the Sevilleta National

Wildlife Refuge (NWR) (the Sevilleta) in central New Mexico near Albuquerque.

The Jornada is 78 266 ha and is located in the Jornada del Muerto plain of southern

New Mexico (figure 2) between the Rio Grande floodplain on the west and the crest

of the San Andres Mountains on the east. Its elevation is from 1176 to 2734 m. The

mean annual temperature is approximately 15uC and mean annual rainfall is

approximately 210 mm (Havstad et al. 2000). More than 50% of the precipitation

occurs from July to September. Rain usually comes during the summer monsoon

season, which typically begins in early July and can last through August to

September. Large stretches of black grama (Bouteloua eriopoda) grassland have

succeeded in communities dominated by shrubs, most prominently creosote (Larrea

tridentata) and mesquite (Prosopis glandulosa), in the past 100 years (Gibbens et al.

2005). The current landscape is a mosaic of grasslands and expanses of relatively

bare ground dotted with ‘shrub islands’. The second site, the Sevilleta, is one of the

largest reserves in the southwest United States and is approximately 100 000 ha in

size. It is recognized as having increasing importance in the maintenance of arid-land

biodiversity in the region. Its elevation ranges from 1404 to 2719 m. The Sevilleta

NWR lies at the junction of four major biomes (Chihuahuan Desert, Great Basin,

Rocky Mountains and the Great Plains), abuts two mountain ranges and is traversed

by the largest river in New Mexico. The Sevilleta NWR has a wide range of

ecosystem types: Chihuahuan Desert, Great Plains Grassland, Great Basin Shrub-

Steppe, Piñon-Juniper Woodland, Bosque Riparian Forests, Wetlands and Montane

Coniferous Forest. In 1995, the JORNada EXperiment (JORNEX) campaign

Figure 2. Locations of the Jornada and the Sevilleta.
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D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
e
x
a
s
 
A
&
M
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
4
:
3
8
 
9
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



started to collect remotely sensed data from ground, airborne, and satellite platforms

to provide spatial and temporal data on physical and biological states of the Jornada

rangeland (Rango et al. 1998, Havstad et al. 2000).

The vegetation maps produced by the Jornada Long-Term Ecological Research

(LTER) and the Sevilleta LTER programmes (Muldavin et al. 1998) are used as

reference data (figure 3). For the Jornada vegetation map, vegetation types are

envisioned as areas greater than 4 ha, where one to four species of plants are

dominant. When shrub canopy cover exceeded 5%, they were considered to be the

primary dominant vegetation. The Jornada vegetation map has nine classes, each of

which has a unique species composition and dominant species. These classes describe

the major plant communities. The Sevilleta vegetation map is nominal 0.5 ha spatial

resolution, and 13 map classes are derived based on similar vegetation composition

and spatial relationships. This research adopts 19 classes from both extensive sites,

where six classes are from the Jornada and 13 classes from the Sevilleta (table 1).

Although the Jornada vegetation map has nine classes, six classes were adopted. The

Bare, Snakeweed and Yucca were excluded, because the numbers of pixels for the

three classes were too low to construct valid signatures; they do not provide

adequate training data. The Jornada vegetation map uses a set of class names that

differ from those used for the Sevilleta vegetation map; this might lead to a

misunderstanding that the two study areas have completely different vegetation

classes. In fact, both sites are within the Chihuahuan Desert. A number of the shrub

and grass communities are similar (e.g. black grama, galleta grass, creosotebush,

mesquite), although they use different vegetation classes in different classification

systems. It is reasonable to classify the two study areas together. The total

Figure 3. Vegetation maps of the Jornada and the Sevilleta.

3470 L. Su et al.
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experimental area covered by the Jornada and Sevilleta vegetation maps is

23 978 pixels (250 m spatial resolution), covering approximately 1498 km2.

4. Method

This research used MISR orbit O013039 data from 31 May 2002. This study used

three MISR data products: (1) the MISR level 1B2 MI1B2T terrain-projected

product, (2) the MISR level 1B2 MI1B2GEOP geometric parameters product, and

(3) the MISR level 2 MIL2ASAE aerosol product. The first product, the MI1B2T

product, is the terrain-projected top-of-atmosphere (TOA) radiance with 1.1 km

resolution (the off-nadir viewing and non-red bands) and 275 m resolution (the nadir

viewing or red band). The second product, the MI1B2GEOP product, provides solar

zenith, solar azimuth and nine viewing zenith and azimuth angles at 17.6 km

resolution. The third product, the MIL2ASAE product, delivers aerosol optical

depth (AOD) with 17.6 km resolution. A kriging method was used to smooth the

MIL2ASAE 17.6 km AOD data prior to atmospheric correction. MI1B2T TOA

radiance was corrected for atmospheric absorption and scattering using the

Simplified Method for Atmospheric Correction (SMAC) algorithm (Rahman and

Dedieu 1994), which uses the desert coefficients of the MISR sensor atmospheric

correction. The solar zenith, solar azimuth, viewing zenith and azimuth angles were

from the MI1B2GEOP product. The aerosol concentration used was the regional

mean spectral optical depth from the MIL2ASAE product. The surface reflectance

was then resampled to the Universal Transverse Mercator (UTM) map projection,

WGS84 spheroid/datum, zone 13N, with a grid interval of 250 m. As a consequence,

the MISR multiple angle dataset was produced, including four nadir multispectral

reflectances and eight off-nadir red and near-infrared (NIR) bidirectional

reflectances.

Table 1. The six classes of the Jornada and the 13 classes of the Sevilleta.

Jornada Experimental Range
1 Upland black grama grassland
2 Playa dropseed grassland
3 Tarbush shrubland
4 Mesquite shrubland
5 Creosotebush shrubland
6 Mixed shrubland

Sevilleta National Wildlife Refuge
7 Water or wet ground
8 Barren or sparsely vegetated land
9 Galleta/India ricegrass (Great Basin grasslands)
10 Black grama/Galleta transition grasslands (Transition Chihuahuan and Great Basin

grasslands)
11 Black grama grassland (Chihuahuan Desert grasslands)
12 Black/Blue grama grassland (Transition Chihuahuan and Plains grasslands)
13 Blue/Hairy grama grassland (Plains grasslands)
14 Chihuahuan or Great Basin lowlandswale grasslands
15 Creosotebush shrubland (Chihuahuan Desert shrublands)
16 Fourwing saltbush/Broom daleta shrubland (Great Basin shrublands)
17 Conifer_Savanna (Rocky Mountain conifer savanna)
18 Conifer_Woodlands (Rocky Mountain conifer woodlands)
19 Riparian_Woodlands (Rio Grande river riparian woodlands)

BRDF and topographic information for classification 3471
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To study the utility of BRDF model parameters and topographic parameters for

mapping vegetation in the study area, the following two steps were carried out to

produce the experiment dataset:

(1) The BRDF parameters (the r0, k, b, fiso, fvol and fgeo at red and NIR bands)

were derived by inverting the RPV and RTnLS models against the nine (one

nadir plus eight off-nadir) directional reflectance estimates in the red and

NIR bands.

(2) To derive the topographic parameters, the original DEM data (spatial

resolution 10 m of the Jornada data (http://usda-ars.nmsu.edu/data.html) and

30 m of the Sevilleta data (http://sevilleta.unm.edu/data/archive/gis/)) were

scaled up to 250 m spatial resolution by computing the mean and deviation to

match the resolution of the MISR data. In total, six data layers were

generated: (1) the mean of elevation, (2) the standard deviation of elevation,

(3) the mean of the slope, (4) the standard deviation of the slope, (5) the mean

of the aspect, and (6) the standard deviation of the aspect. The standard

deviation is a measure that indicates how tightly all the various examples are

clustered around the mean. At the beginning, it was expected that it would be

best for the classification to use the means and standard deviations together.

However, using the standard deviations and the means along with the MISR

data (the nadir spectral reflectance and the BRDF parameters) did not

provide greater classification accuracy than when using only the means with

the MISR data. Therefore, only the three means (elevation, slope and aspect)

were used as additional data for the semi-arid vegetation mapping in this

research.

In total, 32 experiments were carried out to evaluate the accuracy increase

produced by the BRDF model parameters and the topographic parameters. The 32

experiments were based on 16 datasets with MLC and the SVM. These 16 datasets

(listed in tables 2 and 3) are combinations of the following basic datasets: (1) one

dataset of the MISR 4 nadir spectral reflectance (blue, green, red and NIR), called

MISR-nadir; (2) one dataset of the BRDF model parameters (r0, k, b and fiso, fvol

and fgeo at red and NIR bands), called BRDF parameters, and (3) eight datasets of

topographic parameters (i.e. (1) including no topographic parameters, (2) elevation,

(3) slope, (4) aspect, (5) elevation and slope, (6) elevation and aspect, (7) slope and

aspect, and (8) elevation, slope and aspect), called topographic parameters. The

Table 2. Classifications and their accuracies with the MLC.

Topographic
parameters

MISR-nadir MISR-nadir + BRDF parameters

Overall1/kappa Change0 Overall2/kappa Change1 Change2

None 45.8/41.1 NA 65.9/62.1 NA NA
Elevation 53.8/49.7 + 8.0 66.7/62.9 + 0.8 + 12.9
Slope 51.7/47.0 + 6.0 66.5/62.6 + 0.6 + 14.8
Aspect 49.3/44.7 + 3.8 66.3/62.5 + 0.4 + 17.0
Elevation, Slope 56.5/52.3 + 10.7 67.5/63.8 + 1.6 + 11.0
Slope, Aspect 53.8/49.2 + 8.0 67.1/63.3 + 1.2 + 13.3
Elevation, Aspect 56.0/51.9 + 10.2 67.4/63.7 + 1.3 + 11.4
Elevation, Aspect,
Slope

57.7/53.5 + 11.9 67.7/64.0 + 1.8 + 10.0
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MISR-nadir was considered as the baseline because nadir observation is the basic

remote sensing observation. The BRDF and the topographic parameters were

considered as additional information to increase the classification accuracy from the

baseline (the MISR-nadir).

The accuracy of the MISR-nadir was the benchmark for all of the other

experiments. To assess the impact of the BRDF parameters and the topographic

parameters on the classification accuracy, the following tasks were implemented in a

sequence:

(1) The accuracy of the MISR-nadir plus the BRDF parameters was investigated.

The purpose was to examine the accuracy increase by incorporating the

BRDF parameters into the nadir observations.

(2) The accuracy of the MISR-nadir plus the topographic parameters was

investigated. The purpose was to explore the capability of the topographic

parameters in the accuracy increase. In addition, by comparing the results of

the MISR-nadir plus the BRDF parameters with the MISR-nadir plus the

topographic parameters, we aimed to determine whether the BRDF or the

topographic parameters were more suitable to increase accuracy.

(3) The accuracy of the MISR-nadir plus both the BRDF parameters and

topographic parameters were investigated together. The purpose was to

examine whether the BRDF parameters and the topographic parameters in

combination could help to increase the accuracy. If the accuracy increase was

significant after combining both the BRDF parameters and the topographic

parameters together with the MISR-nadir, it would encourage the use of the

two kinds of information together for this semi-arid vegetation mapping.

5. Results and discussion

Tables 2 and 3 present the results of the 32 experiments, including the 16

classifications with the MLC and the SVM. The classification accuracies for the

MLC and SVM classifiers are shown in figures 4 and 5, respectively. In addition to

the overall accuracy and kappa coefficient, three kinds of accuracy changes in each

experiment are also displayed: (1) the difference between accuracies of the MISR-

nadir plus the topographic parameters and those of the MISR-nadir, indicated by

change0; (2) the difference between accuracies of the MISR-nadir plus the

Table 3. Classifications and their accuracies with the SVM.

Topographic
parameters

MISR-nadir MISR-nadir + BRDF parameters

Overall1/kappa Change0 Overall2/kappa Change1 Change2

None 64.3/59.1 N/A 75.6/72.2 N/A N/A
Elevation 72.7/68.8 + 8.4 76.6/73.4 + 1.0 + 3.9
Slope 67.1/62.3 + 2.8 75.6/72.3 0.0 + 8.5
Aspect 65.7/60.3 + 1.0 75.3/72.0 20.3 + 9.5
Elevation, Slope 72.9/69.1 + 8.6 76.6/73.4 + 1.0 + 3.7
Slope, Aspect 67.7/63.0 + 3.4 75.7/72.3 + 0.1 + 8.0
Elevation, Aspect 72.3/68.4 + 8.0 76.4/73.1 + 0.8 + 4.1
Elevation, Aspect,
Slope

72.5/68.6 + 8.2 76.0/72.8 + 0.4 + 3.5
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Figure 4. Accuracy of 16 combinations of (the MISR-nadir or the MISR-nadir + the BRDF
parameters) and topographic parameters: 1, no topographic parameters; 2, elevation; 3, slope;
4, aspect; 5, elevation and slope; 6, slope and aspect; 7, elevation and aspect; 8, elevation and
aspect and slope. The MLC was used here.

Figure 5. Accuracy of 16 combinations of (the MISR-nadir or the MISR-nadir + the BRDF
parameters) and topographic parameters: 1, no topographic parameters; 2, elevation; 3, slope; 4,
aspect; 5, elevation and slope; 6, slope and aspect; 7, elevation and aspect; 8, elevation and aspect
and slope. The SVM was used here.
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topographic parameters and BRDF parameters together and that of the MISR-nadir

plus BRDF parameters, indicated by change1; and (3) the difference between

accuracies obtained on the MISR-nadir plus the topographic parameters and the

BRDF parameters together and accuracies obtained on the MISR-nadir plus

topographic parameters, indicated by change2. The purpose of the accuracy changes

was to clearly show the capability of the topographic parameters and of the BRDF

parameters to improve the recognition of semi-arid vegetation types. The kappa

coefficient can be thought of as the chance-corrected proportional agreement, and

possible values range from + 1 (perfect agreement) to 0 (no agreement above that

expected by chance) to 21 (complete disagreement). More specifically, a kappa

coefficient can be interpreted as follows: ,0.40 is low agreement, 0.41–0.60 is

moderate agreement, and 0.61–0.80 is full agreement.

Tables 2 and 3 show that both the BRDF parameters and the topographic parameters

can increase the classification accuracy, regardless of whether the MLC or the SVM is

applied. In other words, the results suggest that the reasons for the increased accuracy

are mainly due to adding new data. For instance, adding the BRDF parameters on the

MISR-nadir brings approximately 20% and 11% increments on the MLC and SVM

classifiers, respectively. The increased accuracy from adding the topographic

parameters on the MISR-nadir is around 12% using the MLC when elevation, slope

and aspect are used together; and 9% using the SVM when elevation and slope are used

together. This illustrates that both the BRDF parameters and the topographic

parameters can provide useful information for this semi-arid vegetation mapping.

Furthermore, when adding the BRDF parameters and the topographic parameters on

the MISR-nadir, the highest accuracy is 67.7% with the MLC and 76.6% with the SVM.

These are more than 21% and 12% increments compared with only the MISR-nadir

used with the MLC and SVM, respectively. The difference between the two highest

accuracies is almost 10%. This illustrates that the topographic parameters and the

BRDF parameters can raise the accuracy higher for the MLC than for the SVM.

However, we should point out that the accuracy of the MISR-nadir is 64.3% for the

SVM and 45.8% for the MLC, a difference of almost 20%, indicating that the SVM can

obtain knowledge from the data more efficiently than the MLC.

Of note, according to change1 in tables 2 and 3, the topographic parameters can

only add less than 2% and 1% accuracy for a dataset of the MISR-nadir plus the

BRDF parameters with the MLC and SVM, respectively. According to change2 in

tables 2 and 3, the BRDF parameters can add more than 10% and 3.5% accuracy for

a dataset of the MISR-nadir plus the topographic parameters with the MLC and

SVM, respectively. In other words, the accuracy increment by adding the BRDF

parameters on a dataset of the MISR-nadir and topographic parameters together is

much greater than by adding the topographic parameters on a dataset of the MISR-

nadir and the BRDF parameters together. This suggests that the BRDF parameters

can provide more additional information to the nadir multispectral data than the

topographic parameters for this semi-arid vegetation mapping. The reasons may be

twofold. First, the BRDF parameters carry structural information about vegetation,

and structural information on the canopy is usually directly related to vegetation

type. Second, vegetation community types may not have a strong correlation with

topographic parameters in the Jornada and the Sevilleta areas. In addition, scale

issues of the topographic information may also affect contribution to vegetation type

mapping. Instead of elevation, slope and aspect, we may need some new parameters

to characterize the complexity of the topography in a remote sensing pixel.
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To compare the improvement obtained by adding the topographic parameters to

those obtained by adding the BRDF parameters, tables 4 and 5 give the producer’s

accuracy, the user’s accuracy and increases in the user’s accuracy for the MLC and

SVM for the four most informative cases, respectively. The four experiments are (1)

the MISR-nadir, (2) the MISR-nadir plus the topographic parameters (e.g. elevation

and slope for SVM; elevation, slope and aspect for MLC), (3) the MISR-nadir plus

the BRDF parameters, and (4) the MISR-nadir plus the topographic parameters and

BRDF parameters. The user’s accuracies for these four experiments are shown in

figures 6 and 7.

The MISR-nadir dataset with the MLC method produces serious misclassifica-

tions (see ‘Nadir accuracy’ in table 4). This highlights the limitations of the nadir-

spectral data in this environment. The improvements in differentiating these classes

when adding the BRDF parameters on the MISR-nadir dataset are perhaps not

surprising given that the multiangle data and metrics hold greater information on

canopy structure (‘BRDF accuracy’ in table 4). This information is derived mainly

from the change in the proportion of shadowed soil in the multiple angle

observations. All classes except class 4 increase accuracy, compared with accuracy

of the MISR-nadir (‘BRDF Inc_n’ in table 4). In particular, 11 out of 18 classes show

a 10% or more accuracy increase. This is a considerable increase, especially in the

vegetation type mapping at the community level. The apparent improvements in

differentiating these classes when adding the topographic parameters on the MISR-

nadir are perhaps not unexpected because the vegetation cover is also associated with

topography and soil to some degree (‘Elevation-slope accuracy’ in table 4). Sixteen

out of 19 classes have an increase in accuracy and four out of 16 classes have a 10%

or more increase in accuracy, compared with that of the MISR-nadir (‘Topographic

Inc_n’ in table 4).

Clearly, the best improvement is obtained when adding both the BRDF

parameters and the topographic parameters to the MISR-nadir (‘All accuracy’ in

table 4). Compared with the accuracy of the MISR-nadir (‘All Inc_n’ in table 4), 18

out of 19 classes have an increase in accuracy and 12 out of 18 classes have an

increase of 10% or more. Compared to the accuracy of the MISR-nadir plus the

BRDF parameters (‘All Inc_a’ in table 4), 14 out of 19 classes have an increase in

accuracy. Compared with the accuracy of the MISR-nadir plus the topographic

parameters (‘All Inc_e’ in table 4), 16 out of 19 classes have an increase in accuracy,

and the greatest improvement occurs in class 6 (‘Mixed shrubland’). This is now 40%

from 3.2% of the MISR-nadir, 18.0% of the MISR-nadir plus the BRDF parameters

and 7.3% of the MISR-nadir plus the topographic parameters. For this mixed

shrubland, these results suggest that because they offer additional information,

BRDF parameters create a greater increase in accuracy than topographic parameters

in this environment. Furthermore, the topographic parameters and BRDF

parameters complement each other very well.

With regard to the experiments with the SVM algorithm, the SVM always

produces better accuracy than the MLC on every corresponding dataset. The MISR-

nadir with SVM (‘Nadir accuracy’ in table 5) provides much better accuracy than

that with MLC (‘Nadir accuracy’ in table 4). Here, 15 out of 19 classes enjoy a higher

accuracy than the MISR-nadir/MLC case. This shows that SVM has a stronger

capability of obtaining information from data than the MLC. Classes 5

(Creosotebush), 6 (Mixed shrub), 9 (Galleta/India ricegrass) and 17

(Conifer_Savanna), however, have a decrease in accuracy. This is surprising because
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Table 4. User’s accuracy and producer’s accuracy of the MLC.

Class

Producer’s accuracy User’s accuracy

Nadir BRDF Topographic All

Nadir BRDF Topographic All

Accuracy Accuracy Inc_n Accuracy Inc_n Accuracy Inc_n Inc_a Inc_e

1 76.1 83.1 93.0 83.1 17.1 34.5 17.4 21.2 4.1 33.7 16.6 20.8 12.5
2 45.3 64.2 56.1 61.5 16.5 22.8 6.3 19.0 2.5 21.7 5.2 21.1 2.7
3 64.6 80.3 73.8 84.7 35.6 43.1 7.5 40.6 5.0 43.8 8.2 0.7 3.2
4 47.6 77.5 61.2 78.4 94.1 91.3 22.8 95.1 1.0 92.0 22.1 0.7 23.1
5 34.2 60.1 71.1 68.3 64.1 85.8 21.7 80.6 16.5 89.3 25.2 3.5 8.7
6 79.6 61.2 69.4 53.1 3.2 18.0 14.8 7.3 4.1 40.0 36.8 22.0 32.7
7 50.9 66.0 58.5 66.0 13.3 40.7 27.4 20.7 7.4 42.7 29.4 2.0 22.0
8 52.9 57.8 57.6 60.0 38.6 56.0 17.4 39.1 0.5 55.3 16.7 20.7 16.2
9 59.4 66.5 48.9 65.7 58.9 72.2 13.3 64.7 5.8 73.6 14.7 1.4 8.9
10 48.5 70.1 57.3 71.0 52.3 71.6 19.3 63.1 10.8 71.6 19.3 0.0 8.5
11 11.2 54.1 24.9 56.4 36.9 45.3 8.4 35.6 21.3 47.7 10.8 2.4 12.1
12 41.1 56.4 55.0 54.7 44.2 70.2 26.0 53.7 9.5 72.3 28.1 2.1 18.6
13 71.5 66.7 59.7 64.0 30.2 48.3 18.1 36.6 6.4 49.2 19.0 0.9 12.6
14 43.6 65.3 55.7 71.0 12.4 19.6 7.2 11.9 20.5 20.3 7.9 0.7 8.4
15 12.4 28.6 30.0 32.2 30.2 48.6 18.4 53.1 22.9 53.0 22.8 4.4 20.1
16 32.9 66.3 51.3 68.5 21.1 52.4 31.3 36.5 15.4 52.9 31.8 0.5 16.4
17 58.4 70.1 64.6 71.0 76.7 77.8 1.1 83.4 6.7 79.5 2.8 1.7 23.9
18 91.9 89.9 91.9 89.9 67.5 76.6 9.1 68.3 0.8 73.8 6.3 22.8 5.5
19 62.5 68.1 69.4 73.6 48.9 51.6 2.7 47.2 21.7 49.5 0.6 22.1 2.3
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Table 5. User’s accuracy and producer’s accuracy of the SVM.

Class

Producer’s accuracy User’s accuracy

Nadir BRDF Topographic All

Nadir BRDF Topographic All

Accuracy Accuracy Inc_n Accuracy Inc_n Accuracy Inc_n Inc_a Inc_e

1 35.2 62.0 52.1 63.4 41.0 69.8 28.8 57.8 16.8 77.6 36.6 7.8 19.8
2 30.4 37.8 34.5 36.5 70.3 74.7 4.4 64.6 25.7 70.1 20.2 24.6 5.5
3 46.6 72.8 62.9 72.1 59.3 67.9 8.6 67.5 8.2 71.1 11.8 3.2 3.6
4 92.6 95.7 94.6 95.6 86.4 90.1 3.7 89.9 3.5 91.3 4.9 1.2 1.4
5 64.5 82.2 86.1 87.5 60.3 89.2 28.9 88.3 28.0 90.1 29.8 0.9 1.8
6 0.0 18.4 20.4 24.5 0.0 50.0 50.0 52.6 52.6 80.0 80.0 30.0 27.4
7 11.3 47.2 28.3 52.8 33.3 59.5 26.2 46.9 13.6 54.9 21.6 24.6 8.0
8 38.5 53.9 47.8 54.2 65.6 69.1 3.5 68.5 2.9 69.4 3.8 0.3 0.9
9 80.9 84.1 81.8 84.7 54.5 69.0 14.5 61.7 7.2 69.0 14.5 0.0 7.3
10 68.7 79.1 73.7 77.3 56.1 74.4 18.3 67.6 11.5 77.5 21.4 3.1 9.9
11 28.1 52.1 41.3 54.4 40.4 54.7 14.3 48.1 7.7 55.8 15.4 1.1 7.7
12 52.2 67.9 62.4 65.0 57.2 72.4 15.2 70.3 13.1 71.0 13.8 21.4 0.7
13 52.2 57.5 58.8 60.1 58.3 68.2 9.9 60.6 2.3 62.6 4.3 25.6 2.0
14 12.1 38.7 19.4 27.4 35.7 40.7 5.0 34.8 20.9 44.7 9.0 4.0 9.9
15 23.1 40.6 40.0 44.4 36.5 49.7 13.2 52.2 15.7 55.2 18.7 5.5 3.0
16 19.4 57.7 46.5 64.5 38.3 70.4 32.1 56.5 18.2 61.6 23.3 28.8 5.1
17 74.7 81.0 80.6 80.4 74.0 77.3 3.3 77.8 3.8 78.9 4.9 1.6 1.1
18 78.2 80.2 80.2 79.4 80.5 81.6 1.1 84.0 3.5 83.5 3.0 1.9 20.5
19 38.9 61.1 69.4 62.5 66.7 74.6 7.9 74.6 7.9 77.6 10.9 3.0 3.0
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the accuracy reduction classes include all of the main vegetation structures: grass,

shrub and tree. This highlights one of the major challenges in classification of remote
sensing data; all elements in the sensor’s instantaneous field of view contribute to the

signal (‘pixels are always mixed’) and the effects of shadowing are not straightfor-

ward to incorporate.

Comparing the results of the MISR-nadir (‘Nadir accuracy’ in table 5) and the results

of the MISR-nadir plus the BRDF parameters (‘BRDF accuracy’ in table 5), it can be

Figure 6. User’s accuracy of the four experiments when the MLC was used. The topographic
parameters consist of elevation, slope and aspect.

Figure 7. User’s accuracy of the four experiments when the SVM was used. The topographic
parameters consist of elevation and slope.
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seen that all classes have accuracy increases. In 11 out of 19 classes the accuracy

increases are very close to or more than 10% (‘Anisotropic Inc_n’ in table 5). Although

the user’s accuracy of class 14 (the Sevilleta Chihuahuan or Great Basin Lowland Swale

Grasslands) is still low at 40.7% in the MISR-nadir plus the BRDF parameters, this

represents an increase of 5% from 35.7% of the MISR-nadir. These statistics indicate

that the BRDF parameters improve the classification accuracy.

With the SVM algorithm, adding topographic parameters on the MISR-nadir

dataset (‘Topographic accuracy’ in table 5) leads to an increase in accuracy in 17 out of

19 classes. Importantly, the accuracy increases of eight classes are very close to or more

than 10% (‘Topographic Inc_n’ in table 5). Only two classes have lower accuracy than

those of the MISR-nadir dataset. The differences in these two classes are that class 2

(Jornada Playa Grasses) is 5.7% from 70.3% to 64.6%, and class 14 (Chihuahuan or

Great Basin lowlandswale grasslands) is 0.7% from 35.7% to 34.8%. The accuracy

increases are clearly considerable, and the accuracy decreases are small.

Regarding the SVM algorithm, the best results are achieved when incorporating both

the topographic parameters and the BRDF parameters into the MISR-nadir (‘All

accuracy’ in table 5). Compared to the accuracy of the MISR-nadir dataset (‘All Inc_n’

in table 5), 18 out of 19 classes have an increase in accuracy and 12 out of 18 classes

increase 10%. Compared with the accuracy of the MISR-nadir plus the BRDF

parameters (‘All Inc_a’ in table 5), 13 out of 19 classes have a higher accuracy than the

MISR plus the BRDF parameters enjoy an accuracy increase. Specifically, the greatest

increase is over 30% (class 6, ‘Mixed shrubland’, from 50.0% to 80.0%); the next is close

to 8% (class 1 ‘Upland black grama grassland’ from 77.6% to 69.8%). All the other

increases, however, are under 6%. At the same time, the greatest decrease is also more

than 5%: class 16 (‘Great Basin shrublands’) decreases 8.8% from 70.4% to 61.6%, and

class 13 (‘Plains grasslands’) falls 5.5% from 68.2% to 62.6%. Compared to the accuracy

of the MISR-nadir plus the topographic parameters, all classes except class 18 have an

increase in accuracy (‘All Inc_e’ in table 5); however, only two out of 18 classes increase

10%. These experiments suggest that both the topographic parameters and the BRDF

parameters can provide additional useful information for this semi-arid vegetation

mapping. Moreover, the BRDF parameters are slightly more efficient than the

topographic parameters. A possible reason is that there may not be a strong association

between vegetation types and topography in the desert regions. However, the BRDF

parameters provide information about the directional anisotropy of the surface

reflectance for classification. This information is mainly determined by heterogeneous

three-dimensional structure of vegetation. Therefore, it is not surprising that the BRDF

parameters have better performances. The proposed method should be useful in

vegetation mapping areas where vegetation types have different canopy physiognomies.

Evidently, using the BRDF parameters provides a clear advantage when

classifying areas that do not have adequate DEM data because these BRDF

parameters are provided by MODIS and MISR data products routinely, which cover

the Earth daily or weekly.

6. Conclusion

In the context of mapping semi-arid vegetation types at moderate resolution, the

findings in this research are: (1) both the topographic parameters and the BRDF

parameters can provide additional useful information for semi-arid vegetation

mapping at the Jornada Experimental Range and the Sevilleta National Wildlife

Refuge. (2) In the semi-arid environment, the BRDF parameters are slightly more
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efficient than the topographic parameters. BRDF model parameters derived from

MODIS and MISR data products have considerable utility in increasing the

accuracy of moderate resolution vegetation mapping, by allowing exploitation of the

additional information they provide.
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