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ABSTRACT: 
 
Aerial photography acquired with unmanned aerial vehicles (UAVs) has great potential for incorporation into rangeland health 
monitoring protocols, and object-based image analysis is well suited for this hyperspatial imagery. A major drawback, however, is 
the low spectral resolution of the imagery, because most lightweight cameras suitable for UAVs only acquire imagery in the red, 
green, and blue bands (RGB). Potential solutions include the incorporation of intensity, hue, and saturation (IHS) and/or texture 
measures. The use of texture had improved classification results in a related study, but we wanted to investigate whether IHS would 
yield similar results, because texture calculations in object-based analysis are computer intensive. Our objectives were to determine 
the optimal analysis scale and optimal band combinations: RGB, RGB+texture, RGB+IHS, or RGB+IHS+texture. Eight aerial 
photos were mosaicked and segmented at 15 consecutively coarser scale parameters (from 10 to 80) using the object-based image 
analysis program Definiens Professional. Class separation distances, classification accuracies and Kappa Index of Agreement were 
used to assess the classifications. The highest classification accuracies were achieved at segmentation scales between 50 and 70 and 
were consistently in the high 90% range, regardless of which bands were included. The inclusion of texture measures increased 
classification accuracies at nearly all segmentation scales, but the use of RGB+IHS alone resulted in comparable accuracies at most 
scales and with considerably less computation time. Techniques used in this study offer an objective approach for determining 
segmentation scale, and for selecting bands useful for rangeland mapping with hyperspatial, low spectral resolution imagery.   
 
 

1. INTRODUCTION 

Aerial photography acquired with piloted aircraft is commonly 
used for rangeland mapping and monitoring (Booth and Tuller, 
2003; Rango and Havstad, 2003; Naylor et al., 2005; Petersen 
et al., 2005), but in many cases a higher resolution is desirable 
for quantifying spatial patterns of vegetation and soil, and for 
deriving landscape fragmentation metrics used in rangeland 
assessment and ecosystem models (Bestelmeyer et al., 2006). 
Unmanned aerial vehicles (UAVs) offer an alternative platform 
for image acquisition with several advantages: UAVs can be 
deployed rather quickly and repeatedly to assess effectiveness 
of rangeland restoration treatments, they are less costly and 
safer than piloted aircraft, and they can be deployed at low 
altitudes for acquiring sub-decimeter resolution imagery. This 
hyperspatial imagery, images with a resolution finer than the 
objects of interest, allows for mapping of small shrubs, grass 
and soil patches not detectable with conventional aerial 
photography or satellite imagery (Rango et al., 2006; Laliberte 
et al., 2007a), and thus bridges the gap between ground-based 
plot information and lower resolution remotely sensed data.  
 
 Although the spatial resolution of this UAV imagery is rather 
fine, this is often not true for the spectral resolution due to low 
payload capabilities, because low-cost, off-the-shelf digital 
cameras are commonly used for acquiring the imagery. 
Potential solutions for imagery with very high spatial and low 
spectral resolution include the incorporation of intensity, hue, 
and saturation (IHS) and/or texture measures, as well as 
exploitation of shape and contextual information using object-
based image analysis (OBIA) (Carleer and Wolff, 2006; Yu et 
al., 2006; Laliberte et al., 2007b).  Texture has been used 
widely in pixel-based image analysis (Ryherd and Woodcock, 

1996; Wulder et al., 1998; Franklin et al., 2000), but the use of 
texture in OBIA has not been as well covered (Herold et al., 
2003; Carleer and Wolff, 2006), especially the investigation of 
texture across multiple segmentation scales. This may be due to 
the fact that texture calculations in OBIA are relatively 
computer intensive.  
 
In a related study (Laliberte and Rango, in review), texture had 
improved classification accuracy at all segmentation scales, but 
we wanted to investigate whether the use of IHS would yield 
similar accuracy results with lower computation costs. While 
band inter-correlation is relatively high in the RGB space, it is 
lower in the IHS space, and we have used this approach 
successfully for object-based analysis of ground plot 
photography (Laliberte and Rango, 2007b). 
 
Our objectives were to determine the optimal analysis scale and 
optimal band combinations (RGB, RGB+texture, RGB+IHS, or 
RGB+IHS+texture) for differentiating vegetation structure 
groups (bare ground, grasses, shrubs) in an arid rangeland from 
UAV imagery. This study is part of ongoing research at the 
USDA Agricultural Research Service (ARS) Jornada 
Experimental Range (JER) in southern New Mexico, aimed at 
determining the utility of UAVs for rangeland mapping and 
monitoring and developing a workflow for processing and 
analyzing UAV imagery in a production environment.  
 
     



 

2. METHODS 

Image Acquisition 2.1 

The UAV imagery was acquired in October 2006 at the JER in 
southern New Mexico over arid rangeland with a mixture of  

 
 

Figure 1. BAT 3 UAV on catapult on roof of launch vehicle. 
The video camera is located at the front; the digital still           

camera used in this study is located in the left wing. 
 
 
shrubs, grasses, and bare soils representative of the northern 
part of the Chihuahuan desert. The platform used was a MLB 
BAT 3 UAV, a fully autonomous GPS-guided unmanned 
aircraft with a weight of 10 kg and a wingspan of 1.8 m (Figure 
1). The UAV flies to pre-determined waypoints according to 
flight plans designed with the mission planning and flight 
software, and acquires imagery at 60% forward lap and 30% 
side lap for photogrammetric processing. For this mission, the 
UAV flew at 150 m above ground and acquired imagery with a 
Canon SD 550 seven-megapixel digital camera, resulting in an 
image footprint of approximately 152 m x 114 m. Eight images 
from this flight were orthorectified and mosaicked into a single 
image with 5 cm pixel resolution for further analysis.  
 
2.2 Image Analysis 

The image mosaic was segmented at 15 consecutively coarser 
scale parameters (from 10 to 80) in increments of 5, using the 
object-based image analysis program Definiens Professional 
(Definiens, 2006). Color/shape and compactness/smoothness 
were set to 0.9/0.1 and 0.5/0.5 respectively, based on previous 
research with this type of imagery in this area (Laliberte et al., 
2007a). The cut-off for the coarsest scale was determined by 
our objective to retain individual shrubs with the segmentation.  
 
The bands (or features, as they are called in Definiens 
Professional) used in this study are shown in Table 1. The 
optimal texture features for each segmentation scale had been 
determined in a related study (Laliberte and Rango, in review) 
by using a decision tree and assessing prediction success and 
cross-validated error rate of the tree, in conjunction with class 
separability and classification accuracy. The pre-selection 
reduced computer calculation times. Entropy, contrast, and 
standard deviation were consistently chosen by the decision tree 
at scales 65-80, and entropy received the highest score in most 
segmentation scales.  
 
For this follow-up study, we used the previously selected 
texture measures for each segmentation scale and then assessed 
the following band combinations: 1) RGB, 2) RGB+texture, 3) 
RGB+IHS, and 4) RGB+IHS+texture with regard to 

classification accuracy and class separability. The Image was 
classified using a standard nearest neighbour classification, 
using samples for the three classes of interest collected in the 
field with differentially corrected GPS. Samples were collected  
 

Band Type 
Mean Blue Spectral 
Mean Green Spectral 
Mean Red Spectral 
Mean Intensity Spectral 
Mean Hue Spectral 
Mean Saturation Spectral 
GLCM Homogeneity Texture 
GLCM Contrast Texture 
GLCM Dissimilarity Texture 
GLCM Entropy Texture 
GLCM Angular 2nd moment Texture 
GLCM Mean Texture 
GLCM Standard Deviation Texture 
GLCM Correlation Texture 
GLDV Angular 2nd moment Texture 
GLDV Entropy Texture 

 
Table 1. Spectral and texture bands used in the analysis 

 
in polygon format to be consisted with object-based image 
analysis. Half of the 300 samples were used for classifying the 
map, half were retained for performing an accuracy assessment.   
 
 
2.3 

3.1 

Class Separability and Accuracy Assessment 

Evaluation of the band combinations was done by determining 
class separability and performing a classification accuracy 
assessment. We used the Feature Space Optimization tool in 
Definiens Professional for determining class separation 
distances. For each sample of class 1, the sample of class 2 with 
the smallest Euclidean distance is calculated. The process is 
repeated for samples of class 2 compared to class 1, and the 
Euclidean distances are finally averaged over all samples. 
Classification accuracy was assessed by determining Kappa 
Index of Agreement (KIA) as well as overall, producers, and 
users accuracies (Congalton, 1991).  
 
 

3. RESULTS AND DISCUSSION 

Class Separability 

As a general trend, we observed increasing class separability as 
the segmentation scale became coarser for all four band 
combinations, with a notable increase after scale 50 for 
comparisons with the Bare class (Figure 2). The inclusion of 
texture measures as chosen by the decision tree for each scale 
increased the class separability compared to using only RGB 
bands. Only at scale 60 was the separability slightly greater for 
RGB than for RGB+texture for Bare-Shrub comparisons. 
RGB+IHS increased class separability considerably over using 
RGB alone for all three class comparisons at all segmentation 
scales, and it outperformed RGB+texture for Grass-Bare and 
Bare-Shrub at all scales. Using all band combinations 
(RGB+IHS+texture) resulted in the highest class separabilities 
for Grass-Bare and Bare-Shrub at scales greater than 50, while 
for Grass-Shrub, using RGB+texture had comparable results to 
using RGB+IHS+texture at those scales. A slight reduction in 



 

separability was noticeable around scale 70-75 for comparisons 
involving shrubs. This points to the requirement to keep the 
segmentation large enough to capture shrubs, but small enough 
to retain individual shrubs, which occurred between scale 
parameters 50-70.  
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Figure 2. Class separability for Grass-Shrub, Grass-Bare,             
and Bare-Shrub for four different band combinations at             

varying scale parameters. 
 

 
 

Figure 3. Classification accuracy and Kappa Index of 
Agreement for four different band combinations at                   

varying scale parameters. 
For RGB+IHS, class separability showed a steady increase with 
increasing segmentation scale. For RGB+IHS+texture for 
Grass-Bare and Bare-Shrub comparison, there was a marked 
increase in separability after scale 50. We attribute this to the 
fact that at coarser scales, the image objects are larger, and the 
ratio between edge pixels of an image object and the number of 
pixels in an image object is lower than at finer scales, making 
texture a more effective tool at relatively coarser segmentation 
scales to separate vegetation from bare ground. The separability 
values were much lower for Grass-Shrub comparisons, although 
adding texture increased the separability regardless of whether 
IHS was included or not.   
 
While we used class separability tools built into the Definiens 
software for this study, there are other options for feature 
selection and/or optimal segmentation scales. Carleer and Wolff 
(2006) used the Bhattacharyya distance for calculating class 
separability and feature selection for mapping urban areas with 
QuickBird satellite imagery. Nussbaum et al. (2006) developed 
a tool called SEaTH (Separability and Thresholds), designed to 
determine suitable features and their threshold values in the 
Definiens software. The optimal segmentation scale was 
determined by Kim and Madden (2006) by analysis of local 
variance.   
 
3.2 Classification Accuracy 

The accuracy assessment results also indicated increased 
accuracy with increasing segmentation scales for all band 
combinations, however, after scale 70, there was a drop in 
accuracy for 3 band combinations with the exception of 
RGB+IHS (Figure 3). The inclusion of texture resulted in 
higher accuracies from scales 50-65, after which using 
RGB+IHS had equal or better accuracies. There was 
considerable variability in producers and users accuracy for 
Grasses and Shrubs at and below scale 40 (not shown), but at 
larger segmentation scales, producers and users accuracies were 
consistently above 80%, with a drop-off after scale 70. Similar 



 

to the class separability results, shrubs showed lower accuracy 
results at those scales.   

3.4 

 
3.3 Image Processing Times 

The inclusion of texture measures added considerably to the 
time required for image classification. Table 2 shows the 
classification times for the smallest, largest, and intermediate 
segmentation scales, using a workstation with two dual cores 
and 4 GB of RAM. Texture in this case consisted of only one 
band. Classifications at finer scales took more time than those at 
coarser scales, and while adding the IHS bands affected 
processing times very little, adding the texture band increased 
the processing times considerably, and processing had to be 
done overnight, especially at the finer scales.   
 
 

Segmentation scale Band Combinations 10 45 80 
RGB 1:59 0:57 0:01 
RGB+IHS 2:24 1:15 0:11 
RGB+Texture 323:24 150:36 55:22 
RGB+IHS+Texture 360:08 184:11 68:50 

 
Table 2. Classification times (minutes:seconds) for three 

segmentation scales and four band combinations.                         
 
The long processing times make it difficult to quickly assess the 
optimal segmentation scale using only an accuracy assessment, 
while the class separation distances can be determined rather 
quickly in Definiens, and can be a good indicator of the optimal 
segmentation scale for particular class comparisons. One can 
also generate a best separation distance for all chosen classes 
for the optimized feature space. This best separation distance is 
the largest distance between the closest samples of two classes 
in feature space. We calculated correlations between the best 
separation distance and overall accuracies for the four band 
combinations at all segmentation scales to determine if the best 
separation distance can be used as an indicator for classification 
accuracy, in order to reduce computation time.  
 
The results indicate good correlations for RGB (R2=0.86) and 
RGB+IHS (R2=0.82), a moderate correlation for 
RGB+IHS+Texture (R2=0.68), and a weak correlation for 
RGB+Texture (R2=0.47) (Figure 4). With the exception of the 
latter band combination, this indicates that the best separation 
distance, a parameter that can be quickly calculated, is a 
reasonable indicator of optimal segmentation scale and overall 
accuracy, which can be time consuming to derive. Because the 
class separability results depend entirely on the samples for the 
classes, one has to be careful to include representative samples 
as well as a sufficient number of samples, so that appropriate 
statistics can be calculated.  
 
Considering the computation times and the relatively high 
classification accuracy results of all the approaches, the analyst 
has to weigh the decision of less computation time with fewer 
bands (RGB+IHS) and slightly reduced accuracy, versus much 
higher computation times and a small increase in accuracy with 
the inclusion of texture features. It is advisable to perform class 
separability calculations using either the tools described here, or 
those used by others (Carleer and Wolff, 2006; Nussbaum et al., 
2006), so that only one or two classifications using texture have 
to be performed in order to reduce computation times.   
 

Multi-scale Analysis 

As can be seen in Figure 5a, there is very fine detail in this 
imagery, and OBIA is well suited for classification of this 
imagery. OBIA allows for extraction of shrubs on both light and 
dark backgrounds, multiple segmentation scales can be 
assessed, and the object-based approach offers hundreds of 
input and derived features of spectral, spatial, contextual, and 
textural nature. While we used a multiresolution segmentation 
at 15 scales (Figure 5c,d,e), additional computation times could 
be saved by performing a chessboard segmentation first, 
followed by a multiresolution segmentation. We also wanted to 
determine a single segmentation scale for all three classes for 
simplicity and incorporation into a rangeland monitoring 
protocol, although we acknowledge that analysis at more than 
one scale may be better able to capture small, medium, and 
large shrubs.  
 
In this study, we concentrated on the means of the RGB and 
IHS bands (Figure 5b), as well as texture features. Figure 5h 
shows a portion of the classified image at scale 60, using 
RGB+IHS+Texture. The texture bands chosen by the decision 
tree were entropy (Figure 5f) and dissimilarity (Figure 5g). This 
classification represents the one with the highest overall 
accuracy of 99.6% with a KIA of 0.99.  
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Figure 4. Correlations between best separation distance                  
and overall accuracy for four band combinations at 15 

segmentation scales. 
 
 
 

4. CONCLUSIONS AND FUTURE WORK 

UAV aerial photography offers sub-decimeter resolution 
imagery with fine detail for rangeland monitoring and 
assessment. However, one drawback of the imagery is its low  
spectral resolution. This study shows that the use of OBIA and 
the incorporation of texture, intensity, hue, and saturation can 
yield classification accuracies for broad structural vegetation 
groups in the high 90% range. The inclusion of IHS and texture 
bands yielded the highest accuracies, but using RGB+IHS 
resulted in sufficiently high accuracies for rangeland 
assessments with considerably less computation times.  
 

 
 

Figure 5. UAV image mosaic and associated scale bar (top 
center), with a) enlarged area from red rectangle in RGB band 

combination, b) IHS band combination, c) segmentation at scale 
10, d) segmentation at scale 45, e) segmentation at scale 80,     

f) entropy, g) dissimilarity, and h) classification into bare 
(yellow), grass (light green) and shrubs (dark green). Texture 
and classification images are displayed at scale parameter 60. 

 
 
Determination of the optimal scale parameter was done by 
assessing class separability, which was less computer intensive 
than performing classifications at multiple scales and assessing 
their accuracy. The correlations between best separation 
distance and overall accuracy show that class separability is a 
reasonable indicator of overall accuracy.  
 
This study demonstrates that small UAVs equipped with low-
cost digital cameras can be used successfully for mapping 
rangeland vegetation using OBIA, and we plan to incorporate 
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these findings into rangeland monitoring protocols with UAVs. 
In addition, the image analysis approaches can also be applied  
to imagery of similar resolution, but acquired with digital 
mapping cameras from piloted aircraft.  As a next step, we plan 
to move from mapping structural vegetation groups to mapping 
individual species, and to apply these techniques to larger 
image mosaics, while attempting to retain comparable 
classification accuracies.  
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